Fiche de révisions de première année pour une rentrée en PSI en toute sérénité!



Documents pareils
Développements limités usuels en 0

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

NOMBRES COMPLEXES. Exercice 1 :

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

I. Polynômes de Tchebychev

Comparaison de fonctions Développements limités. Chapitre 10

Développements limités, équivalents et calculs de limites

Développements limités. Notion de développement limité

Représentation géométrique d un nombre complexe

3 Approximation de solutions d équations

Cours d Analyse. Fonctions de plusieurs variables

Mathématiques I Section Architecture, EPFL

Développements limités

Capes Première épreuve

Correction de l examen de la première session

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Continuité et dérivabilité d une fonction

Cours d Analyse I et II

Chapitre 6. Fonction réelle d une variable réelle

Correction du baccalauréat S Liban juin 2007

Correction du Baccalauréat S Amérique du Nord mai 2007

CCP PSI Mathématiques 1 : un corrigé

Fonctions de plusieurs variables

Théorème du point fixe - Théorème de l inversion locale

Limites finies en un point

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

EXERCICE 4 (7 points ) (Commun à tous les candidats)

Image d un intervalle par une fonction continue

Continuité d une fonction de plusieurs variables

Chapitre 2 Le problème de l unicité des solutions

Dérivées d ordres supérieurs. Application à l étude d extrema.

Fonctions de plusieurs variables et applications pour l ingénieur

Commun à tous les candidats

Pour l épreuve d algèbre, les calculatrices sont interdites.

Corrigé du baccalauréat S Asie 21 juin 2010

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Chapitre VI Fonctions de plusieurs variables

Continuité en un point

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Premiers pas avec Mathematica

Complément d information concernant la fiche de concordance

MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME

Equations différentielles linéaires à coefficients constants

Programme de la classe de première année MPSI

Équations non linéaires

Angles orientés et trigonométrie

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Logique. Plan du chapitre

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Introduction. Mathématiques Quantiques Discrètes

La fonction exponentielle

Planche n o 22. Fonctions de plusieurs variables. Corrigé

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Résolution d équations non linéaires

Dérivation : cours. Dérivation dans R

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Angles orientés et fonctions circulaires ( En première S )

Fonctions de plusieurs variables

Cours arithmétique et groupes. Licence première année, premier semestre

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

I. Ensemble de définition d'une fonction

Mais comment on fait pour...

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Rappels sur les suites - Algorithme

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Nombres complexes. cours, exercices corrigés, programmation

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Maple: premiers calculs et premières applications

Mesure d angles et trigonométrie

Fonctions Analytiques

Chapitre 0 Introduction à la cinématique

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Différentiabilité ; Fonctions de plusieurs variables réelles

Fonction inverse Fonctions homographiques

Chapitre 7 : Intégration sur un intervalle quelconque

Cours Fonctions de deux variables

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

M2 IAD UE MODE Notes de cours (3)

F411 - Courbes Paramétrées, Polaires

Calcul différentiel. Chapitre Différentiabilité

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Quelques contrôle de Première S

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

Calcul intégral élémentaire en plusieurs variables

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Fonctions de deux variables. Mai 2011

Problème 1 : applications du plan affine

Cours de mathématiques

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

Calcul fonctionnel holomorphe dans les algèbres de Banach

Etude de fonctions: procédure et exemple

Exercices et corrigés Mathématique générale Version β

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Transcription:

PSI Septembre 0 MATHEMATIQUES Fiche de révisions de première année pour une rentrée en PSI en toute sérénité! Table des matières Nombres complexes 3. Cours...................................... 3. Exercices de révision.............................. 3 Fonctions usuelles 4. Cours...................................... 4. Exercices de révision.............................. 4 3 Equations différentielles 4 3. Cours...................................... 4 3. Exercices de révision.............................. 4 4 Suites 5 4. Cours...................................... 5 4. Exercices de révision.............................. 5 5 Fonctions d une variable réelle à valeurs réelles 6 5. Cours...................................... 6 5. Exercices de révision.............................. 6 6 Dérivation des fonctions d une variable réelle à valeurs réelles 7 6. Cours...................................... 7 6. Exercices de révision.............................. 7 7 Intégration et dérivation 8 7. Cours...................................... 8 7. Exercices de révisions.............................. 8 8 Développements limités 9 8. Cours...................................... 9 8. Exercices de révision.............................. 9 9 Principe du raisonnement par récurrence 9 9. Exercice de révision.............................. 9 0 Polynômes 9 0. Cours...................................... 9 0. Exercices de révision.............................. 0 Algèbre linéaire 0

Documents annexes. Annexe : Formulaire Trigonométrique..................... Annexe : Fonctions hyperboliques et leurs réciproques.......... 3.. Fonctions hyperboliques........................ 3.. Fonctions hyperboliques réciproques.................. 5.3 Annexe 3 : Dérivées des fonctions usuelles.................. 6.4 Annexe 4 : Tableau des primitives usuelles.................. 8.5 Annexe 5 : Règles de calculs sur les développements limités et tableau des développements limités usuels..........................5. Règles de calculs sur les développements limités............5. Tableau des développements limités usuels.............. 3

L année de PSI est courte, les écrits des concours arrivent vite, le programme est conséquent. Voici pourquoi il vous est vivement conseillé de mettre à jour les différents points que je cite ci-dessous et que j illustre par des exercices types. Nombres complexes. Cours Dans ce chapitre, revoyez en priorité : expression algébrique, trigonométrique, exponentielle d un complexe. Conjugué, module. Les racines n ième de l unité. Dans le cas n = 3, les racines cubiques de sont :, j = e iπ 3 = + i 3, j. Il faut savoir que : j = j = et + j + j j = 0 Résolution des équations du second degré. Nombres complexes et géométrie plane Formulaire trigonométrique (annexe ). Exercices de révision exercice : Soit (a, b, c) IR 3, résoudre le système : x + y + z = a x + jy + j z = b x + j y + jz = c indication : utiliser les opérations l + l + l 3, l + jl + j l 3, l + j l + jl 3 où l i désigne la i ième équation En déduire que la matrice A = j j est inversible et déterminer son inverse. j j Exercice : Trouver la partie réelle et la partie imaginaire des complexes suivants : ( + i 3) 0 ; ( i) ( ( ) ( ) 0 3 i 3 i 3 3i); ; + 3i + i Exercice 3 : Calculer les sommes suivantes : ) u n = x n cos nθ et v n = x n sin nθ, (x, θ) ], [ IR.penser faire u n + iv n ) k=0 p= ( n k p= ) cos kx, (n, x) IN IR. Exercice 4 : Résoudre les équations suivantes d inconnue z : ) z 4 (5 4i)z (5i + ) = 0 ) (3z + z + ) + (z + z + ) = 0. 3) ( z i z+i ) 3 + ( z i z+i ) + ( z i z+i) + = 0. Exercice 5 : On considère l application ϕ du plan dans lui-même qui, au point M d affixe z associe le point M d affixe z = 3+i 3z + i 3. 4 ) Quelle est la nature géométrique de cette transformation? ) Soit A son point invariant. Montrer que pour tout M A, le triangle AMM est rectangle. 3

Fonctions usuelles. Cours Dans ce chapitre, revoyez en priorité : Fonctions exponentielles, logarithmes, puissances Fonctions circulaires et leurs réciproques. Fonctions hyperboliques et leurs réciproques (cf annexe ). Exercices de révision exercice : Donner l ensemble de définition des expressions suivantes puis les simplifier : Arctan(tan x), tan( Arctanx), cos( Arctanx), sin( Arctanx), tan( Arctanx), tan( Arcsinx) Exercice : Etude et graphe de : ) x Arcsin ( x ) + x ) chercher le domaine de définition et poser x = tan θ cos x x Arctan + cos x utiliser des formules trigos Exercice 3 : Montrer que Arctan + Arctan 5 + Arctan 8 = π 4 3 Equations différentielles 3. Cours Dans ce chapitre, revoyez en priorité : résoudre une équation différentielle linéaire du premier degré : on résout l équation homogène puis on cherche une solution particulière. Pour cela, soit on l obtient en «tatonnant», soit par la méthode de la variation de la constante. Enfin, on somme cette solution particilère aux solutions générales de l équation homogène. résoudre une équation différentielle linéaire du second ordre à coefficients constants et avec un second membre sous forme exponentielle-polynôme : on résout l équation homogène en s aidant de l équation caractéristique et on cherche une solution particulière sous une certaine forme (voir le cours). 3. Exercices de révision Résoudre : ) Pour x > 0, xy 3y = x. solutions : y(x) = kx 3 x ) Pour m IR, résoudre : my ( + m )y + my = xe x. it solution : si m = 0, y(x) = ( x+)e x +cte, si m / {, }, y(x) = ce mx + de x m + si m =, y(x) = (c + dx)e x + x 4 ex, si m =, y(x) = (c + dx)e x + x3 6 ex x (m ) ex, 4

4 Suites 4. Cours se référer au polycopié de rappels 4. Exercices de révision Exercice : On considère une suite réelle (u n ) n IN vérifiant : ) On suppose que (u n ) n IN converge. n IN, u n u n+3 a) Justifier que (u n ) n IN est majorée. b) Montrer que la suite (u n+ u n+ + u n ) n IN converge vers 0. ) On ne suppose plus que (u n ) n IN converge, mais on suppose que (u n ) n IN est majorée et que la suite (u n+ u n+ + u n ) n IN converge vers 0. On considère les suites (a n ) n IN, (b n ) n IN, (c n ) n IN définies par : n IN, a n = u 3n, b n = u 3n+, c n = u 3n+ a) Montrer que ces trois suites sont majorées et croissantes. Qu en déduit-on? b) En considérant les suites (c n b n + a n ) n IN et (a n+ c n + b n ) n IN, montrer que les suites (a n ) n IN, (b n ) n IN, (c n ) n IN convergent vers une même limite notée l. c) Montrer que (u n ) n IN converge vers l. Exercice :. Montrer que, si une suite (x n ) n IN est convergente, la suite (x n x n ) n IN converge vers 0.. On définit la suite (S n ) n IN par : S n = k a) Montrer que n IN, S n S n. b) En déduire que (S n ) n IN diverge vers +. k+ 3. Montrer que : k, k t dt k k k t dt 4. En déduire un encadrement de S n pour tout n. 5. En déduire un équivalent de S n. 6. On considère les suites (a n ) n IN et (b n ) n IN définies par : k= a n = n k= k ln(n) b n = n ln(n + ) k k= a) Montrer qu elles sont adjacentes. utiliser que x >, ln( + x) x b) En déduire qu il existe γ IR tel que : S n = ln(n) + γ + o() 5

Exercice 3 : Trouver une suite simple équivalente à la suite donnée et en déduire la nature de la suite donnée : a) x n = n + n, b) x n = n n + c) x n = n sin n, d) x n = x n e) x n = ( ln (n + ) ln (n) f) x n = + n) a n où a IR + ( ) n n g) lim n + n + 5 Fonctions d une variable réelle à valeurs réelles 5. Cours Dans ce chapitre, revoyez en priorité : Limite en un point, continuité en un point. Caractérisation séquentielle d une limite, de la continuité en un point. Limite d une fonction monotone. Fonctions continues sur un intervalle : image d un intervalle par une fonction continue, théorème des valeurs intermédiaires, image d un segment par une fonction continue. Continuité de la fonction réciproque d une fonction continue strictement monotone 5. Exercices de révision Exercice : Montrer que sin n a pas de limite en ±. Exercice : Soient a > 0 et b > 0. Déterminer les limites en 0 de x x a E( b x ), x b x E(x a ). Exercice 3 : f étant une fonction de ]0, + [ dans IR, on définit sur ]0, + [, la fonction g, en posant g(x) = f(x) x. On suppose f croissante, et g décroissante. Montrer que x 0 ]0, + [, lim x x0 f(x) = f(x 0 ). Exercice 4 : Soient (a, b) IR, tel que a b et f : [a, b] [a, b] continue. Montrer qu il existe x 0 [a, b] tel que f(x 0 ) = x 0. 6

6 Dérivation des fonctions d une variable réelle à valeurs réelles 6. Cours Dans ce chapitre, revoyez en priorité : définition de la dérivabilité en un point, fonction dérivable, dérivée d une fonction, opérations classiques. Dérivées des fonctions usuelles (cf Annexe 3). Ensemble C k (I) des fonctions de classe C k sur I ; formule de Leibniz. Théorème de Rolle, des accroissements finis. Application de l inégalité des accroissements finis à l étude des suites définies par une relation de récurrence u n+ = f(u n ). Revoir un exemple ou exercice de votre cours. Fonctions convexes 6. Exercices de révision Exercice : Soit a IR. On considère les fonctions numériques f et g définies par f(x) = arctan (x) + arctan (a) ( ) x + a g(x) = arctan xa ) Domaines de définition de f et g. ) Montrer que f et g sont continues et dérivables sur leurs domaines de définition. 3) Calculer f et g. Conclusion? 4) Soient (a, b) IR, ab Montrer qu il existe k {, 0, } tel que ( ) b + a arctan (b) + arctan (a) = arctan + k π ba Exercice : Soit f C ([a, b], IR) telle que f(a) = f(b) = 0 et c ]a, b[. Montrer qu il existe γ ]a, b[ tel que (c a)(c b) f(c) = f (γ) Poser ϕ : x f(x) A (x a)(x b) où A est telle que ϕ(c) = 0, et appliquer Rolle à ϕ sur [a, c], [c, b] puis à ϕ. Exercice 3 : Etablir les relations suivantes : ) x IR, sin x x. ) nin, c n ]n, n + [ tel que ln ( ln (n + )) ln ( ln n) = c n ln c n Exercice 4 : Soit la suite (u n ) n IN définie par u 0 IR et nin, u n+ =. Justifier que, pour tout u 0, u n [0, π ], pour tout n.. On choisit u n [0, π]. π 3 3 cos(u n ). a)en utilisant la concavité de sin sur [0, π], montrer que, pour tout x [0, π ], π x sin x x. b) Justifier que f : x π 3 a un unique point fixe à déterminer. 3 cos(x) c) En déduire la convergence de (u n ) n. 7

7 Intégration et dérivation 7. Cours Dans ce chapitre, revoyez en priorité : Primitive et intégrale d une fonction continue, théorème fondamental (Pour f continue sur I et a I, x x f(t)dt est l unique primitive de f qui s annule en a a. Pour toute primitive h de f, x f(t)dt = h(x) h(a). a Calcul des primitives : connaître les primitives usuelles, intégration par partie, changement de variable. (cf annexe 4 et poly de rappel) Formules de Taylor 7. Exercices de révisions Exercice : Pour x > 0, on pose f(x) = x x Arctan u u. Justifier que f est définie, continue, dérivable sur IR +.. Montrer que : u > 0, arctan u + arctan u = π 3. En déduire x > 0, f(x) = π ln x. 4. Proposer une autre méthode pour retrouver ce résultat Exercice : Soit I = du ( ) x x cos ln(x) dx + x. Justifier l existence de I.. En utilisant le changement de variable x =, montrer que I = 0. t 3. La fonction x ( ) x x cos ln(x) a-t-elle un signe constant sur [ + x, ] Exercice 3 : Soit f une fonction dérivable sur [a, b] et telle que : x [a, b], f(a + b x) = f(x) b Montrer que x f(x) dx = a + b b f(x) dx. a a π x sin(x) En déduire + cos (x) dx 0 Exercice 4 : Soit la fonction f : x sin x 0 arcsin( t) dt + cos x 0 arccos( t) dt.. Donner son domaine de définition.. Montrer qu elle est paire et périodique. Que suffit-il de prendre comme intervalle d étude. 3. Montrer que f est dérivable et donner sa dérivée. Que vaut cette dérivée sur l intervalle d étude. 4. Finir l étude et le tracé de f. 8

8 Développements limités 8. Cours Dans ce chapitre, revoyez en priorité : définition d un développement limité opérations algébriques : somme, produit, composé (cf annexe 5) développement limité d une primitive développements limités des fonctions usuelles (cf annexe 5) application à l étude des branches infinies d une fonction, des points singuliers des courbes paramétrées planes. 8. Exercices de révision Exercice : ) Donner le développement limité de x x(sin x + shx x) au voisinage de 0, à l ordre 4. ) Donner le développement limité de x ln(x+ + x ) ln( + x ) au voisinage de +, à l ordre 4. Exercice : Etude de f : x x arctan ( +x) et on précisera en particulier les branches infinies. 9 Principe du raisonnement par récurrence 9. Exercice de révision On considère la famille de polynômes (T n ) n IN définis par : T 0 (X) = T (X) = X n, T n+ (X) = XT n (X) T n. Calculer T, T 3, T 4.. Montrer que : n IN, θ IR, T n (cos(θ)) = cos(nθ). 3. Montrer que, pour tout n IN, T n est un polynôme dont on donnera le degré et coefficient dominant 0 Polynômes 0. Cours Dans ce chapitre, revoyez en priorité : Notation d un polynôme : a 0 + a X + a X + a p X p et notation de l ensemble des polynômes :IK[X] degré d un polynôme, coefficient dominant, division euclidienne dans IK[X] fonction polynômaiale associée, racine d un polynôme, ordre de multiplicité, caractérisation par les dérivées successives définition d un polynôme scindé sur IK, relation entre coeffs et racines d un polynôme scindé, théorème de d Alembert Gauss Description des polynômes irréductibles de CI[X] et IR[X] Décomposition en produit de facteurs irréductibles sur CI et IR 9

0. Exercices de révision Exercice : Soit P un polynôme à coefficients réels, scindé sur IR à racines distinctes. En utilisant le théorème de Rolle, montrer que P est également un polynôme à coefficients réels, scindé sur IR à racines distinctes. Exercice : On pose pour n IN : P n = (x ) n. En remarquant que P n est un polynôme de degré n qui admet et - pour racines d ordre n, montrer que P n (n) admet n racines distinctes comprises strictement entre - et. Exercice 3 :. Donner la décomposition en facteurs irréductibles sur CI de X n pour n IN.. Donner la décomposition en facteurs irréductibles sur IR de X 4 + (penser à écrire X 4 + = (X + ) X ). Algèbre linéaire se référer au polycopié de rappel d algèbre linéaire de P.C.S.I 0

Documents annexes. Annexe : Formulaire Trigonométrique Formule de Moivre : n IN, θ IR, Formules d Euler : θ IR, x ( π Formules d addition : (a, b) IR, cos(nθ) + i sin(nθ) = (cos(θ) + i sin(θ)) n cos(θ) = eiθ + e iθ sin(θ) = eiθ e iθ i Relations trigonométriques diverses x IR, cos x + sin x = + πz), tan x = sin x cos x cos(a + b) = cos(a)cos(b) sin(a)sin(b). cos(a b) = cos(a)cos(b) + sin(a)sin(b). sin(a + b) = sin(a)cos(b) + cos(a)sin(b). sin(a b) = sin(a)cos(b) cos(a)sin(b). tan(a + b) = tan(a) + tan(b) tan(a)tan(b). De ces formules, on en déduit des formules de linéarisation, de transformation de sommes en produits : cos(p) + cos(q) = cos( p + q )cos(p q ) cos(p) cos(q) = sin( p + q )sin(p q ) sin(p) + sin(q) = sin( p + q )cos(p q ) sin(p) sin(q) = cos( p + q )sin(p q ) qu il n est pas utile de connaitre par coeur mais plutôt savoir les retrouver à partir des formules d addition. On a aussi ; sin(a) = sin(a)cos(a). cos(a) = cos a sin a = cos a = sin a. A partir desquelles on obtient, en particulier (utile pour intégrer) :

cos (a) = + cos(a). sin (a) = cos(a). D autre part : sin est π-périodique, impaire et, pour tout x de IR : sin (π + x) = sin x sin ( π + x) = cos x et d autres relations analogue qu il faut savoir retrouver en s aidant du cercle trigonométrique. cos est π-périodique, paire et, pour tout x de IR : cos (π + x) = cos x cos ( π + x) = sin x et d autres relations analogue qu il faut savoir retrouver en s aidant du cercle trigonométrique. tan est π-périodique, impaire et, pour tout x de IR πz : Pour tout (a, b) IR : tan ( π + x) = tan x tan ( π x) = tan x cos a = cos b (b = a + kπ ou b = a + kπ, k Z). sin a = sin b (b = a + kπ ou b = π a + kπ, k Z) propriété : Pour tout (x, y) de IR tel que x + y =, il existe θ [ π, π[ unique tel que x = cos θ et y = sin θ. Démo : On pose z = x + iy. Ce complexe est donc de module. Son écriture exponentielle est alors de la forme z = e iθ = cos θ + isin θ, où θ [ π, π[. Par identification des parties réelle et imaginaire, on obtient ce qui est demandé.

. Annexe : Fonctions hyperboliques et leurs réciproques.. Fonctions hyperboliques Définition : On appelle : sinus hyperbolique l application cosinus hyperbolique l application sh : IR IR x sh x = ex e x ch : IR IR tangente hyperbolique l application th : IR IR Les applications sh,ch sont C sur IR sh =ch ch =sh sh est impaire ch est paire. On a, de plus : - x IR, ch x > 0. - sh 0=0, ch 0=. - sh 0=, ch 0=0. On en déduit les tableaux de variations : x ch x = ex + e x x th x = sh x ch x = ex e x + x 0 + sh =ch + + sh 0 x 0 + ch =sh 0 + + ch 3

L application th est bien définie sur IR, de classe C sur IR et : th = th = ch. th est impaire. lim x + th x =. Tableau de variations : x 0 + th + th 0 Formulaire de trigonométrie hyperbolique. On obtient aisément les formules suivantes, pour tous x, a, b de IR : - ch x sh x = A connaître absolument. - ch(a + b) = ch a ch b + sh a sh b. - ch(a b) = ch a ch b sh a sh b. - sh(a + b) = sh a ch b + ch a sh b. - sh(a b) = sh a ch b ch a sh b. th a + th b - th(a + b) = + th a th b. th a th b - th(a b) = th a th b. - ch(a) = ch a + sh a = ch a = + sh a. - sh(a) = ch a sh a. - th(a) = th a + th a. - ch ch (a) + a =. - sh ch (a) a =. 4

.. Fonctions hyperboliques réciproques Les applications ch, sh, th induisent des bijections continues et strictement croissantes de IR + sur [, + [, de IR sur IR et de IR sur ], [ respectivement. Leurs réciproques sont les fonctions hyperboliques réciproques. Fonctions argument cosinus hyperbolique La fonction argument cosinus hyperbolique, notée Argch [, + [ IR + x Argchx est définie par { y = Argchx x { x = chy y 0 Fonctions argument sinus hyperbolique La fonction argument sinus hyperbolique, notée Argsh IR IR x Argshx est définie par { y = Argshx x IR { x = shy y IR Fonctions argument tangente hyperbolique La fonction argument tangente hyperbolique, notée Argth ], [ IR x Argthx est définie par { y = Argthx x ], [ { x = thy y IR Dérivation : La fonction Argch est dérivable sur ], + [ et x ], + [, Argch x = La fonction Argsh est dérivable sur IR et x IR, Argsh x = La fonction Argth est dérivable sur ], [ et x x + x ], [, Argth x = x 5

.3 Annexe 3 : Dérivées des fonctions usuelles f Domaine de Définition f Domaine de Dérivabilité x k IR IR 0 IR x n, n Z IR si n IN, IR sinon nx n IR si n IN, IR sinon x IR + x IR + ln(x) IR + x IR + e x IR e x IR cos(x) IR sin(x) IR sin(x) IR cos(x) IR tan(x) ] π + kπ, π + kπ[, k Z + tan (x) = cos (x) ] π + kπ, π + kπ[, k Z Arccos(x) [, ] x ], [ Arcsin(x) [, ] x ], [ Arctan(x) IR + x IR 6

f Domaine de Définition f Domaine de Dérivabilité ch(x) IR sh(x) IR sh(x) IR ch(x) IR th(x) IR th (x) = ch (x) IR argch(x) [, + [ x ], + [ argsh(x) IR + x IR argth(x) ], [ x ], [ x α, α IR IR + α x α IR + 7

.4 Annexe 4 : Tableau des primitives usuelles Dans la première colonne figure la fonction f dont on veut donner les primitives. Dans la deuxième colonne, se trouve une primitive de f. Dans la troisième colonne, se trouve le domaine de définition des primitives. En particulier, on ne peut intégrer f que sur un intervalle inclus dans ce domaine. 8

Fonction f, f(x) Primitive F, F (x) Domaine de définition de F e αx, α IR fixé α eαx IR ch ω x (ω IR ) sh ω x (ω IR ) cos ω x (ω IR ) ω sh ω x ω ch ω x ω sin ω x IR IR IR sin ω x (ω IR ) cos ω x IR ω ] tan x ln cos x π, π [ (π) th x ln ch x IR ch x = th x th x IR cos x = + tan x tan x ] π, π [ (π) x α, α IR Z x n, n Z {0, } x n, n IN x a x + b, (a, b) IR IR x α+ α + x n+ n + x n+ n + ln x a ln a x + b IR + ], 0[ ou ]0, + [ IR ], 0[ ou ]0, + [ ], b a [ ou ] b a, + [ a + x (a 0) a Arctan x a IR (a > 0) a x Arcsin x a ou Arccos x a ] a, a[ 9

Opérations usuelles Fonction f, f(x) Primitive F, F (x) Commentaires a f, a réel a f f + g f + g f f n, n Z, n n + f n+ sur tout intervalle où f(x) 0 si n < 0 f f ln f sur tout intervalle où f(x) 0 f (g f) g f 0

.5 Annexe 5 : Règles de calculs sur les développements limités et tableau des développements limités usuels.5. Règles de calculs sur les développements limités Les propriétés sont énoncées pour des développements limités au voisinage de zéro. On considère deux fonctions f et g définies au voisinage de zéro admettant chacune un développement limité d ordre n f(x) = P (x) + o(x n ) g(x) = Q(x) + o(x n ) où P et Q sont des polynômes de degré inférieur à n, qu on appelle parties régulières respectivement de f et g. Rappelons les méthodes pour obtenir les développements limités d une somme, produit, composée et quotient : Linéarité : Pour tout λ IR, λf + g admet un développement limité en 0 à l ordre n et λf(x) + g(x) = λ P (x) + Q(x) + o(x n ) Produit : fg admet un développement limité d ordre n et sa partie régulière s obtient en formant le produit P Q et en ne retenant que les termes de degré inférieur ou égal à n. Composée : On suppose que f(0) = 0. g f admet un développement limité d ordre n et sa partie régulière s obtient en ne retenant du polunôme Q P que les termes de degré inférieur ou égal à n. Quotient : On suppose que f(0) 0. Alors f admet un développement limité d ordre n et pour l obtenir, on écrit : f = a( u(x)) et on effectue le DL n (0) de la composée des fonctions u(x) et a x. Des exemples : ) DL 7 (0) de ln(cos(x)) : On écrit le DL de cos : ln(cos(x)) = ln( x + x4 4! x6 6! + o(x7 )) On utilise le développement limité de ln( z) = z z z3 + 3 o(z3 ) : L ordre 3 suffit car on l utilise pour z = x x4 + x6 + o(x 7 ) et on cherche un DL 4! 6! 7 (0) par rapport à x. Alors, finalement ln(cos(x)) = 3 ( x x4 + x6 4! 6! ( x ) ) x4 + x6 4! 6! ) 3 ( x x4 + x6 4! 6! +o(x 7 )

On ne retient que les monômes de degrés inférieurs ou égaux à 7. Il s ensuit que : ) DL 5 (0) de tan(x) : ln(cos(x)) = x x4 x6 45 + o(x7 ) tan(x) = sin(x) cos(x) = x x3 + x5 + o(x 5 ) 3! 5! x + x4 + o(x 4! 5 ) On utilise maintenant le développement limité de suffit car on l utilise pour z = x Alors, finalement x4 z = + z + z + o(z ) : L ordre 4! + o(x5 ) et on cherche un DL 5 (0) par rapport à x. tan(x) = = (x x3 3! + x5 5! + o(x5 ) x x3 + x5 + o(x 5 ) 3! 5! x + x4 + o(x 4! 5 ) ) ( + x x4 4! + ( x x4 4! ) + o(x 5 )) On ne retient que les monômes de degrés inférieurs ou égaux à 5. Il s ensuit que : tan(x) = x + x3 3 + x5 5 + o(x5 )

.5. Tableau des développements limités usuels Tous les développements limités cités ci-dessous sont au voisinage de 0. I. Développements limités obtenus par le théorème de Taylor-Young Ordre n e x = k=0 DL(0) x k k! + o(xn ) = + x! + x! + + xn n! + o(xn ) n+ ch(x) = k=0 x k (k)! + o(xn+ ) = + x! + x4 4! + + xn (n)! + o(xn+ ) n+ sh(x) = k=0 x k+ (k + )! + o(xn+ ) = x + x3 3! + x5 5! + + xn+ (n + )! + o(xn+ ) n+ cos(x) = ( ) k xk (k)! + o(xn+ ) = x! + x4 4! k=0 + + ( )n xn (n)! + o(xn+ ) n+ sin(x) = k=0 ( ) k x k+ (k + )! + o(xn+ ) = x x3 3! + x5 5! + + ( )n x n+ (n + )! + o(xn+ ) n α IR, ( + x) α = + αx + + α(α ) (α n + ) x n + o(x n ) n! n x = x k = + x + x + + x n + o(x n ) k=0 n + x = ( ) k x k = x + x + + ( ) n x n + o(x n ) k=0 3

II. Développements limités obtenus par intégration Ordre DL(0) n ln( + x) = ( ) k= k xk k + o(xn ) = x x + + ( )n xn n + o(xn ) n ln( x) = k= x k k + o(xn ) = x x xn n + o(xn ) n+ Arctan x = k= ( ) k xk+ k + + o(xn+ ) = x x3 3 + x5 5 + + ( )n xn+ n + + o(xn+ ) n+ Arcsin x = x + x 3 3 +.3.4 x 5 5 + +.3...(n ).4...(n) x n+ n + + o(xn+ ) n+ Arccos x = π x x 3 3.3.4 x 5 5.3...(n ).4...(n) x n+ n + + o(xn+ ) Remarque : on retrouve le développement limité de argsh et argth en 0 par cette méthode en se rappelant que : argsh (x) = et + x argth (x) =. x On ne parle pas du DL(0) de argch car argch est définie sur [, + [ 4