Exercices 2. Trigonométrie et nombres complexes... Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques.

Documents pareils
Représentation géométrique d un nombre complexe

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

NOMBRES COMPLEXES. Exercice 1 :

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Angles orientés et trigonométrie

1S Modèles de rédaction Enoncés

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

LE PRODUIT SCALAIRE ( En première S )

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en Énoncé.

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

Angles orientés et fonctions circulaires ( En première S )

Quelques contrôle de Première S

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Nombres complexes. cours, exercices corrigés, programmation

4. NOMBRES COMPLEXES ET TRIGONOMÉTRIE

Activités numériques [13 Points]

5 ème Chapitre 4 Triangles

Corrigé du baccalauréat S Pondichéry 12 avril 2007

PROBLEME(12) Première partie : Peinture des murs et du plafond.

Chapitre 2. Matrices

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Pour l épreuve d algèbre, les calculatrices sont interdites.

I. Polynômes de Tchebychev

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

Mesure d angles et trigonométrie

Correction du baccalauréat S Liban juin 2007

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

Cours d Analyse. Fonctions de plusieurs variables

Corrigé du baccalauréat S Asie 21 juin 2010

Fonctions de plusieurs variables

Le théorème de Thalès et sa réciproque

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

Géométrie dans l espace Produit scalaire et équations

Correction : E = Soit E = -1,6. F = 12 Soit F = y = 11. et G = -2z + 4y G = 2 6 = 3 G = G =

Comparaison de fonctions Développements limités. Chapitre 10

Correction du Baccalauréat S Amérique du Nord mai 2007

Limites finies en un point

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Cours de mathématiques Première année. Exo7

DOCM Solutions officielles = n 2 10.

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

CHAPITRE 10. Jacobien, changement de coordonnées.

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

Probabilités sur un univers fini

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Fonctions de plusieurs variables

I. Ensemble de définition d'une fonction

Deux disques dans un carré

Introduction. Mathématiques Quantiques Discrètes

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Chapitre 2 : Vecteurs

Continuité et dérivabilité d une fonction

Séquence 10. Géométrie dans l espace. Sommaire

Mathématiques Algèbre et géométrie

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

Chapitre 2 Le problème de l unicité des solutions

Priorités de calcul :

F411 - Courbes Paramétrées, Polaires

Cours arithmétique et groupes. Licence première année, premier semestre

Calcul intégral élémentaire en plusieurs variables

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Développements limités, équivalents et calculs de limites

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

Polynômes à plusieurs variables. Résultant

Repérage d un point - Vitesse et

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

6. Les différents types de démonstrations

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Dérivation : cours. Dérivation dans R

Chapitre 1 : Évolution COURS

Construction d un cercle tangent à deux cercles donnés.

Fonctions Analytiques

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Le contexte. Le questionnement du P.E.R. :

Mathématiques I Section Architecture, EPFL

2. RAPPEL DES TECHNIQUES DE CALCUL DANS R

Chapitre 0 Introduction à la cinématique

Exercices de géométrie

Développement décimal d un réel

La médiatrice d un segment

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

Problème 1 : applications du plan affine

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Chapitre 6. Fonction réelle d une variable réelle

La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

1 Définition et premières propriétés des congruences

Programmation linéaire

CCP PSI Mathématiques 1 : un corrigé

Transcription:

Exercices Trigonométrie et nombres complexes Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques. Trigonométrie et nombres complexes.................................................... 1 Trigonométrie..................................................................... Nombres complexes.................................................................1 Calculs...................................................................... Inégalités....................................................................3 Équations atypiques..........................................................4 Équations du second degré ou s y ramenant....................................5 Racines n-ièmes.............................................................6 Application à la géométrie plane............................................. 3 Sujets de réflexion.................................................................. 4 Indications........................................................................ 1 3 5 5 6 7 8 9

PCSI 014-015 Les difficultés sont échelonnées de la manière suivante : aucune,,, et. Certains énoncés sont tirés des annales des concours (oral et écrit) ; leur provenance est le plus souvent précisée. Les exercices notés et sont particulièrement délicats. 1. Trigonométrie 1. [ Un grand classique ] ( ind ) ( π ) ( ) ( ) 3 5 ( π ) Simplifier le produit p = sin sin 14 14 π sin 14 π en le multipliant par cos. 14. [ Une belle et inutile équation ] ( ind ) Résoudre dans R l équation 4cos (x)+1 + 16 4sin (x) 3 = 0. 3. [ Lignes trigonométriques de π/5 ] ( ind ) On cherche à calculer cos(π/5) et sin(π/5). a) Résoudre dans R l équation cos(3x) = sin(x). b) En déduire les valeurs de sin(x) et cos(x) pour x = π/5.. Nombres complexes.1. Calculs 4. [ Forme polaire d une somme géométrique ] ( ind ) Soient α R et z = e iα. Écrire 1 + z + z sous forme polaire. 5. [ Module ] ( ind ) Soient n N strictement supérieur à 1 et z 1,..., z n des nombres complexes non nuls de même module. Montrer que le nombre suivant est réel : (z 1 + z )(z + z 3 ) (z n 1 + z n )(z n + z 1 ) z 1 z z n 6. [ Une équation trigonométrique ] ( ind ) Soit θ R et z θ = sin(θ) + i cos (θ). a) Déterminer le module et un argument de z θ. On discutera en fonction des valeurs de θ. b) Déterminer l ensemble des nombres réels θ tels que z θ = z θ 1. LLG PCSI Exercices

PCSI 014-015 7. [ Paramétrage de U ] ( ind ) On note U, l ensemble des nombres complexes de module 1. a) Soit z U \ {1}. Démontrer que z + 1 est un imaginaire pur. z 1 b) Vérifier que, λ R, 1 + λi U. Étudier la réciproque. 1 λi c) Soit z C. Démontrer que, u U \ {1}, z uz R. Étudier la réciproque. 1 u 8. [ Des réels ] ( ind ) Soient a et b de module 1 tels que a ±b. a) Prouver que 1 + ab a + b R. z + abz (a + b) b) Montrer que pour tout z C, R i. a b 9. [ Fonctions symétriques ] ( ind ) Soient a,b,c C de module 1. Montrer que a + b + c = ab + bc + ac. 10. [ Modules ] ( ind ) Déterminer les nombres complexes z tels que z, 1/z et 1 + z soient de même module. 11. [ Posé à l X ] ( ind ) Soient a,b et c dans U tels que a c. a) Montrer que a(c b) b(c a) R +. b) Donner une interprétation géométrique de ce résultat... Inégalités 1. [ Un peu de géométrie ] ( ind ) a) Soit z C. Montrer que Im(z) > 0 z i < z + i. b) Soient a,b deux nombres complexes distincts. Décrire géométriquement l ensemble des z C tels que z a < z b. z c) Déterminer l ensemble des nombres complexes z tels que < 1. z 1 LLG PCSI Exercices 3

PCSI 014-015 13. [ L inégalité triangulaire généralisée ] ( ind ) Soient n et z 1, z,..., z n appartenant à C. a) Prouver que z 1 + + z n z 1 + z + + z n. b) Montrer que l inégalité du (a) est une égalité si et seulement si arg(z 1 ) = arg(z ) = = arg(z n ). 14. [ Inégalités ] ( ind ) Prouver que pour tous nombres complexes z et z, on a : a) 1 z + z + 1 + z + z ; b) z + z ( 1 + z )( 1 + z ). 15. [ Modules de 1 + z et 1 + z ] ( ind ) On note U l ensemble des nombres complexes de module 1. a) Soit z U tel que 1 + z < 1. Montrer que 1 + z > 1. b) Soient u et v deux complexes tels que u = v 1. Établir que u + v 1 ou u + v > 1. 16. [ Valeur absolue d une somme géométrique ] ( ind ) Soient n N et z C \U. Montrer que 1 z n+1 1 z 1 z n+1 1 z 17. [ Deux inégalités sur les modules ] ( ind ) a) Prouver que (a,b) C, a + b a + b + a b. 4 b) En déduire que pour tous z 1, z, z 3 et z 4 dans C, on a z k z i + z j. k=1 1 i<j 4 18. [ Épreuve écrite X-PC 008 ] ( ind ) Soit λ R \Z. Montrer que, pour tout entier naturel n 1, on a n 1 e ikλπ 1 sin(λπ) k=0 19. [ Racines n-ièmes ] ( ind ) Soient n N \ {0,1}, ω = exp ( ) iπ n et (a,b) C. Montrer que : a + b n n 1 k=0 a + ω k b LLG PCSI Exercices 4

PCSI 014-015.3. Équations atypiques 0. [ Une équation atypique ] ( ind ) Soit a un réel, on considère l équation (E) : z + z = a d inconnue z C. a) Déterminer une condition nécessaire et suffisante portant sur a pour que (E) possède au moins une solution réelle. b) Résoudre (E). Discuter en fonction de a, et donner dans chaque cas le nombre de solutions, dire si elles sont réelles, conjuguées, etc... On présentera le résultat final dans un tableau. 1. [ Autour de l exponentielle ] ( ind ) Résoudre dans C les équations suivantes : a) e z = 7 ; b) e z = i ; c) e z = 1 + i ; d) e z + e z = 1 ; e) e z + e z = i.. [ Lieux géométriques ] ( ind ) Résoudre dans C les équations suivantes ( ) z 1 a) Re = 0 ; b) Im z i ( z 1 z i ) = 0 ; c) Re ( z 3) = Im ( z 3). 3. [ Divertissements ] ( ind ) Résoudre dans C les équations suivantes : a) z = z ; c) z = 7 z ; e) z + z = z ; g) z 3z = +3i ; b) z 3 = z ; d) z +8 z 3 = 0 ; f) z 5 = 16z ; 4. [ Une équation atypique ] ( ind ) Soit α R. Résoudre dans C l équation z + z = α + i..4. Équations du second degré ou s y ramenant 5. [ Classique ] ( ind ) Résoudre sur C l équation (E) : ( z + 1 ) + ( z z 1 ) = 0. 6. [ Une équation à paramètres ] ( ind ) Soit λ et θ deux paramètres réels, λ 0. Calculer le module et l argument des racines de l équation : z C, z (λcos(θ) + i sin(θ)) z + λ 1 = 0 LLG PCSI Exercices 5

PCSI 014-015 7. [ Conditions sur les racines ] ( ind ) Soit (p, q) C, avec q 0. Montrer que les racines de l équation z + pz + q = 0 ont le même module si et seulement si p /(4q) [0,1]. 8. [ Module des racines d une équation ] ( ind ) Soit m C. On note α et β les deux solutions de l équation z + mz + 1 = 0. a) Soient z et z, deux nombres complexes et u, une racine carrée complexe du produit zz. Démontrer que z + z = z + z u + z + z + u b) En déduire que α + β = m + 1 + m 1. 9. [ Equations dont les racines sont de module un ] ( ind ) Soient (a,b) C et (E) : z + az + b = 0. Déterminer une CNS pour que (E) admette deux racines de module égal à un..5. Racines n-ièmes 30. [ Résolution d une équation ] ( ind ) Soit n N n 1. Résoudre dans C l équation z k = 0. k=0 31. [ Questions enchaînées ] ( ind ) ( ) z + 1 n a) Résoudre dans C l équation = 1. z 1 ( ) z + i n b) En déduire les solutions dans C de = 1. z i ( ) z + 1 n c) Soit θ R tel que θ 0[π/n]. Résoudre dans C l équation = e inθ. z 1 d) En déduire les solutions dans C de l équation ( ) z + 1 n ( ) z 1 n + = cos(nθ) z 1 z + 1 On traitera le cas général, θ R sans aucune restriction. 3. [ Racines septièmes de l unité ] ( ind ) Soit ω une racine septième de l unité distincte de 1. Simplifier ω 1 + ω + ω 1 + ω 4 + ω3 1 + ω 6. LLG PCSI Exercices 6

PCSI 014-015 33. [ Etude d une équation ] ( ind ) ( ) 1 i z n Soit π < α < π. Résoudre dans C l équation = 1 i tan(α) 1 + i z 1 + i tan(α). 34. [ Trois équations ] ( ind ) Résoudre dans C les équations suivantes : a) (z + i ) 3 + i z 3 = 0 ; b) z 4 z 3 + z z + 1 = 0 ; c) z 4 z 3 z z + 1 = 0 en posant Z = z + z 1. 35. [ Une équation d ordre n ] ( ind ) Soit n 1. Résoudre dans C l équation 1 + z + z + + z n 1 + z n = 0. 36. [ Racines cinquièmes de l unité ] ( ind ) Soit α une racine cinquième de l unité différente de 1. Prouver l égalité ( α + α + 1 )( α 3 + α + 1 )( α 4 + α + 1 ) = α(α + 1) 37. [ Une expression de tan(π/5) ] ( ind ) En résolvant (1 i z) 5 (1+i z) 5 = 0 de deux manières différentes, déterminer une expression sous forme de radicaux de tan(π/5)..6. Application à la géométrie plane 38. [ Racines carrées et géométrie ] ( ind ) Soit z, un nombre complexe non nul. On désigne par M, le point d affixe z et par P et Q, les images des racines carrées complexes de z. a) Pour quelles valeurs de z les points M, P et Q sont-ils deux à deux distincts? b) On suppose que M, P et Q sont deux à deux distincts. i) Pour quelles valeurs de z les trois points sont-ils alignés? ii) Pour quelles valeurs de z les droites (MP) et (MQ) sont-elles perpendiculaires? 39. [ Questions d alignement ] ( ind ) Le plan affine euclidien P est muni d un repère orthonormé direct R. a) Déterminer les nombres complexes z tels que les trois points d affixes respectives 1, z et i z soient alignés. b) Déterminer les nombres complexes z tels que les trois points d affixes respectives 1, z et z soient alignés. c) Déterminer les nombres complexes z tels que les trois points d affixes respectives z, 1 z et z soient alignés. LLG PCSI Exercices 7

PCSI 014-015 40. [ Etude d une configuration ] ( ind ) Soit ABCD un carré et G un point de ]BC[. On construit deux carrés extérieurs à ABCD, de côtés respectifs [BG] et [GC]. On note I,J et K les centres des carrés de côtés GC, GB et AB. Prouver, par un calcul d affixe, que les droites (BI) et (KJ) sont orthogonales. Que dire des longueurs BI et JK? 41. [ Quadrilatères ] ( ind ) Soit ABCD un quadrilatère convexe du plan P. On construit à l extérieur de chacun des côtés du quadrilatère des triangles rectangles isocèles APB, BQC, CRD et DSA. Démontrer que les droites (PR) et (QS) sont perpendiculaires et que les longueurs PR et QS sont égales. 4. [ Construction du pentagone régulier ] ( ind ) On pose ω = exp ( ) iπ 5 et α = ω + ω 1. a) Justifier que 1+ω+ω +ω 3 +ω 4 = 0, et en déduire une équation du second degré dont α est racine. b) En déduire la valeur de cos(π/5). 5 + 1 c) On pose Φ = (nombre d or). i) Vérifier que Φ = Φ + 1. Quelle est l abscisse des points d intersection des cercles d équations respectives x + y = 1 et (x + 1) + y = Φ? ii) Soient A,B et C les points d affixes respectives 1, 1 et i. Calculer la distance BC. En déduire une construction à la règle et au compas du pentagone régulier. 43. [ Sa majesté équilatérale ] ( ind ) Soient A, B, C trois points deux à deux distincts d affixes a, b, c. a) Prouver que ABC est un triangle équilatéral direct si et seulement si a + j b + j c = 0, et équilatéral indirect si et seulement si a + j c + j b = 0. b) Prouver que ABC est un triangle équilatéral si et seulement si a + b + c = ab + ac + bc 44. [ Un problème d alignement ] ( ind ) Soit a un nombre complexe avec a = 1. On note z 1, z,..., z n les racines de l équation z n = a. Montrer que les points du plan complexe dont les affixes sont (1 + z 1 ) n,..., (1 + z n ) n sont alignés. 3. Sujets de réflexion 45. [ Posé à l X ] ( ind ) Soit ABC un triangle quelconque. On construit à l extérieur de chacun des côtés du triangle des triangles équilatéraux AC B, BA C et CB A. Démontrer que les centres de gravité des trois triangles équilatéraux forment un triangle équilatéral. LLG PCSI Exercices 8

PCSI 014-015 4. Indications 1. [ Un grand classique ] En utilisant à répétition la formule de duplication sin(θ) = cos(θ)sin(θ), aboutir à p = 1/8.. [ Une belle et inutile équation ] Exprimer toutes les quantités en fonction de y = 4cos (x). L ensemble des solutions est ( π 3 + π ) ( π Z 6 + π ) Z 3. [ Lignes trigonométriques de π/5 ] Au (a), remarquer que l équation peut s écrire cos(3x) = cos(π/ x). Pour le (b), on pourra remarquer que cos(3x) = 4cos 3 (x) 3cos(x) et sin(x) = sin(x)cos(x) Poser ensuite α = cos(π/10) ; en déduire que cos(3 π/10) = sin( π/10) implique que β = sin(π/10) est solution de 4β + β 1 = 0. On trouve cos(π/5) = 1 + 5 5 5, sin(π/5) = 4 8 4. [ Forme polaire d une somme géométrique ] Série géométrique puis angle-moitié : on trouve (cos(α) + 1)e iα. 5. [ Module ] Écrire les z k sous forme polaire. En notant θ k un argument de z k, on trouve que le nombre vaut ( ) ( ) ( ) n θ1 θ θ θ 3 θn θ 1 cos cos cos 6. [ Une équation trigonométrique ] Au (a), on trouve z θ = cos(θ)e i (θ+ π ). Au (b), élever au carré les modules ; on trouve ( S = π ) ( 7π ) 1 + πz 1 + πz 7. [ Paramétrage de U ] Écrire (par exemple) les éléments de U sous forme exponentielle e i t avec t R. LLG PCSI Exercices 9

PCSI 014-015 8. [ Des réels ] Écrire a et b sous forme exponentielle. 9. [ Fonctions symétriques ] Utiliser le fait que a = 1 a = 1/a. 10. [ Modules ] Montrer que les solutions sont nécessairement de module un. Rechercher z sous forme polaire : z = e i t avec t R. On aboutit à cos(t) = 1/. On trouve { j, j }. 11. [ Posé à l X ] a) Écrire les trois nombres sous forme exponentielle et passer à l arc moitié. b) Reconnaître le théorème de l angle au centre : O C (CA, CB) = (OA, OB)[π] A B 1. [ Un peu de géométrie ] Se rappeler que z a est la distance entre les points M(z) et A(a). Aux questions (b) et (c), on trouve des demi-plans ouverts. 13. [ L inégalité triangulaire généralisée ] Raisonner par récurrence sur n. 14. [ Inégalités ] Appliquer judicieusement l inégalité triangulaire. 15. [ Modules de 1 + z et 1 + z ] Au a), écrire z sous forme exponentielle : z = e i t. On a 1+z = (1+cos(t)) et 1+z = 4cos (θ). Poser, si c est possible, z = u/v au b) et appliquer le (a).. 16. [ Valeur absolue d une somme géométrique ] Remarquer que x C \ {1}, 1 x n+1 n = 1 x x k k=0 Application à x = z puis inégalité triangulaire et enfin application de la relation à x = z. 17. [ Deux inégalités sur les modules ] Au (a), appliquer l inégalité triangulaire en remarquant que a = a + b Au (b), appliquer le (a) une première fois : + a b et b = a + b a b 4 z k z 1 + z + z 1 z + z 3 + z 4 + z 3 z 4 k=1 puis une seconde fois : Conclure par l inégalité triangulaire. z 1 z + z 3 z 4 z 1 + z 3 (z + z 4 ) + z 1 + z 4 (z + z 3 ) LLG PCSI Exercices 10

PCSI 014-015 18. [ Épreuve écrite X-PC 008 ] Appliquer la formule de la série géométrique. 19. [ Racines n-ièmes ] Remarquer que na = puis appliquer l inégalité triangulaire. n 1 k=0 ( ) a + ω k b, nb = n 1 k=0 ( ) b + ω k a 0. [ Une équation atypique ] Se ramener à une équation du second degré à la première question. Poser z = x + i y avec (x, y) R au (b). On trouve : Valeurs de a Solutions complexes de (E) a < 1 4 a = 1 4 Deux solutions non réelles et conjuguées : 1 ± i 3 4 a. Une solution réelle et deux solutions non réelles et conjuguées : 1, 1 3 ± i 4 a. 1 4 < a < 3 4 Deux solutions réelles et deux solutions non réelles et conjuguées : 1± 4a+1, 1 ± i 3 4 a. a = 3 4 a > 3 4 Deux solutions réelles : 3, 1. Deux solutions réelles : 1 ± 4a + 1. 1. [ Autour de l exponentielle ] Écrire z sous forme algébrique pour les trois premières équations. Aux d) et e), poser y = e z et se ramener à une équation du second degré en y.. [ Lieux géométriques ] Rechercher les solutions sous forme : algébrique aux (a) et (b), polaire au (c). On trouve un cercle privé d un point au (a), une droite privée d un point au (b) et la réunion de trois droites au (c). 3. [ Divertissements ] Chercher les solutions sous forme polaire aux a), b) et c). Au d), commencer par vérifier que les solutions sont nécessairement réelles ou imaginaires pures. Au e), écrire z sous forme trigonométrique. Écrire z sous forme polaire au f) et sous forme algébrique au g). 4. [ Une équation atypique ] Rechercher les solutions sous forme algébrique. Si α = 0, l équation n a pas de solution. Si α > 0, l équation admet une unique solution : z = α 1 α + i. Si α < 0, l équation n admet aucune solution. LLG PCSI Exercices 11

PCSI 014-015 5. [ Classique ] { 1 i Penser à A + B = (A + i B)(A i B). On trouve, 1 + i } 1 i, 1 + i. 6. [ Une équation à paramètres ] Les racines valent (λ ± 1)e ±iθ. 7. [ Conditions sur les racines ] Le cas où p = 0 est trivial. Si p 0, poser λ = p /(4q). Le discriminant de l équation est alors p (1 1/λ) et ses racines s écrivent p( 1 ± µ)/ où µ est une racine carrée de 1 1/λ. Comme p 0, elles sont de même module si et seulement si 1 ± µ le sont. Conclure. 8. [ Module des racines d une équation ] Prouver l égalité des carrés au a). Au (b), remarquer que D après les relations coefficients-racines, on a m = α + β et αβ = 1 Appliquer le (a) à z = α, z = β et u = 1. 9. [ Equations dont les racines sont de module un ] L équation (E) admet deux solutions de module égal à un si et seulement si b = 1 et a [0,4]. Procéder b par Analyse-Synthèse. 30. [ Résolution d une équation ] Appliquer la formule de la série géométrique. Les solutions sont les racines n-ièmes de l unité sauf 1 et 1. 31. [ Questions enchaînées ] Au (a), on trouve les i cotan(kπ/n) pour k 1,n 1. Déduire le (b) du (a) sans calcul, en remarquant les égalités z+i = i ( i z+1) et z i = i ( i z 1). Poser Z = ( z+1 z 1 )n et établir que z est solution de l équation initiale si et seulement si Z est racine d une quation algébrique du second degré. On verra alors apparaître l équation du c). 3. [ Racines septièmes de l unité ] Exploiter la périodicité des puissances de ω ainsi que la relation 1 + ω + + ω 6 = 0. On trouve. 33. [ Etude d une équation ] Écrire le second membre sous forme polaire afin d en déterminer une racine n-ième particulière. Si α 0 ou (α = 0 et n impair), les solutions sont les tan(α/n kπ/n) pour 0 k n 1. Si α = 0 et n pair, en posant n = m, les solutions ont la même expression qu au cas précédent, pour k 0,m 1 \ {m }. LLG PCSI Exercices 1

PCSI 014-015 34. [ Trois équations ] Penser à la série géométrique pour la seconde équation. On aboutit à une équation du second degré en Z au (c). On trouve : a) b) { 1 i, 1 + i ( ) + 3 ( + 3 ), 1 + i ( ) 3 ( 3 ) { } e iπ/5,e 3iπ/5,e 7iπ/5,e 9iπ/5. }. c) { j, j, 3 5, 3 + } 5. 35. [ Une équation d ordre n ] Par la formule de la série géométrique, pour z 1, 1 + z + z + + z n 1 + z n = (z n 1) z + 1 z 1. 36. [ Racines cinquièmes de l unité ] Exploiter l égalité 1 + α + α + α 3 + α 4 = 0. 37. [ Une expression de tan(π/5) ] En développant par la formule du binôme, on aboutit à une équation bicarrée. En posant Z = (1 i z)/(1 + i z), on est ramené à Z 5 = 1. On trouve donc les solutions sous deux formes et après identification, on obtient l expression de tan(π/5) au moyen de radicaux : tan(π/5) = 5 5. 38. [ Racines carrées et géométrie ] Au (a), on trouve z C \ {0,1}. Au (b), la réponse est R +. Au (c), on trouve U \ {1}. 39. [ Questions d alignement ] Appliquer la CNS d alignement. On trouve : a) Le cercle de centre (1 i )/ et de rayon /. b) L axe réel. c) La réunion des deux droites verticales définies par Re(z) = ±1/ et de l axe des abscisses. 40. [ Etude d une configuration ] Travaillez dans le repère orthonormé direct (A, AB, AD). 41. [ Quadrilatères ] Travaillez dans un repère orthonormé direct quelconque du plan en utilisant des rotations pour trouver les affixes de P, Q, R, S en fonction de celles de A, B, C, D. 4. [ Construction du pentagone régulier ] a) On trouve α + α 1 = 0. b) Comme α = e iπ/5 + e iπ/5 = cos(π/5) > 0, on en déduit que cos(π/5) = α 5 1 =. 4 c) Construction à la règle et au compas du pentagone régulier. i) L abscisse des points d intersection de C 1 et C est x = Φ 1 5 1 = = cos(π/5). 4 LLG PCSI Exercices 13

PCSI 014-015 ii) Par Pythagore on trouve que BC = 5/. Soient C 3 le cercle de centre C et de rayon 1/ et D l intersection entre (BC) et C 3. Alors on a BD = BC + CD = 5/ + 1/ = Φ. Ainsi C, qui a pour centre B, passe par le point D. Finir la construction. 43. [ Sa majesté équilatérale ] Traduire (AB, AC) = π/3[π] et AB = AC en c a b a = eiπ/3. Se souvenir que 1 + j + j = 0 44. [ Un problème d alignement ] Écrire a puis les z k sous forme polaire. LLG PCSI Exercices 14