GLMA201 - ALGÈBRE LINÉAIRE ET ANALYSE CONTRÔLE CONTINU 2
|
|
|
- Achille Roberge
- il y a 10 ans
- Total affichages :
Transcription
1 GLMA -4 GLMA - ALGÈBRE LINÉAIRE ET ANALYSE - -4 CONTRÔLE CONTINU Durée : h Tout doument ou lultrie est interdit Il ser tenu ompte de l lrté et de l préision de l rédtion Il est importnt de justifier hune de vos réponses Bon ourge! Le brème est donné à titre inditif et pourrit être légèrement modifié Eerie ( /) Soit E un K-espe vetoriel Soient f, g L(E) tels que f g = g f, et λ K On pose E λ := Ker(f λid) Montrer que g(e λ ) E λ ) (utrement dit, E λ est stble pr g) Corretion Il s git de montrer que : v g(e λ ), v E λ Soit v g(e λ ) Alors, pr définition, il eiste u E λ tel que v = g(u) En omposnt ette églité pr (f λid), on obtient : (f λid)(v) = (f λid)(g(u)) = f(g(u)) λg(u) = g(f(u)) λg(u), r f g = g f De plus, d près l linérité de g, on : g(f(u)) λg(u) = g(f(u)) g(λu) = g(f(u) λu) = g((f λid)(u)) Or, (f λid)(u) = r u E λ Don : r g est linéire Autrement dit, v E λ (f λid)(v) = g((f λid)(u)) = g() =, Eerie ( /) Trouver les solutions de : (E) y y + y = e t On préiser le domine de résolution Corretion L éqution (E) est définie et se résout sur J = R On ommene pr étudier l éqution homogène ssoiée à (E) On pose : (H) y y + y = Son polynôme rtéristique P (X) = X X + dmet une rine double r = On en déduit que les solutions réelles sur J de (H) sont de l forme : { J R h : t Ce t + Dte t ; C, D R Remrque Il est importnt de préiser dns quel ensemble "vivent" C et D Pour une solution réelle, C et D sont des réels Alors que pour une solution omplee, C et D sont des omplees Cherhons à présent une solution prtiulière y de (E) Pour tout t J, le seond terme (t) = e t nous inite à herher une solution prtiulière de l forme y (t) = (t + bt + )e t, ve, b, R En effet, l eposnt de l eponentielle est rine double du polynôme Dte: Jeudi 7 Mrs Els Ibne Contrôle Continu
2 GLMA -4 rtéristique On : y est solution de (E) y (t) y (t) + y (t) = e t + (t + b) + (t + bt + ) t J (t + b) (t + bt + ) + (t + bt + ) = = = t J Remrque Dns notre s, les vribles b et sont libres (utrement dit, elles peuvent prendre n importe qu elles vleurs) Penser à préiser quelles vleurs sont hoisies pour l suite On prend pr eemple b = et = Une solution prtiulière de (E) est don donnée pr : { J C y : t t e t Pr onséquent, les solutions réelles sur J de (E) sont de l forme : { J R y : t Ce t + Dte t + t e t ; C, D R Problème ( /5,5) On se ple dns le R-espe vetoriel R On onsidère l pplition f : R R définie pr : 4 y R f( y ) + y () Montrer que l pplition f est linéire Corretion Soient t (, y, ), t (, y, ) R et λ R On utilise l rtéristion de l linérité On : + λ f( y + λ y ) = f( y + λy + λ ) Don f est linéire = f( 4( + λ ) ( + λ ) ( + λ ) + (y + λy ) ( + λ ) ( + λ ) ( + λ ) 4 + y y ) + λf( + λ y ) 4 + y () Donner l bse nonique de R et érire l mtrie A de f dns ette bse Corretion L bse nonique de R est (e, e, e ) où : e, e, e Els Ibne Contrôle Continu
3 GLMA -4 Dns ette bse : 4 f(e ) = f( ) = 4e + e + e, Il s ensuit que : f(e ) = f( f(e ) = f( ) ) A = e, 4 = e e e Remrque Il fut justifier omment on onstruit A Pour el, penser à mettre en évidene les déompositions de f(e ), f(e ) et f(e ) dns l bse nonique () Donner des équtions pour Im(f id) et Im(f id) Corretion On ommene pr étudier Im(f id) Soit t (, b, ) R On : b Im(f id) y tel que (f id)( y ) b, y, R tels que = = b = Remrque Lors de l étude de l imge d une pplition linéire, il fut svoir epliquer en quelques lignes omment on se rmène à l étude d un système (S) Ce système s ompgne d une ondition d eistene très importnte Elle fit prtie des équivlenes! On n étudie ps les solutions de (S), mis s résolubilité ( està-dire qund est-e qu il eiste une solution) Ce pourquoi, on ehibe une ou des ondition(s) de omptibilité entre, b et Une fois elle(s)-i obtenue(s), il fut justifier pourquoi les utres équtions disprissent Or, le système obtenu est soluble si et seulement si = b = Don : Im(f id) b R ; = b = ; R ; des équtions de Im(f id) sont, pr eemple, = b et = On proède de même pour Im(f id) Soit t (, b, ) R On : b Im(f id) y tel que (f id)( y ), y, R tels que L L L L L L, y, R tels que b = + y = b = = y = b = Els Ibne Contrôle Continu
4 GLMA -4 = L L L, y, R tels que y = b = + Or, le système obtenu est soluble si et seulement si + = Don : Im(f id) b R ; + = b ;, b R ; une éqution de Im(f id) est + = (4) Donner des bses pour Ker(f id) et Ker(f id) Préiser leurs dimensions Corretion On ommene pr étudier Ker(f id) Soit t (, y, ) R On : y Ker(f id) (f id)( y ) = = = Remrque Lors de l étude du noyu d une pplition linéire, il fut svoir epliquer en quelques lignes omment on se rmène à l étude d un système (S) Contrirement à préédemment, on s intéresse ette fois-i u solutions de (S) Or, le système obtenu est équivlent à = Don : Ker(f id) y R ; = y ;, y R Tout veteur t (, y, ) Ker(f id) s érit de mnière unique : y = + y Remrque Il fut justifier omment on obtient une bse A priori, on obtient une fmille F génértrie Cependnt, pr onstrution (ompte-tenu du plement des ""), F est toujours trivilement libre ou, de mnière équivlente, l déomposition dns F est toujours trivilement unique Penser à le préiser dns l rédtion On en déduit que {t (,, ), t (,, ) } est une bse de Ker(f id) et que s dimension est Pssons à l étude de Ker(f id) Soit t (, y, ) R On : y Ker(f id) (f id)( y ) = + y = = On réupère les luls préédents ve = b = = Le système obtenu est équivlent à : { = = y = y = Els Ibne 4 Contrôle Continu
5 GLMA -4 Don : Ker(f id) y R ; = y = ; R Tout veteur t (,, ) Im(f id) s érit de mnière unique : = On en déduit que t (,, ) est une bse de Ker(f id) et que s dimension est (5) On pose : ɛ, ɛ, ɛ Montrer que l fmille (ɛ, ɛ, ɛ ) est une bse de R Corretion Soient, b, R tels que ɛ +bɛ +ɛ = Cette éqution vetorielle se trduit sous forme d un système : + b + = + b = + b + = L L L L L L L L L L L L L b + = + b = b + = + b = b + = = Remrque Lors de l étude de l liberté d une fmille, il fut epliiter quelle éqution vetorielle est étudiée vnt de poser le système ssoié Or, e système est équivlent à = b = = Don (ɛ, ɛ, ɛ ) est une fmille libre Comme l fmille (ɛ, ɛ, ɛ ) ontient = dim(r ) veteurs, est une bse de R Remrque Une fmille un rdinl L notion de dimension, qunt à elle, est propre u espes vetoriels Tout espe vetoriel vetoriel E de dimension finie dmet (u moins) une bse De plus, toutes les bses de E ont même rdinl C est insi qu est défini l dimension de E : dim(e) est égle à l vleur ommune des rdinu de ses bses (6) Cluler f(ɛ ), f(ɛ ) et (f id)(ɛ ) dns l bse (ɛ, ɛ, ɛ ) En déduire l mtrie B de f dns ette nouvelle bse Corretion D près l question (4), on remrque que ɛ Ker(f id) et ɛ Ker(f id) Don : (f id)(ɛ ) = f(ɛ ) = ɛ, (f id)(ɛ ) = f(ɛ ) = ɛ D utre prt : (f id)(ɛ ) = (f id)( Il s ensuit que : ) B = ɛ f(ɛ ) = ɛ + ɛ Els Ibne 5 Contrôle Continu
6 GLMA -4 (7) Donner une mtrie P inversible telle que A = P BP Cluler P Corretion Pr onstrution, A = Mt (ei )(e i )(f) et B = Mt (ɛi )(ɛ i )(f) D près l formule mtriielle du hngement de bses : A = Mt (ei )(ɛ i )(id) B Mt (ɛi )(e i )(id) ( où Mt (ɛi )(e i )(id) = Mt (ei )(ɛ i )(id)) Remrque L formule mtriielle du hngement de bses justifie le hoi de ette mtrie (de pssge) P, insi que son inversibilité Dns une opie, il fut rédiger et rgument Don : P = Mt (ei )(ɛ i )(id) On lule son inverse à l ide d un pivot de Guss : L L L L L L L L L L L L L L L L L L L L L +L 5 Il s ensuit que : P 5 (8) Montrer que, pour tout n N, il eiste des réels n et b n tels que : b n B n n n Corretion On proède pr réurrene sur n N Pour tout entier n, on note P(n) l propriété suivnte : b n P(n) : n, b n R tels que B n n n Remrque Erire " n N" dns l propriété P(n) n uun sens Le prinipe du risonnement pr réurrene est de sinder le résultt à démontrer en plusieurs rngs n On se rmène insi à étudier une propriété P(n) pour un seul rng n fié Le résultt à démontrer est : pour tout n N, l propriété P(n) est vrie Els Ibne 6 Contrôle Continu
7 GLMA -4 Pour n =, on : B = I ; les réels = et b = onviennent Remrque L propriété est demndée pour tout n N Le premier rng est don n = Soit n N On suppose que P(n) est vérifiée Montrons P(n + ) Pr hypothèse de réurrene, on : b n b n + n B n+ = BB n n n n n Don n+ = n et b n+ = b n + n onviennent ; e qui hève l réurrene (9) A l ide des reltions de réurrene stisfites pr les suite ( n ) et (b n ), donner leurs epressions en fontion de n Corretion D près l question (8), les suites ( n ) et (b n ) vérifient les reltions de réurrene suivntes : n n = n, b n = b n + n L suite ( n ) est géométrique de rison, on en déduit que : L suite (b n ) vérifie don : n n N n = n = n b n = b n + n = b n + n + n = = b n = + + n = () En déduire A n pour tout n N n k= k = n Corretion On sit que A = P BP Il s ensuit que, pour tout n N : A n = (P BP ) n = (P BP )(P BP )(P BP ) } {{ } nfois = (P B P ) (P BP )(P BP ) = = P B n P } {{ } n fois Remrque L formule doit se justifier pr des rguments lés ou une réurrene rpide D près les questions préédentes, on lors : n 5 A n n n n n n n n n n + n n n + n n + 5 n n + n+ n n + n+ n+ + Els Ibne 7 Contrôle Continu
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER
LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
semestre 3 des Licences MISM annnée universitaire 2004-2005
MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
FONDATION CLEMENTINE ET MAURICE ANTILLE
FONDATION CLEMENTINE ET MAURICE ANTILLE Règlement d ttriution de ourses et de prêts d études et de formtion du déemre 006 Artile premier Ojet et hmp d pplition Le présent règlement est étli en pplition
ANALYSE NUMERIQUE NON-LINEAIRE
Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre
Chapitre VI Contraintes holonomiques
55 Chpitre VI Contrintes holonomiques Les contrintes isopérimétriques vues u chpitre précéent ne sont qu un eemple prticulier e contrintes sur les fonctions y e notre espce e fonctions missibles. Dns ce
COURS D ANALYSE. Licence d Informatique, première. Laurent Michel
COURS D ANALYSE Licence d Informtique, première nnée Lurent Michel Printemps 2010 2 Tble des mtières 1 Éléments de logique 5 1.1 Fbriquer des énoncés........................ 5 1.1.1 Enoncés élémentires.....................
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE
Jen-Pierre Dedieu, Jen-Pierre Rymond ANALYSE : FONCTIONS D UNE VARIABLE RÉELLE Institut de Mthémtiques Université Pul Sbtier 31062 Toulouse cedex 09 [email protected] [email protected]
Licence M.A.S.S. Cours d Analyse S4
Université Pris I, Pnthéon - Sorbonne Licence MASS Cours d Anlyse S4 Jen-Mrc Brdet (Université Pris 1, SAMM) UFR 27 et Equipe SAMM (Sttistique, Anlyse et Modélistion Multidisiplinire) Université Pnthéon-Sorbonne,
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet [email protected] Cours d
Projet INF242. Stéphane Devismes & Benjamin Wack. Pour ce projet les étudiants doivent former des groupes de 3 ou 4 étudiants.
Projet INF242 Stéphane Devismes & Benjamin Wak Pour e projet les étudiants doivent former des groupes de 3 ou 4 étudiants. 1 Planning Distribution du projet au premier ours. À la fin de la deuxième semaine
3- Les taux d'intérêt
3- Les tux d'intérêt Mishkin (2007), Monnie, Bnque et mrchés finnciers, Person Eduction, ch. 4 et 6 Vernimmen (2005), Finnce d'entreprise, Dlloz, ch. 20 à 22 1- Mesurer les tux d'intérêt comprer les différents
/HVV\VWqPHVFRPELQDWRLUHV
/HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Le canal étroit du crédit : une analyse critique des fondements théoriques
Le cnl étroit du crédit : une nlyse critique des fondements théoriques Rfl Kierzenkowski 1 CREFED Université Pris Duphine Alloctire de Recherche Avril 2001 version provisoire Résumé A l suite des trvux
Partie 4 : La monnaie et l'inflation
Prtie 4 : L monnie et l'infltion Enseignnt A. Direr Licence 2, 1er semestre 2008-9 Université Pierre Mendès Frnce Cours de mcroéconomie suite 4.1 Introduction Nous vons vu dns l prtie introductive que
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Équations différentielles et systèmes dynamiques. M. Jean-Christophe Yoccoz, membre de l'institut (Académie des Sciences), professeur
Équations différentielles et systèmes dynamiques M. Jean-Christophe Yooz, membre de l'institut (Aadémie des Sienes), professeur La leçon inaugurale de la haire a eu lieu le 28 avril 1997. Le ours a ensuite
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES. Bruno BELHOSTE (*)
Revue d histoire des mthémtiques, 2 (1996), p. 1 66. AUTOUR D UN MÉMOIRE INÉDIT : LA CONTRIBUTION D HERMITE AU DÉVELOPPEMENT DE LA THÉORIE DES FONCTIONS ELLIPTIQUES Bruno BELHOSTE (*) RÉSUMÉ. Dns cet rticle,
Chapitre 1 : Fonctions analytiques - introduction
2e semestre 2/ UE 4 U : Abrégé de cours Anlyse 3: fonctions nlytiques Les notes suivntes, disponibles à l dresse http://www.iecn.u-nncy.fr/ bertrm/, contiennent les définitions et les résultts principux
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
essais dossier Oser s équi Prothèses auditives
essis dossier u LES AUDIOPROTHÉSISTES AU BANC D ESSAI p. 46 u UN APPAREIL ADAPTÉ À VOS BESOINS p. 50 u FAIRE BAISSER LA FACTURE? PAS SI SIMPLE p. 52 Prothèses uditives Oser s équi AUDIOPROTHÉSISTES Fe
Production statistique: passage d une démarche axée sur les domaines à une démarche axée sur les processus
Nations Unies Conseil éonomique et soial Distr. générale 31 mars 2015 Français Original: anglais ECE/CES/2015/26 Commission éonomique pour l Europe Conférene des statistiiens européens Soixante-troisième
Comment évaluer la qualité d un résultat? Plan
Comment évaluer la qualité d un résultat? En sienes expérimentales, il n existe pas de mesures parfaites. Celles-i ne peuvent être qu entahées d erreurs plus ou moins importantes selon le protoole hoisi,
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Influence du milieu d étude sur l activité (suite) Inhibition et activation
Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu
LANGAGES - GRAMMAIRES - AUTOMATES
LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
RadioCommunications CDMA
Conservtoire tionl es Arts et Métiers Cours u Conservtoire tionl es Arts et Métiers RioCommunitions CDMA (Version 7) Mihel Terré terre@nmfr Eletronique C4 / Conservtoire tionl es Arts et Métiers Les performnes
Pour développer votre entreprise LES LOGICIELS EN LIGNE, VOUS ALLEZ DIRE OUI!
Pour développer votre entreprise Gestion Commercile Gérez le cycle complet des chts (demnde de prix, fcture fournisseur), des stocks (entrée, sortie mouvement, suivi) et des ventes (devis, fcture, règlement,
Chapitre 2. Matrices
Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce
INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE
INSTRUCTIONS POUR L INSTALLATION ET LE FONCTIONNEMENT DES SERRURES À POIGNÉE BÉQUILLE POUR LES SERRURES D ENTRÉE À CLÉ EXTÉRIEURES VERROUILLABLES, À POIGNÉE DE BRINKS HOME SECURITY. POUR LES PORTES DE
Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances
Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
La plateforme Next Generation Mini guide
L plteforme Next Genertion Mini guie Ce guie onis été réé pour vous permettre e vous fmiliriser rpiement ve les nomreuses fontionnlités et outils isponiles sur l plteforme Next Genertion. Apprenez où trouver
Régression multiple : principes et exemples d application. Dominique Laffly UMR 5 603 CNRS Université de Pau et des Pays de l Adour Octobre 2006
Régression multiple : principes et eemples d ppliction Dominique Lffly UMR 5 603 CNRS Université de Pu et des Pys de l Adour Octobre 006 Destiné à de futurs thémticiens, notmment géogrphes, le présent
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
- Phénoméne aérospatial non identifié ( 0.V.N.I )
ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Conditions Générales d Assurances Edition 2012.10
Assurne ménge Etudints Conditions Générles d Assurnes Edition 2012.10 Index Pge Art. A Couverture de se...... 2 Choses ssurées, risques ssurles... 2 Presttions et sommes d ssurne....... 4 Art. B Couverture
Thèse Présentée Pour obtenir le diplôme de doctorat en sciences En génie civil Option : structure
République Algérienne Démocrtique et Populire Ministère de l enseignement supérieur et de l recherche scientifique Université Mentouri de Constntine Fculté des sciences et sciences de l ingénieur Déprtement
Theorie des mrches Dns ce chpitre, on etudie l'interction de l'ore et de l demnde sur un mrche d'un bien donne. On etudier, en prticulier, l'equilibre du mrche. Etnt donne qu'on s'interesse uniquement
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
l'appareil et vérifiez les composants Cartouches d'encre incluses [x4] CD-ROM d'installation CD-ROM de documentation
Guide d instlltion rpide Commener DCP-J35W Veuillez lire ttentivement e Guide d'instlltion rpide pour onnître l proédure de onfigurtion et d'instlltion vnt d'utiliser l'ppreil. AVERTISSEMENT ATTENTION
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Statuts ASF Association Suisse Feldenkrais
Sttuts ASF Assocition Suisse Feldenkris Contenu Pge I. Nom, siège, ojectif et missions 1 Nom et siège 2 2 Ojectif 2 3 Missions 2 II. Memres 4 Modes d ffilition 3 5 Droits et oligtions des memres 3 6 Adhésion
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
BASE DE BIOÉTHIQUE SECTION 1 : SYLLABUS PROGRAMME D ÉDUCATION EN ÉTHIQUE
COURS DE BASE DE BIOÉTHIQUE SECTION 1 : SYLLABUS PROGRAMME D ÉDUCATION EN ÉTHIQUE Seteur es sienes soiles et humines Division e l éthique es sienes et es tehnologies Design & Proution: Juli Cheftel SHS/EST/EEP/2008/PI/1
BAILLY-GRANDVAUX Mathieu ZANIOLO Guillaume Professeur : Mrs Portehault
BAILLY-GRANDVAUX Mathieu ZANIOLO Guillaume Professeur : Mrs Portehault 1 I. Introdution...3 II. Généralités...3 Caratéristiques ommunes aux deux phénomènes...3 La différene entre la phosphoresene et la
VIBRATIONS COUPLEES AVEC LE VENT
VIBRATIONS OPLEES AVE LE VENT Pscl Hémon Lbortoire d Hydrodynmique, LdHyX Ecole Polytechnique, Pliseu Octobre 00 Vibrtions couplées vec le vent Si vous pense que j i révélé des secrets, je m en ecuse.
Métrologie des paramètres S : vers une meilleure traçabilité des analyseurs de réseaux vectoriels en France
6 th Interntionl Congress of Metrology, 3 (3) DOI:.5/ metrology/ 33 C Owned by the thors, pblished by EDP Sienes, 3 Métrologie des prmètres S : vers ne meillere trçbilité des nlysers de résex vetoriels
Sommaire. 6. Tableau récapitulatif... 10. Sophos NAC intégré Vs. NAC Advanced - 17 Février 2009 2
Sommire 1. A propos de Sophos... 3 2. Comprtif des solutions Sophos NAC... 4 3. Sophos NAC pour Endpoint Security nd Control 8.0... 4 3.1. Administrtion et déploiement... 4 3.2. Gestion des politiques
1 Introduction à l effet Doppler.
Introdution à l effet Doppler Ph. Ribière [email protected] Merredi 9 Novembre 2011 1 Introdution à l effet Doppler. Vous avez tous fait l expériene de l effet Doppler dans la rue, lorsqu une ambulane,
Toyota Assurances Toujours la meilleure solution
Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
Mesures du coefficient adiabatique γ de l air
Mesures du oeffiient adiabatique γ de l air Introdution : γ est le rapport des apaités alorifiques massiques d un gaz : γ = p v Le gaz étudié est l air. La mesure de la haleur massique à pression onstante
Informatique III: Programmation en C++
Informatique III: Programmation en C++ Listes haînées Lundi 9 Janvier 2006 1 2 Introdution Les listes hainées permettent de stoker un nombre d objets qui n a pas besoin d être spéifié a priori. Rajouter
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
[http://mp.cpgedupuydelome.fr] édité le 30 avril 2015 Enoncés 1
[http://mpcpgedupuydelomefr] édité le 3 avril 215 Enoncés 1 Exercice 1 [ 265 ] [correction] On note V l ensemble des matrices à coefficients entiers du type a b c d d a b c c d a b b c d a et G l ensemble
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot
Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une
LOGICIEL FONCTIONNEL EMC VNX
LOGICIEL FONCTIONNEL EMC VNX Améliortion des performnces des pplictions, protection des données critiques et réduction des coûts de stockge vec les logiciels complets d EMC POINTS FORTS VNX Softwre Essentils
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Notes de révision : Automates et langages
Préprtion à l grégtion de mthémtiques 2011 2012 Notes de révision : Automtes et lngges Benjmin MONMEGE et Sylvin SCHMITZ LSV, ENS Cchn & CNRS Version du 24 octore 2011 (r66m) CC Cretive Commons y-nc-s
Votre dossier d adhésion
MSH INTERNATIONAL pour le ompte Votre dossier d adhésion Vous avez besoin d aide pour ompléter votre dossier d adhésion? Contatez-nous au +33 (0)1 44 20 48 77. Adhérent Bulletin d adhésion Titre : Mademoiselle
3. Veuillez indiquer votre effectif total :
1 Métiers du marketing et de la ommuniation Questionnaire préalable d assurane Préambule Le présent questionnaire préalable d assurane Marketing et Communiation a pour objet de réunir des informations
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11
Electrovnne double Dimension nominle 3/8 - DMV-D/11 DMV-DLE/11 7.30 M Edition 11.13 Nr. 223 926 1 6 Technique L électrovnne double DUNGS DMV intère deux électrovnnes dns un même bloc compct : - vnnes d
