Onveutetudierl'equationdierentiellesuivante



Documents pareils
Les travaux doivent être remis sous forme papier.

Partie 1 - Séquence 3 Original d une fonction

Correction du Baccalauréat S Amérique du Nord mai 2007

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Fonctions Analytiques

Intégrales doubles et triples - M

Commun à tous les candidats

Représentation géométrique d un nombre complexe

3 Approximation de solutions d équations

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

NOMBRES COMPLEXES. Exercice 1 :

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Retournement Temporel

Géométrie dans l espace Produit scalaire et équations

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

Chapitre 1 Cinématique du point matériel

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Sites web éducatifs et ressources en mathématiques

Fonctions de plusieurs variables

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

1S Modèles de rédaction Enoncés

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Angles orientés et fonctions circulaires ( En première S )

aux différences est appelé équation aux différences d ordre n en forme normale.

F411 - Courbes Paramétrées, Polaires

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul intégral élémentaire en plusieurs variables

Théorème de Poincaré - Formule de Green-Riemann

Correction du baccalauréat S Liban juin 2007

NOTATIONS PRÉLIMINAIRES

Résolution de systèmes linéaires par des méthodes directes

Développements limités. Notion de développement limité

Angles orientés et trigonométrie

Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v t

Théorème du point fixe - Théorème de l inversion locale

Développements limités usuels en 0

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Asie 21 juin 2010

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Amphi 3: Espaces complets - Applications linéaires continues

Fonctions de deux variables. Mai 2011

Mais comment on fait pour...

5.2 Théorème/Transformée de Fourier a) Théorème

Première partie. Introduction à la méthodes des différences finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Fonctions homographiques

Equations différentielles linéaires à coefficients constants

G.P. DNS02 Septembre Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

Fonctions de plusieurs variables. Sébastien Tordeux

Polynômes à plusieurs variables. Résultant

Continuité d une fonction de plusieurs variables

I. Polynômes de Tchebychev

Circuits RL et RC. Chapitre Inductance

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Correction de l examen de la première session

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

INTRODUCTION. A- Modélisation et paramétrage : CHAPITRE I : MODÉLISATION. I. Paramétrage de la position d un solide : (S1) O O1 X

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte

DYNAMIQUE DE FORMATION DES ÉTOILES

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

Logique. Plan du chapitre

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

LE PRODUIT SCALAIRE ( En première S )

Introduction. Mathématiques Quantiques Discrètes

CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Mathématiques I Section Architecture, EPFL

Fonction inverse Fonctions homographiques

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

6 Equations du première ordre

Examen optimisation Centrale Marseille (2008) et SupGalilee (2008)

Théorèmes du Point Fixe et Applications aux Equations Diérentielles

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

OM 1 Outils mathématiques : fonction de plusieurs variables

Repérage d un point - Vitesse et

Université de Caen. Relativité générale. C. LONGUEMARE Applications version mars 2014

Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen

On ne peut pas entendre la forme d un tambour

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

Exercices Alternatifs. Quelqu un aurait-il vu passer un polynôme?

PHYSIQUE 2 - Épreuve écrite

SSNV143 - Traction biaxiale avec la loi de comportement BETON_DOUBLE_DP

Comparaison de fonctions Développements limités. Chapitre 10

Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions

Cours d Analyse. Fonctions de plusieurs variables

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Examen d informatique première session 2004

Exercices Corrigés Premières notions sur les espaces vectoriels

Le théorème des deux fonds et la gestion indicielle

Problème 1 : applications du plan affine

Chapitre 2. Matrices

SYSTEMES LINEAIRES DU PREMIER ORDRE

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

Transcription:

Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique dont le symbole est la forme qua- manieresuivante: Table des matieres.. Preliminaires Solutionfondamentaleendimension d= 3. Solutionfondamentaleendimension d= 4. Solutionfondamentaleendimension d=3 3 5. Quelquesproprietesdel'equationdesondes 76. Preliminaires Denition unedistribution. Une ED0(Rd+)solutionde solution fondamentale de l'equation des ondes est () @te xe=: ondes:enpassantalatransformeedefourierdanslavariablespatiale, Onchercheadeterminerunesolutionfondamentaledel'equationdes onobtientl'equationdierentielleordinaire @t ^E+jj^E=(t) sin(tjj).onutilisealorsunevariationdesconstantes dontl'equationhomogeneassocieeapourbasedesolutionscos(tjj)et a(t)cos(tjj)+b(t)sin(tjj) aveclacondition a 0(t)cos(tj)+b0(t)sin(tjj)=0 cequidonnel'autreequation a0(t)jjsin(tjj)+b0(t)jjcos(tjj)=(t) etdonc a 0(t)= (t)sin(tjj) jj =0; b0(t)=(t)cos(tjj) jj = (t) jj :

Finalementonpeutchoisira(t)=0etb(t)=H(t)soit ^E+=H(t)sin(tjj) jj cette distribution expression E = represente E+ est egalement une distribution une solution temperee. fondamentale De m^eme, de la l'equationdesondes.onvientdoncdedemontrerleresultatintermediaire suivant: ladistributiontempereedonneeparlatransformeedefourierinverse Theoreme. Unesolutionfondamentaledel'equationdesondesest danslavariable xrd E+=H(t)F!x sin(tjj) jj S 0(R Rd): s'agitdoncdefairelecalculdelatransformeedefourierprecedente. Pourdeterminerlasolutionfondamentaledel'equationdesondes,il resultatestunefonctionlloc,etaucasdeladimensiond=3,oul'on Nous nous limiterons aux cas de dimension d = et d = ou le obtientunemesure.endimensionsuperieure,onobtientegalementdes distributions.. Solution fondamentale en dimension d= Endimensiond=,ona sin(tjj) jj = sin(t) : Theoreme dimension(spatiale) 3. Une solution d=estdonneepar fondamentale de l'equation des ondes en E+(t;x)= H(t jxj): RemarquonsqueE+estunefonctionLloc.Deplus,ladistribution E = E= H(t+jxj) estegalement fondamentalese+ uneete solution sontsupporteesrespectivementdansledemi fondamentale, chacune des deux solutions c^onet>jxjett< jxj.

3 Preuve. Rappelonsque F sin() = [ ;](x) parconsequentgr^aceaunchangementdevariable E+(t;x)=H(t)F sin(t) = H(t)[ t;t](x): Cequidonneleresultat. 3. Solution fondamentale en dimension d= unfacteurdeconvergencedanslatransformeedefourierinverse. Commenconsparapprocherlasolutionfondamentaleenintroduisant Lemme 4. La transformee de Fourier inverse de la fonction L\L!e "jjsin(tjj)=jjendimensiond=estdonneepar p t jxjh(t jxj)+o(") si"estassezpetit. Preuve. CalculonslatransformeedeFourierinverse F sin(tjj) jj e "jj Z = +Z () 0 S e "rsin(rt)eirx!d!dr 4 enpassantencoordonneespolaires.l'integralesurlecerclerepresente la tributionasupportcompact)aupoint transformee de Fourier de la mesure sur rx;cettetransformeeestune le cercle (qui est une dis- fonctionradiale cd!( rx)= Z Seirx!d!= Z 0 eirjxjcosd: Eneet,l'integrale Z r sinx r x e dx= Z r ix sinx 0 x cos(x)dx= Z r(+) sinx r( ) x dx tendvers Onpeutecrirexsouslaformex=jxjAe [ ;] ()lorsquer!+. duplan(dependantduvecteur x,cequidonnex oue!= =(;0)etAestunerotation jxje changementdevariable! A!,etenfaisantle t! par rotation, on obtient l'integrale A!quinemodienilamesurenilecercle,invariant ZSe t irjxj!d!= Z 0 eirjxj cos d:

4 AinsilatransformeedeFourierinverse()est-elleegalea 4 Z +Z 0 0 e "rsin(rt)eirjxjcosddr ouencoreapresquelquescalculs Z + 0 e "reir(t+jxjcos)drd {z } entenantcomptede(3).ceciterminelecalculsionutiliselelemme quisuit(aveca=tetb=jxj). Lemme 5. Soienta;b>0etsi">0estassezpetitalorsona Z d 0 a+bcos+i"d= 8 >< p > a b+o(") lorsquea>b>0 : i p b a+o(") lorsque0<a<b : Preuve. Cetteintegralepeut^etreecritecommeuneintegralecurviligne3 I dz i jzj= bz+az+b+i" quel'onpeutcalculeral'aidedutheoremedesresidus.lesp^olesdela fractionsontdonnespar z = a b p a b i"b b 4Im Z 0 = i t+jxj cos +i" ou dehorsdelademi-droite la branche consideree==4deplus,leresidudelafractionaux de la racine est par exemple celle denie en p^olesestdonneepar res bz+az+b+i" = b z+ z = z=z p a b i"b : Enn,remarquonsque jz+z j=+i" b =+" b > 3 des La fonctions preuve holomorphes de ce lemme n'a est pas parfaitement ete etudiee hors en MACS. programme Elle puisque est donnee la theorie purement indicatif. a titre

5 ce disqueunite.enoutre,ona qui implique que les deux p^oles ne peuvent ^etre a l'interieur du z+= a b + p a b b i" a b b =+i {z }: )+O(") Lorsquea>b>0,onendeduit "b (a b jz+j= a p a b b {z b 0 < } +O(")< etlorsque0<a<b jz+j= a " b p b a + a {z } b < sil'onsuppose"assezpetit. 0 <a b etparconsequentlep^ole z a l'exterieurz+ jz estal'interieurdudisqueunite j >, seul le residu au p^ole z+ jz+j< unecontributional'integralecurviligne.letheoremedesresidusdonne apporte donc I dz jzj= bz+az+b+i" = p i a b i"b Danslecas0<a<b,celapermetd'armerque : Z d 0 a+bcos+i"d= i p b a i" a b b cequidonneleresultatapresundeveloppementlimite.dem^emedans lecas0<b<a,celadonne Z d 0 a+bcos+i"d= p a b +i" b b a cequidonneleresultatapresundeveloppementlimite. Theoreme dimension(spatiale) 6. Une solution d=estdonneepar fondamentale de l'equation des ondes en E+(t;x)= H(t jxj) p t jxj: RemarquonsqueE+estunefonctionLlocpuisque ZZ jtj<a je+(t;x)jdtdx= Z a 0 Z t r 0 p t rdrdt= Z a 0 tdt<+

6 Preuve. Ilestclairque sin(tjj) jj e "jj! sin(tjj) jj danss0(rd+) lorsque"tendvers0,doncilsutdecalculer E+=lim "!0H(t)F sin(tjj) jj e "jj danss 0(Rd+): OrpourtoutefonctiondanslaclassedeSchwartz,ona ZZ t>jxj p t jxj+o(") '(t;x)dtdx! ZZ t>jxj p t jxj'(t;x)dtdx cequiterminelapreuve. 4. Solution fondamentale en dimension d=3 OnrappellelecalculdelatransformeedeFourierdelaGaussienne Z (3) + e e itdt= p e : t Donnons mationdelasolutionfondamentale. l'analogue du lemme 4 qui permet de calculer une approxi- Lemme 7. La transformee de Fourier inverse de la fonction L\L!e "jj=sin(tjj)=jjendimensiond=3estdonneepar 4jxjp " e (t+jxj) Preuve. Commeauparavant,onpasseencoordonneespolaires F sin(tjj) Z jj e = +Z (4) 0 S e sin(rt)eirx!d!dr 83 et mesuresurlaspherequel'onpeutcalculerexplicitement l'integrale sur la sphere represente la transformee de Fourier de la cd!( rx)= Z eirjxjcossind=sin(rjxj) 0 rjxj : AussilatransformeedeFourierinverse(4)est-elleegalea 4jxj Z + 0 e sin(rt)sin(rjxj)dr "jj "r " e (t "r jxj) "

7 ouencorepuisqueleproduitdesdeuxsinusestegala (sin(rt+rjxj)+ sin(rt rjxj)) 8jxjIm Z + e e ir(t jxj)dr+ Z + e e ir(t+jxj)dr cequidonneleresultatdesireentenantcomptede(3). Theoreme dimension(spatiale) 8. Une solution d=3estdonneeparladistribution fondamentale de l'equation des ondes en he+;'i= Z +Z 4 0 St'(t;t!)d!dt: Preuve. Puisque sin(tjj) jj e sin(tjj) jj danss0(rd+) lorsque"tendvers0,doncilsutdecalculer E+=lim "!0H(t)F sin(tjj) jj e danss 0(Rd+): Orona 4 Z Z + 0 '(t;x) p " e (t+jxj) jxj) dt dx " jxj = Z +Z SZ + 4 0 '(t;r!) p " e rdrd!dt (t+r) "! Z +Z 4 0 St'(t;t!)d!dt cequiachevelapreuve. 5. Quelques proprietes de l'equation des ondes initiales Remarquonsquelaresolutiondel'equationdesondesavecdonnees 8 <: @tu xu=f surr Rd (Ondes) @tu(0;x)=u(x) u(0;x)=u0 se l'autreadonneesinitialesnulles decompose en la resolution des deux equations, l'une homogene, 8< : @ tv v(0;x)=u0 xv=0 8< @tv(0;x)=u(x) : @ tw (5) w(0;x)=0 xw=f @tw(0;x)=0 "r! "jj " e "jj (t "r

8 puisquelasolutiondesondesestdonneeparu=v+w.cettedecomposition quivientdelalinearitedel'equationpeuts'avererutile. resoudrelorsqueu0=0,eneetsivj De plus, pour resoudre equation homogene, estsolutionde il sut de savoir la 8< : @ tvj vj(0;x)=0 xvj=0 @tvj(0;x)=uj(x) alors et dev plus = v(0;x) @tv+v = @tv(0;x) est solution = u(x) de l'equation et @tv(0;x) des= ondes xv(0;x)+ homogene sutderesoudre @tv(0;x)=u(x). De m^eme pour resoudre l'equation inhomogene, il 8 <: @t ~w(0;s;x)=0 ~w x~w=0 @t~w(0;s;x)=f(s;x) etlasolutioncorrespondantal'equationinhomogeneestdonneeparla formulededuhamel Z w(t;x)= t 0 ~w(t s;s;x)ds: Ainsipeut-onserameneralaresolutiondel'equationhomogeneavec donneesinitialesu0=0etu. faits Revenons dans laa section l'equation preliminaire des ondes(passage generale. a En la transformee reprenant lesde calculs rier dans la variable spatiale, variation de la double constante dans Fou- l'equationordinaireobtenue)onvoitque Z tsin((t s)jj) ^f(s;)ds+cos(tjj)^u0()+sin(tjj) 0 jj jj ^u() estsolutiondel'equationordinaireobtenueapartirdel'equationdes ondesenpassantalatransformeedefourier.parconsequentsionnote E=E+ E =F (sin(tjj) ),ona u= Z t 0 E(t s; ) f(s; )ds+@ te(t; ) u0+e(t; ) u Lessolutionsfondamentalescalculeesjusqu'apresentverientlapropriete suppe f(t;x)r Rd:jtj>jxjg= ceciimpliqueleprincipedehuygens.

9 Theoreme des ondes avec 9 (Principe donnees de initiales Huygens). u0;u SiuE0(Rd) est solution supportees de l'equation bouleb(0;r)alors dans la suppub(0;r+jtj): Autrementdit,lapropagationdesondessefaitavitessenie. dehuygensfort. Onpeutameliorerceresultatendimensionimpaire:c'estleprincipe del'energied'unesolution l'equation des ondes homogene u(t;x)dansh(rd+)(ouc(r;h(rd))) commeetantlaquantite est conservee : on denit l'energie E[u](t)= Z jr(t;x)u(t;x)jdx: Alorsona ddt E[u](t)=Re Z @ tu@tudx+ Z ru r@tudx =Re Z (@ tu xu)@tudx =0: Theoreme unesolutiondel'equationdesondeshomogene.alorsl'energie 0 (Conservation de l'energie). Soit u C(R;H(Rd)) estunefonctionconstantedutemps. E[u](t)