Voyageur de commerce et solution exacte

Dimension: px
Commencer à balayer dès la page:

Download "Voyageur de commerce et solution exacte"

Transcription

1 Voyageur de commerce et solution exacte uteurs :. Védrine,. Monsuez e projet consiste à réaliser un outil capable de trouver le plus court trajet pour un commercial qui doit visiter n villes, les n villes étant placées sur un plan. une solution parmi les plus courtes est un problème bien connu en recherche opérationnelle sous le nom de «Traveling Salesman Problem» ou TSP. e problème est NP-omplet. iverses approches ont été proposées pour les résoudre : des approches exactes (l outil retourne effectivement le plus court trajet) et des approches approchées (l outil retourne un trajet proche du plus court). e problème a donné lieu à beaucoup de recherches et a fourni pas mal de résultats en algorithmique et en recherche opérationnelle. Scénario : Vous vous trouvez dans la situation où votre supérieur vous demande : 1. nalysez le problème, sachant qu il est souhaitable d avoir la solution optimale 2. Réalisez un démonstrateur pour convaincre tel client que nous sommes capables de traiter ce problème et/ou de lui fournir une première solution. 3. Si le client est convaincu, vous aurez vraisemblablement des ressources supplémentaires pour transformer le démonstrateur en outil afin de le faire rentrer de manière opérationnelle chez le client. Votre objectif est d une part d arriver à finaliser le premier démonstrateur, tout en sachant que les personnes qui transformeront l outil seront des spécialistes de leur domaine et qu ils ne pourront pas connaître l ensemble de l outil pour faire leurs améliorations. Pour le projet, vous aurez à réaliser les étapes 1 et 2 et à mettre en place et réaliser un axe d amélioration pour l étape 3. e projet peut alors être décomposé en 3 phases fonctionnelles : la première phase correspond à l acquisition des données soit au fait de représenter n villes dans un plan, la seconde phase correspond à la résolution de l algorithmique soit la recherche du trajet optimal, la troisième phase correspond à afficher le trajet optimal trouvé. 1/6

2 Étape 1 : nalyse du problème Question : éterminez l architecture qui permet de faire évoluer les trois phases fonctionnelles (acquisition, algorithmique et affichage) indépendamment les unes des autres. Question : n pensant aux états dans lequel se trouve votre système (avant l acquisition des données, après l acquisition et avant la résolution, après la résolution sachant que l affichage ne modifie pas le système), définissez l interface exportée par chaque partie du système pour effectuer les trois phases fonctionnelles. Pour la question, une des personnes du projet peut travailler à l aide de diagrammes UML (c est simplement une option parmi d autres), pendant que les autres réfléchissent à ce qui peut bouger entre les différentes phases et comment ce sera exploité. Il faut voir que lors de l évolution de votre projet, l acquisition des données pourra être partiellement découplée de la recherche du meilleur trajet, et qu il est assez dur d anticiper sur le couplage acquisition/résolution. ertaines structures de données correspondant au résultat de l acquisition des n villes dans le plan sont plus adéquates que d autres pour l algorithmique. e couplage n est pas forcément visible au niveau de l interface que vous définirez. L analyse architecturale du projet étant terminée, voici une présentation succincte d algorithmes de type ranch & ound permettant une résolution exacte du problème du voyageur de commerce. ette présentation peut être sautée par le lecteur dans un premier temps. Vous pouvez y revenir lorsque vous implanterez les algorithmes. Nous présentons deux algorithmes différents. Noter que pour l étape 2, vous pouvez implanter un algorithme de recherche de type ranch & ound, comme un algorithme plus approché que vous aurez fait ou trouvé sur le Web. ans ce dernier cas, vous pouvez consacrer l étape 3 à remplacer l algorithme approché par un algorithme de recherche assez poussé parmi les deux que nous vous présentons. Représentation des villes Nous représentons l ensemble des villes placées sur un plan par une matrice de coût. ette matrice stocke la distance entre deux points. H G J I matrice de coût... I J... I J La matrice de coût peut être symétrique ou non : Si elle est symétrique, cela signifie que d(x,y) = d(y,x) quelles que soient les villes concernées. La matrice de coût peut représenter une distance euclidienne, reflétant la propriété d(x,y)+d(y,z) d(x,z). 2/6

3 L algorithme d insertion de nœud peut être bien optimisé pour une distance euclidienne, alors que l algorithme d insertion d arc fonctionne bien sans cette contrainte. lgorithmes de type ranch & ound (séparation-évaluation) Les algorithmes de type ranch & ound (séparation-évaluation) cherchent généralement à minimiser une fonction de coût. La fonction de coût dans notre cas est la fonction qui à un trajet associe sa la longueur totale. La partie ranch ou séparation est une méthode de parcourt de l espace des solutions. ette partie porte ce nom, car le parcourt est généralement un parcourt d arbre en profondeur d abord pour avoir rapidement. À chaque nœud de l arbre s offrent alors plusieurs possibilités. Le branchement consiste à choisir une de ces possibilités, généralement celle qui a le plus de chance d être choisie : l aspect «plus de chance» est en liaison avec la partie ound ou évaluation. La partie ound ou évaluation donne une borne minimale pour le meilleur trajet (au sens de la fonction de coût), validant les décisions (branchements ou séparations) déjà effectuées : ce meilleur trajet aura alors une fonction de coût supérieure à cette borne. L algorithme effectue un certain nombre de décisions jusqu à avoir un chemin complet. e chemin a alors une fonction de coût que nous stockerons dans l max. Nous savons que la meilleure fonction de coût pour toutes les sous-branches d un nœud est comprise entre l évaluation de la borne minimale du nœud et l max. insi si l max est supérieur à cette borne minimale, alors nous n avons aucune chance de trouver une meilleure fonction de coût dans tous les descendants du nœud. Il est inutile d explorer dans cette partie ce qui peut faire gagner énormément de temps. branch 1 l 1 min evaluation part = lower bound branch 1 l 1 min branch 1 l 1 min inutile d'explorer si l max l 5 min branch 2 l 2 min branch 2 l 2 min inutile d'explorer branch si l max l 4 min 4 branch 2 l 2 min branch 5 l 4 min branch 3 l 3 min = l max priori l 3 min l2 min l1 min branch 3 l 3 min l 4 min branch 3 l 3 min exploration si l max > l 5 min l max peut alors diminuer exploration si l max > l 4 min l max peut alors diminuer si une meilleure fonction de coût est découverte Nous concrétisons cet algorithme de deux manières différentes pour résoudre le problème du voyageur de commerce. 3/6

4 lgorithme d insertion de nœuds L algorithme par insertion de nœuds procède en partant d un trajet de longueur 3 et en insérant progressivement des nœuds dans ce trajet. La première décision (branch) consiste à choisir le trajet initial de longueur 3. Étant donné que les points se trouveront dans cet ordre dans le trajet optimal, il n y a pas lieu de revenir sur cette décision. Les 3 points initiaux ont donc tout intérêt à se trouver éloignés les uns des autres. Les décisions suivantes consistent à choisir un nœud en même temps que son emplacement d insertion. La borne minimale de coût peut être la longueur du trajet déjà construit. ette borne est bien minimale si nous avons affaire à une distance euclidienne. L algorithme se comporte de la manière suivante sur un petit exemple, ne comparant que 10 trajets complets au lieu des (6-1)!/2 = 60 possibilités. = 27 = 19 = 21 = 30, abandonné si l max 30 = 27 = 26 = 24 trajet final = 23 = 25 = 21, trajet conservé = 25 = 24 finalement ces 2 possibilités et les 3 autres sont abandonnées = 26 = 28 = 25 4/6

5 lgorithme d insertion d arc et algorithme est généralement plus efficace que le précédent. Il détermine si des arcs peuvent faire partie du trajet optimal. La décision (branchement ou séparation) est tel arc appartient au trajet optimal ou tel arc n y appartient pas. La borne minimale de coût est un peu plus complexe à calculer. lle contient la somme des longueurs des arcs insérés + min({d(x,y) / y n'est pas une destination d'arc présent}) = soustrait des x non en origine d' un arc présent lignes + ce qui reste à soustraire des colonnes. Il est possible d améliorer cette fonction de coût, sachant qu elle fonctionne aussi bien pour des distances euclidiennes que d autres distances. On soustrait de chaque ligne l'élément minimal.idem pour les colonnes valuation minimale = ce qui a été soustrait + Σ longueurs des arcs sélectionnés matrice de coût = = (1) (2) (1) (1) (1) (2) (1) (1) 0 (1) (1) 0 (1) (0) 0 (2) (1) 0 (1) = exclus = 17 = 19 Séparation : On essaye de choisir si un couple n'est pas dans le chemin optimal (estimer de combien augmentera la fonction de coût = ce qui peut être soustrait) l max = = 20 ncore des branches potentielles avec l max = = 21 = (0) 0 (0) (1) (1) (2) 0 (1) 2 0 (0) (0) 0 (0) 2 0 (0) 0 (0) (1) 0 (2) (0) 0 (0) 1 invalidé par le 0 2 nd l invalidé par le max inutile, car dans 2 nd l max ce cas, = = = (0) 0 (0) 0 (0) 0 (0) (1) 2 1 l max = = 22 0 (4) (0) 0 (0) 3 0 (0) 0 (0) (0) 0 (2) 1 1 5/6

6 Étape 2 : Réalisation du démonstrateur Question : Implanter une façon d effectuer l acquisition des données pour un démonstrateur. Il est possible de stocker le résultat dans une matrice de coût, mais vous pouvez utiliser tout autre représentation. Question : éfinissez et implantez la notion de trajet pour le voyageur de commerce. Question : Implantez un algorithme exact de type ranch & ound ou un algorithme approché pour la résolution du problème. Question : Visualisez et estimez le temps que vous avez passé pour atteindre ce premier objectif. onservez l ensemble des fichiers du projet. Étape 3 : mélioration de l outil Vous avez le choix pour améliorer votre outil, mais n oubliez pas de conserver le résultat de l étape 2. Une amélioration naturelle est de faire en sorte que l algorithmique de recherche de trajet ranch & ound traite de plus en plus de villes dans votre plan. L implantation d un algorithme de type exact est conseillée pour les personnes qui ont implanté un algorithme approché à l étape 2. Vous pouvez également améliorer l acquisition des données et faire en sorte qu elle s effectue sur des notions plus naturelles pour un utilisateur externe au projet. ref, n hésitez pas à laisser libre court à votre imagination, tout en restant dans le domaine du réalisable dans le temps que vous avez décidé de consacrer au projet. 6/6

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce

Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce Année 2007-2008 Projet informatique «Voyageur de commerce» Résolution approchée par algorithme génétique du problème du voyageur de commerce B. Monsuez Projet informatique «Voyageur de commerce» Résolution

Plus en détail

Algorithmique et Programmation Projets 2012/2013

Algorithmique et Programmation Projets 2012/2013 3 Dames 3. Objectif Il s agit d écrire un programme jouant aux Dames selon les règles. Le programme doit être le meilleur possible. Vous utiliserez pour cela l algorithme α β de recherche du meilleur coup

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Problème du voyageur de commerce par algorithme génétique

Problème du voyageur de commerce par algorithme génétique Problème du voyageur de commerce par algorithme génétique 1 Problème du voyageur de commerce Le problème du voyageur de commerce, consiste en la recherche d un trajet minimal permettant à un voyageur de

Plus en détail

Le voyageur de commerce

Le voyageur de commerce Université de Strasbourg UFR Maths-Informatique Licence 3 - Semestre 6 Le voyageur de commerce Jonathan HAEHNEL & Marc PAPILLON Strasbourg, le 3 mai 2012 Table des matières 1 Etat des lieux 4 1.1 Fonctionnalités..............................

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

Introduction à la RO

Introduction à la RO 1 Introduction à la RO Problèmes de flots dans les graphes Cédric BENTZ (CNAM) Christophe PICOULEAU (CNAM) 2 Capacité journalière d'un réseau ferroviaire (1/2) Sur le réseau ferroviaire, on a indiqué sur

Plus en détail

Tournées de véhicules

Tournées de véhicules Tournées de véhicules De la théorie aux outils d aide à la décision Olivier Péton, Ecole des Mines de Nantes, novembre 2008 Les principaux problèmes de tournées Deux problèmes de base : Problème du voyageur

Plus en détail

Programmation par contraintes. Laurent Beaudou

Programmation par contraintes. Laurent Beaudou Programmation par contraintes Laurent Beaudou On se trouve où? Un problème, une solution : la solution est-elle une solution du problème? simulation, vérification 2 On se trouve où? Un problème, une solution

Plus en détail

La recherche locale. INF6953 La recherche locale 1

La recherche locale. INF6953 La recherche locale 1 La recherche locale INF6953 La recherche locale 1 Sommaire Recherche locale et voisinage. Fonction de voisinage, optimum local Fonction de voisinage et mouvements Fonction de voisinage et mouvements Exemples

Plus en détail

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe Table des Matières Essais Successifs (ES) 1 Rappels : Fonctions et Ordres de grandeurs 2 Diviser pour Régner 3 Approches Gloutonnes 4 Programmation Dynamique 5 Essais Successifs (ES) Le problème des n

Plus en détail

Recueil des Fiches Concepteurs : Mise en œuvre d un site SharePoint 2013 Juin 2015

Recueil des Fiches Concepteurs : Mise en œuvre d un site SharePoint 2013 Juin 2015 Recueil des s s : Mise en œuvre d un site SharePoint 2013 Juin 2015 Ce document décrit le paramétrage pour la mise en œuvre des fonctionnalités standard de Microsoft SharePoint 2013. NADAP et SharePoint

Plus en détail

Algorithmique. Mode d application

Algorithmique. Mode d application I - Généralités Algorithmique T ale S Définition: Un algorithme est une suite finie d instructions permettant la résolution systématique d un problème donné. Un algorithme peut-être utilisé pour décrire

Plus en détail

Création d un catalogue en ligne

Création d un catalogue en ligne 5 Création d un catalogue en ligne Au sommaire de ce chapitre Fonctionnement théorique Définition de jeux d enregistrements Insertion de contenu dynamique Aperçu des données Finalisation de la page de

Plus en détail

Intelligence Artificielle Jeux

Intelligence Artificielle Jeux Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation

Plus en détail

Gestion multi-stocks

Gestion multi-stocks Gestion multi-stocks Dans l architecture initiale du logiciel IDH-STOCK, 11 champs obligatoires sont constitués. Ces champs ne peuvent être supprimés. Ils constituent l ossature de base de la base de données

Plus en détail

Fiche n 8 : Création de champs supplémentaires

Fiche n 8 : Création de champs supplémentaires PlanningPME Planifiez en toute simplicité Fiche n 8 : Création de champs supplémentaires I. Description... 2 II. Paramétrage des champs supplémentaires... 2 III. Les différents types de champs... 7 IV.

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

TESSA : MATRICE DE SECTION VERSION WEB

TESSA : MATRICE DE SECTION VERSION WEB TESSA : MATRICE DE SECTION VERSION WEB NOM DU FICHIER TESSA : Togo_Ma_M1_S2_G_110213 PAYS TESSA : Togo DOMAINE DU MODULE : MATHEMATIQUES Module numéro : 1 Titre du module : Étude du nombre et de la structure

Plus en détail

La programmation dynamique et l edit-distance

La programmation dynamique et l edit-distance La programmation dynamique et l edit-distance Christine Decaestecker (ULB) & Marco Saerens (UCL) LINF75 1 1 Programmation dynamique Nous avons un treilli: 3 3 3 1 1 1 0 3 4 3 1 3 0 3 1 5 3 3 1 3 LINF75

Plus en détail

1 Récupération des données

1 Récupération des données Lycée Buffon MP*/PSI 014-15 Épreuve d informatique du concours blanc, jeudi 5 mars 015 (3h00) Les documents, téléphones portables, ordinateurs et calculatrices sont interdits. Le sujet de cette épreuve

Plus en détail

CAC, DAX ou DJ : lequel choisir?

CAC, DAX ou DJ : lequel choisir? CAC, DAX ou DJ : lequel choisir? 1. Pourquoi cette question Tout trader «travaillant 1» sur les indices s est, à un moment ou un autre, posé cette question : «je sais que la tendance est bien haussière

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation

Travaux pratiques. Compression en codage de Huffman. 1.3. Organisation d un projet de programmation Université de Savoie Module ETRS711 Travaux pratiques Compression en codage de Huffman 1. Organisation du projet 1.1. Objectifs Le but de ce projet est d'écrire un programme permettant de compresser des

Plus en détail

CAHIER DES SPECIFICATIONS FONCTIONNELLES

CAHIER DES SPECIFICATIONS FONCTIONNELLES 2010/2011 INSTITUT SUP GALILEE CAHIER DES SPECIFICATIONS FONCTIONNELLES IHM XML O.N.E.R.A. Institut Sup Galilée O.N.E.R.A. Page 2 Sommaire I. Description du sujet... 4 II. Outils utilisés... 4 III. Description

Plus en détail

Run Away. FABRE Maxime LEPOT Florian

Run Away. FABRE Maxime LEPOT Florian Run Away FABRE Maxime 2015 Sommaire Introduction... 2 I. Analyse fonctionnelle générale... 3 A. But du Jeu... 3 B. Objectif... 3 C. Moyen mis en œuvre... 3 II. Description de l application... 5 A. Diagramme

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

ENRICHIR LES DONNEES DE DETAILS ACCEDEES A TRAVERS UN RAPPORT OLAP

ENRICHIR LES DONNEES DE DETAILS ACCEDEES A TRAVERS UN RAPPORT OLAP ENRICHIR LES DONNEES DE DETAILS ACCEDEES A TRAVERS UN RAPPORT OLAP SAS Web Report Studio offre depuis de nombreuses versions la possibilité de visualiser les observations spécifiques à partir des données

Plus en détail

Licence STIC, Semestre 1 Algorithmique & Programmation 1

Licence STIC, Semestre 1 Algorithmique & Programmation 1 Licence STIC, Semestre 1 Algorithmique & Programmation 1 Exercices Alexandre Tessier 1 Introduction 2 instruction de sortie 3 expressions 4 variable informatique 5 séquence d instructions, trace Exercice

Plus en détail

PG208, Projet n 2 : Dessin vectoriel

PG208, Projet n 2 : Dessin vectoriel PG208, Projet n 2 : Dessin vectoriel Bertrand LE GAL, Serge BOUTER et Clément VUCHENER Filière électronique 2 eme année - Année universitaire 2011-2012 1 Introduction 1.1 Objectif du projet L objectif

Plus en détail

Points à coordonnées entières sur une droite! La valeur ajoutée du numérique Sommaire

Points à coordonnées entières sur une droite! La valeur ajoutée du numérique Sommaire Points à coordonnées entières sur une droite! La valeur ajoutée du numérique Sommaire 1. Tableau récapitulatif... 2 2. Enoncé et consigne données aux... 3 3. Objectifs et analyse a priori... 3 4. Scénario

Plus en détail

MÉRÉ Aurélien FIIFO1. Pathfinder

MÉRÉ Aurélien FIIFO1. Pathfinder MÉRÉ Aurélien FIIFO1 AMC Pathfinder 1 Sommaire Préambule... 3 Modélisation de l espace... 4 Modélisation des cases δ, α... 4 Interface en mode texte... 5 Modélisation du robot... 8 1 ) Le type Robot...

Plus en détail

SUGARCRM MODULE RAPPORTS

SUGARCRM MODULE RAPPORTS SUGARCRM MODULE RAPPORTS Référence document : SYNOLIA_Support_SugarCRM_Module_Rapports_v1.0.docx Version document : 1.0 Date version : 2 octobre 2012 Etat du document : En cours de rédaction Emetteur/Rédacteur

Plus en détail

Page 1/11. Préambule. Table des matières

Page 1/11. Préambule. Table des matières Page 1/11 Table des matières Préambule... 1 1- Le principe de «NuaFil»... 2 2 - Accueil de votre gestion de profil... 2 2-1 - La recherche de profils... 3 2-2- La liste de vos profils... 3 3 - Le référencement

Plus en détail

Plateforme d'évaluation professionnelle. Manuel d utilisation de l interface de test d EvaLog

Plateforme d'évaluation professionnelle. Manuel d utilisation de l interface de test d EvaLog Plateforme d'évaluation professionnelle Manuel d utilisation de l interface de test d EvaLog Un produit de la société AlgoWin http://www.algowin.fr Version 1.0.1 du 18/01/2015 Table des matières Présentation

Plus en détail

Tutoriel Projet - CRAB : Création d'un nouveau projet

Tutoriel Projet - CRAB : Création d'un nouveau projet 2016/05/04 08:51 1/10 Tutoriel Projet - CRAB : Création d'un nouveau projet Tutoriel Projet - CRAB : Création d'un nouveau projet Initialisation du projet Lancez MS Projet 2010 : un Diagramme de Gantt

Plus en détail

Sommaire. Procédurier Windows Movie Maker Mars 2009

Sommaire. Procédurier Windows Movie Maker Mars 2009 Procédurier Windows Movie Maker Mars 2009 Conception et réalisation Mathieu Brisson Technicien multimedia local Q3049 418.647.6600 poste 6776 mathieu.brisson@climoilou.qc.ca Sommaire L interface... 2 La

Plus en détail

EN BLANC AVANT IMPRESSION»»»

EN BLANC AVANT IMPRESSION»»» Ce modèle doit se trouver sous le répertoire C:\Users\toto\AppData\Roaming\Microsoft\Templates EN BLANC AVANT IMPRESSION»»» Version : 1.0.54 Date du livrable : Mars 2015. Pour rafraîchir le numéro de version,

Plus en détail

INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE

INTRODUCTION AUX PROBLEMES COMBINATOIRES DIFFICILES : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Leçon 10 INTRODUCTION AUX PROBLEMES COMBINATOIRES "DIFFICILES" : LE PROBLEME DU VOYAGEUR DE COMMERCE ET LE PROBLEME DE COLORATION D'UN GRAPHE Dans cette leçon, nous présentons deux problèmes très célèbres,

Plus en détail

ANNEXE 6. Veuillez demander la version word au Ministère NOM DU SECTEUR DE FORMATION NOM DU PROGRAMME PROJET DE FORMATION DATE - ANNÉE

ANNEXE 6. Veuillez demander la version word au Ministère NOM DU SECTEUR DE FORMATION NOM DU PROGRAMME PROJET DE FORMATION DATE - ANNÉE ANNEXE 6 Veuillez demander la version word au Ministère NOM DU SECTEUR DE FORMATION NOM DU PROGRAMME PROJET DE FORMATION DATE - ANNÉE ÉQUIPE DE PRODUCTION Responsabilité et coordination Nom Titre Organisation

Plus en détail

Guide de démarrage rapide

Guide de démarrage rapide Guide de démarrage rapide L aspect de Microsoft Excel 2013 étant différent par rapport aux versions précédentes, nous avons créé ce guide pour vous aider à être opérationnel au plus vite. Ajouter des commandes

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization

Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Parallel Tree-based Exact Algorithms using Heterogeneous Many and Multi-core Computing for Solving Challenging Problems in Combinatorial Optimization Rudi Leroy Encadrement : N. Melab (Univ. Lille 1),

Plus en détail

PERT GANTT L ordonnancement du travail

PERT GANTT L ordonnancement du travail GDP-MEP1 PERT GNTT TYPE RESSOURCE COURS N VERSION 1 01 PERT GNTT L ordonnancement du travail Pour faciliter le suivi des opérations à entreprendre, éviter les oublis et les malentendus, l information doit

Plus en détail

Utiliser un modèle d état prédéfini

Utiliser un modèle d état prédéfini Chapitre 8 Etats rapides Certains boutons sont désactivés, en fonction du type de cellule sélectionné. 4 Répétez les étapes 2 et 3 pour chaque bordure à paramétrer. 5 Cliquez sur le bouton OK pour valider

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel

Chapitre 3 Dénombrement et représentation d un caractère continu. Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Chapitre 3 Dénombrement et représentation d un caractère continu Lætitia Perrier Bruslé Cours de statistique descriptive sous Excel Introduction Un caractère quantitatif est continu si ses modalités possibles

Plus en détail

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS

Problème combinatoire sur le réseau de transport de gaz. Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Problème combinatoire sur le réseau de transport de gaz Nicolas Derhy, Aurélie Le Maitre, Nga Thanh CRIGEN Manuel Ruiz, Sylvain Mouret ARTELYS Au programme Présentation du problème Un problème d optimisation

Plus en détail

SOMMAIRE AIDE À LA CRÉATION D UN INDEX SOUS WORD. Service général des publications Université Lumière Lyon 2 Janvier 2007

SOMMAIRE AIDE À LA CRÉATION D UN INDEX SOUS WORD. Service général des publications Université Lumière Lyon 2 Janvier 2007 SOMMAIRE 1) CRÉATION D UN INDEX SIMPLE 3 a) Étape 1 : Marquage des entrées d index (à l aide d un fichier de concordance) 3 Procédure d insertion du tableau 4 Saisie des entrées d index 5 Marquage automatique

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

Niveau de la classe : troisième ou seconde

Niveau de la classe : troisième ou seconde Olivier PILORGET et Luc PONSONNET - Académie de Nice - TraAM 2013-2014 " PERIMETRE DE SECURITE AUTOUR D UNE PISCINE" Niveau de la classe : troisième ou seconde Testée avec une classe de seconde sur une

Plus en détail

GÉRER LES ATTRIBUTS GRAPHIQUES DANS LES MURS

GÉRER LES ATTRIBUTS GRAPHIQUES DANS LES MURS GÉRER LES ATTRIBUTS GRAPHIQUES DANS LES MURS ASTUCE DU MOIS Introduction Vous avez sûrement été confronté(e) à la question suivante : comment dois-je m y prendre pour associer des attributs graphiques

Plus en détail

Restaurer des données

Restaurer des données Restaurer des données Pré-requis à cette présentation La lecture de ce guide suppose que vous avez installé l agent SFR Backup sur l équipement que vous souhaitez sauvegarder. Il est également nécessaire

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

Morgan Beau Nicolas Courazier

Morgan Beau Nicolas Courazier EPSI - 2010 Rapport projet IA Conception et mise en œuvre d un générateur de systèmes experts Morgan Beau Sommaire Cahier des charges 3 Présentation générale 4 Analyse et modélisation 6 Le moteur d inférence

Plus en détail

I. COMPREHENSION DU CONTEXTE

I. COMPREHENSION DU CONTEXTE I. COMPREHENSION DU CONTEXTE L informatisation du système de gestion des activités hôtelières constitue un facteur majeur de réussite pout tout projet d implantation et de gestion des établissements hôteliers.

Plus en détail

Partie I : Automates et langages

Partie I : Automates et langages 2 Les calculatrices sont interdites. N.B. : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction. Si un candidat est amené à repérer ce qui peut

Plus en détail

Microsoft Word 2013. Résumé procédures. des

Microsoft Word 2013. Résumé procédures. des Microsoft Word 2013 Résumé procédures des Administration, commerce et informatique RÉSUMÉ DES Microsoft Word 2013 Rédaction : Diane Marcil Révision de contenu : Françoise Labelle, Nicole Daigneault (SOFAD)

Plus en détail

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures)

L2 - Algorithmique et structures de données (Année 2010/2011) Examen (2 heures) L2 - lgorithmique et structures de données (nnée 2010/2011) Delacourt, Phan Luong, Poupet xamen (2 heures) Les documents (cours, TD, TP) sont autorisés. Les quatre exercices sont indépendants. À la fin

Plus en détail

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3

I Arbres binaires. Lycée Faidherbe 2014-2015. 1 Rappels 2 1.1 Définition... 2 1.2 Dénombrements... 2 1.3 Parcours... 3 I Arbres binaires 2014-2015 Table des matières 1 Rappels 2 1.1 Définition................................................ 2 1.2 Dénombrements............................................ 2 1.3 Parcours.................................................

Plus en détail

RECHERCHE OPERATIONNELLE

RECHERCHE OPERATIONNELLE RECHERCHE OPERATIONNELLE PROBLEME DE L ARBRE RECOUVRANT MINIMAL I - INTRODUCTION (1) Définitions (2) Propriétés, Conditions d existence II ALGORITHMES (1) Algorithme de KRUSKAL (2) Algorithme de PRIM I

Plus en détail

Structures de données non linéaires

Structures de données non linéaires Structures de données non linéaires I. Graphes Définition Un graphe (simple) orienté G est un couple (S, A), où : S est un ensemble dont les éléments sont appelés les sommets. A est un ensemble de couples

Plus en détail

Partie 4 Créer des parcours pédagogiques

Partie 4 Créer des parcours pédagogiques Partie 4 Créer des parcours pédagogiques Un parcours pédagogique est une séquence d'apprentissage découpée en sections contenant ellesmêmes des activités ou objets d apprentissage. Il peut être organisé

Plus en détail

Chaîne d additions ATTENTION!

Chaîne d additions ATTENTION! Chaîne d additions Épreuve pratique d algorithmique et de programmation Concours commun des écoles normales supérieures Durée de l épreuve: 3 heures 30 minutes Juin 2012 ATTENTION! N oubliez en aucun cas

Plus en détail

Utilisation du logiciel CATIA V5. Exemple d assemblage Le système bielle-piston

Utilisation du logiciel CATIA V5. Exemple d assemblage Le système bielle-piston Utilisation du logiciel CATIA V5 Exemple d assemblage Le système bielle-piston Ce scénario vous permettra de vous familiariser avec le module Assembly Design. L assemblage que vous allez réaliser est représenté

Plus en détail

FICHIERS ET DOSSIERS

FICHIERS ET DOSSIERS La différence entre fichier et dossier FICHIERS ET DOSSIERS La première notion à acquérir est la différence entre un dossier et un fichier Un dossier est une sorte de classeur dans lequel on range divers

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

Scénario de prise en main DataCar CRM v2.3 Gamme SFA

Scénario de prise en main DataCar CRM v2.3 Gamme SFA Scénario de prise en main DataCar CRM v2.3 Gamme SFA 1 - Présentation et Restriction Vous venez d obtenir vos accès à l application DataCar CRM. Vous trouverez dans ce document un scénario de prise en

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Mise en œuvre d un Site Sharepoint-V1

Mise en œuvre d un Site Sharepoint-V1 Mise en œuvre d un Site Sharepoint- MAJ 20/01/2015 Ce document décrit le paramétrage pour la mise en œuvre des fonctionnalités standard de Microsoft SharePoint 2013 NADAP et SharePoint NADAP ( Nouvelle

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

1) LA SAISIE DU QUESTIONNAIRE

1) LA SAISIE DU QUESTIONNAIRE Mercatique - BRITO TP LA DECOUVERTE DE SPHINX Objectifs : Revoir le fonctionnement de Sphinx Analyser les réponses grâce aux tris 1) LA SAISIE DU QUESTIONNAIRE Dans un premier temps, nous allons construire

Plus en détail

Manuel d utilisation de FormXL Pro

Manuel d utilisation de FormXL Pro Manuel d utilisation de FormXL Pro Gaëtan Mourmant & Quoc Pham Contact@polykromy.com www.xlerateur.com FormXL Pro- Manuel d utilisation Page 1 Table des matières Introduction... 3 Liste des fonctionnalités...

Plus en détail

1- Enregistrer le nouveau planning

1- Enregistrer le nouveau planning La planification est un outil indispensable de management de projet, un moyen essentiel de prise de décisions pour le chef de projet : pour définir les travaux à réaliser, fixer des objectifs, coordonner

Plus en détail

INF-130 Travail pratique #2 Travail en équipe

INF-130 Travail pratique #2 Travail en équipe École de technologie supérieure INF-130 Travail pratique #2 Travail en équipe Prospection et exploration minière Par : Frédérick Henri Utilisé par : David Beaulieu, Frédérick Henri, Hugues Saulnier et

Plus en détail

Représentation de la Connaissance. Complément Pratique 7 novembre 2006

Représentation de la Connaissance. Complément Pratique 7 novembre 2006 Représentation de la Connaissance Les jeux en Prolog Introduction Complément Pratique 7 novembre 2006 Nous nous intéressons aux jeux à deux joueurs pour lesquels la situation du jeu est connue des deux

Plus en détail

Félicitations, votre voyage dispose d une garantie supplémentaire!

Félicitations, votre voyage dispose d une garantie supplémentaire! Félicitations, votre voyage dispose d une garantie supplémentaire! Le GFG vous protège! Le Fonds de Garantie Voyages (GFG ) vous protège contre l insolvabilité financière de votre organisateur de voyages,

Plus en détail

A1-1 TP3 Gmsh et partitionnement de maillage

A1-1 TP3 Gmsh et partitionnement de maillage A1-1 TP3 Gmsh et partitionnement de maillage Nicolas Kielbasiewicz 23 septembre 2013 1 Introduction à Gmsh Sous Windows et Mac OS, Gmsh est une application native. Sous Linux, il se lance en ligne de commande,

Plus en détail

Etude et développement d un moteur de recherche

Etude et développement d un moteur de recherche Ministère de l Education Nationale Université de Montpellier II Projet informatique FLIN607 Etude et développement d un moteur de recherche Spécifications fonctionnelles Interface utilisateur Responsable

Plus en détail

L EXPLORATEUR DE DONNEES «DATA EXPLORER»

L EXPLORATEUR DE DONNEES «DATA EXPLORER» L EXPLORATEUR DE DONNEES «DATA EXPLORER» Avec l arrivée de l explorateur de données dans SAS Enterprise Guide, vous allez pouvoir explorer le contenu de vos sources de données sans les ajouter à votre

Plus en détail

Leçon N 15 Création d un album photo 2 ème partie

Leçon N 15 Création d un album photo 2 ème partie Leçon N 15 Création d un album photo 2 ème partie Vous allez créer avec cette leçon un album de photo avec le logiciel «Albelli livre photo». 2 La préparation Le travail le plus important pour créer un

Plus en détail

ALGORITHME DE DIJKSTRA

ALGORITHME DE DIJKSTRA Auteur : Marie-Laurence Brivezac ALGORITHME DE DIJKSTRA TI-83 Premium CE Mots-clés : graphes, matrices, algorithme, programmation. Fichiers associés : dijkstra_eleve.pdf, DIJKSTRA.8xp, MINL.8xp, [C].8xm,

Plus en détail

FICHES PRATIQUES WORDPRESS

FICHES PRATIQUES WORDPRESS FICHES PRATIQUES WORDPRESS Sauvegarde du site Avec le plugin BACKWPUP Objectif de cette fiche Sauvegarder les données Restaurer les données en cas de problème Présentation...2 Paramétrer la sauvegarde

Plus en détail

Rallye mathématique 2006/2007 des écoles de Haute-Loire Cycle 3 Première manche Eléments de solutions 1. Les œufs de Pâques (10 points)

Rallye mathématique 2006/2007 des écoles de Haute-Loire Cycle 3 Première manche Eléments de solutions 1. Les œufs de Pâques (10 points) Rallye mathématique 2006/2007 des écoles de Haute-Loire Cycle 3 Première manche Eléments de solutions 1. Les œufs de Pâques (10 points) Il s'agit d'un problème qui fait appel aux connaissances sur la numération.

Plus en détail

Mini-projet XML/IHM Gestion d emplois du temps I3 - option SI

Mini-projet XML/IHM Gestion d emplois du temps I3 - option SI Mini-projet XML/IHM Gestion d emplois du temps I3 - option SI Olivier Beaudoux 4 septembre 2008 1 Introduction 1.1 Propos Dans ce mini-projet, nous proposons de construire différentes briques logicielles

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Patrick Morié, Bernard-Philippe Boyer

Patrick Morié, Bernard-Philippe Boyer Patrick Morié, Bernard-Philippe Boyer Tsoft et Groupe Eyrolles, 2004, ISBN : 2-212-11418-4 5 - ANALYSE ET SIMULATION 5 MODÈLE ITÉRATIF 1 - NOTION D ITÉRATION Dans certains modèles, il arrive qu une formule

Plus en détail

Requêtes SQL & Paniers. Anne-Marie Cubat

Requêtes SQL & Paniers. Anne-Marie Cubat Requêtes SQL & Paniers Anne-Marie Cubat Pour les bibliothécaires mais aussi pour les lecteurs PMB : une base de données relationnelle et performante Les tables et leurs relations sont conçues pour assurer

Plus en détail

Powerpoint. PowerPoint 2007/2010 Initiation MAJ février 2012

Powerpoint. PowerPoint 2007/2010 Initiation MAJ février 2012 Powerpoint Création de votre première présentation....2 Saisie du titre de la présentation....3 Saisie dans la diapositive courante....4 Modifier les listes à puces....6 Changer la mise en forme du titre

Plus en détail

Types et Structures de Données LI213

Types et Structures de Données LI213 Types et Structures de Données LI213 Interrogation du 3 mars 2013 Aucun document n est autorisé. 1 Listes, piles et files Pour l exercice suivant, on a besoin de définir une liste chaînée de personnes.

Plus en détail

REQUEA. v 1.0.0 PD 20 mars 2008. Mouvements d arrivée / départ de personnels Description produit

REQUEA. v 1.0.0 PD 20 mars 2008. Mouvements d arrivée / départ de personnels Description produit v 1.0.0 PD 20 mars 2008 Mouvements d arrivée / départ de personnels Description produit Fonctionnalités L application Gestion des mouvements d arrivée / départ de Requea permet la gestion collaborative

Plus en détail

Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche

Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche Algorithmique et Programmation Impérative 2 Les arbres binaires de recherche N.E. Oussous oussous@lifl.fr FIL USTL SDC - Licence p.1/16 Arbres binaires de recherche Un arbre binaire T est un arbre binaire

Plus en détail

Routage compact. 1 Préambule. 2 Détail du sujet. Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr. 2.1 Un modèle de routage

Routage compact. 1 Préambule. 2 Détail du sujet. Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr. 2.1 Un modèle de routage Routage compact Sujet proposé par Gilles Schaeffer Gilles.Schaeffer@lix.polytechnique.fr URL de suivi : http://www.enseignement.polytechnique.fr/profs/informatique/ Gilles.Schaeffer/INF431/projetX06.html

Plus en détail

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr

Atelier Transversal AT11. Activité «Fourmis» Pierre Chauvet. pierre.chauvet@uco.fr Atelier Transversal AT11 Activité «Fourmis» Pierre Chauvet pierre.chauvet@uco.fr Ant : un algorithme inspiré de l éthologie L éthologie Etude scientifique des comportements animaux, avec une perspective

Plus en détail

Option Informatique Arbres binaires équilibrés

Option Informatique Arbres binaires équilibrés Option Informatique Arbres binaires équilibrés Sujet novembre 2 Partie II : Algorithmique et programmation en CaML Cette partie doit être traitée par les étudiants qui ont utilisé le langage CaML dans

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail