DIC9305 Logique, informatique et sciences cognitives
|
|
|
- Gustave St-Hilaire
- il y a 10 ans
- Total affichages :
Transcription
1 DIC9305 Logique, informatique et sciences cognitives Logique modale II Roger Villemaire Département d informatique UQAM le 6 mars 2014
2 Plan 1 Choix d une logique modale 2 Relations de Allen 3 Logiques multi-modales 4 Extensions de la logique modale
3 Exemple aléthique Quelle logique modale pour ce contexte? i : il pleut. o : mon parapluie est ouvert. T : p p? (i o) (i o) 4 : p p? (i o) (i o), car sinon (i o). B : p p? i i. S5 semble donc un bon candidat.
4 Exemple temporel Quelle logique modale pour ce contexte? i : il pleut. T : p p? i i? 4 : p p? i i B : p p? i i? K4 ou S4 semblent de bons candidats.
5 Exemple épistémique Quelle logique modale pour ce contexte? po : la porte est ouverte. fo : la fenêtre est ouverte. T : Kp p? Kpo po 4 : Kp KKp? Analogie avec K (po fo), (Kpo Kfo) (incertitude sur des faits) K (Kpo Kfo), (KKpo KKfo) (incertitude sur mes connaissances) B : p K K p? po K po, mais po K ( K po)? KT ou S4 semblent de bons candidats.
6 Modélisation Lors de la modélisation à l aide de la logique modale, il faut toujours s interroger sur : le sens que prendront les modalités, la signification et l adéquation des règles supplémentaires. Il y a beaucoup de logiques modales (voir l outil par exemple). Il faut s assurer d en choisir une qui est adéquate. Mais du côté positif, on peut toujours compter sur des méthodes algorithmiques générales comme les tableaux!
7 Algèbre des intervalles de Allen James F. Allen (1983), intervalles de temps : before(x, Y ) : meets(x, Y ) : overlaps(x, Y ) : starts(x, Y ) : during(x, Y ) : finishes(x, Y ) : equals(x, Y ) : Allen considère aussi les relations inverses (donc 13 relations!)
8 Exemple Tourner la clé jusqu à ce que le moteur démarre. C = La clé est tournée. D = Le moteur est démarré. Réseau de contraintes : C m,o D On ne peut rouler que pendant que le moteur tourne! R = on roule. d,s,f,= Contrainte : R D Allen utilise la consistance de chemin pour la déduction. Par exemple, on déduit que : C b,m,o R
9 Algorithmes Allen montre que la consistance de chemin (qui est un algorithme polynomial) n est pas suffisante en général. Mais souvent en pratique! Vilain, Kautz et van Beek (1989) montrent que c est NP-complet. Nebel et Bürckert (1995) ont déterminé une classe maximale de relations (incluant celles de base) pour lesquelles la consistance de chemin est complète.
10 Logique de Halpern et Shoham Halpern et Shoham introduisent des connecteurs modaux pour chaque relation de Allen : X = [R]ϕ si pour tout Y tel que R(X, Y ) on a Y = ϕ, où R = before, meets, overlaps, starts, during, finishes, equals Cette logique est interprétée sur les structures temporelles = les intervalles d un ensemble ordonnée. ouverture du robinet = overlaps eau coule Si on a une structure temporelle finie, on peut vérifier en temps polynomial si un intervalle satisfait une propriété (model-checking). Mais si on se demande si une formule est valide sur toutes les structures temporelles (finies ou infinies), c est indécidable (pas d algorithme).
11 Logiques multimodales Plusieurs modalités : 1, 2, 3,... avec leurs duals 1, 2, 3,... i ϕ i ϕ. Une structure de Kripke doit maintenant contenir une relation d accessibilité R i pour chaque modalité i. i ϕ, si tous les R i -accessibles satisfont ϕ. i ϕ, si un R i -accessible satisfait ϕ.
12 Épistémique K i ϕ, l agent i sait ϕ. K i (K j p), l agent i sait que l agent j sait p. K 1 (K 2 p) K 1 p? T : K 2 p p. K : K 1 (K 2 p) K 1 p.
13 Dynamique Les modalités dynamiques peuvent exprimer la réalisation d actions différentes. c :faire un choix. (machine à thé et café). [c] après chaque façon de faire un choix. c après au moins une façon de faire un choix. [c](cafe the), c cafe, c the.
14 Aléthique, épistémique, temporelle, dynamique... Les modalités peuvent avoir des sens différents. K i p. c K i p. K i [c](cafe the). ATTENTION, les combinaisons de logiques modales ne sont pas toute décidables.
15 Modalités globales K : tous savent. [ ] : après une action quelconque. K 1,4,8 : les agents 1,4 et 8 savent. [a, b, c] : après une action de {a, b, c}.
16 Logiques temporelles PTL : Propositional Temporal Logic/LTL : Linear Temporal Logic /X : next, à l instant suivant. /F : eventually/finally, à un certain moment (dans le futur). U : Until,... jusqu à ce que... soit vrai. Temps linéaire, discret.
17 Logique dynamique PDL : Propositional dynamical logic (Fischer and Ladner [1979]) Formules :,,, [p], p où p est un programme. Programmes : a, programme atomique (action). (p; q), exécution séquentielle. p q, exécution non-déterministe. p, itération (Kleene star). ϕ?, test.
18 Nommer les mondes Logique hybride.,,,,, i : nous sommes dans le monde i, i, pour tous les mondes i, ϕ@i, ϕ est vraie dans le monde i, i, here, soit i le monde actuel. i i, je peux revenir dans le monde actuel. i i, je reste toujours dans le monde actuel.
Model checking temporisé
Model checking temporisé Béatrice Bérard LAMSADE Université Paris-Dauphine & CNRS [email protected] ETR 07, 5 septembre 2007 1/44 Nécessité de vérifier des systèmes... 2/44 Nécessité de vérifier
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
Exercices Corrigés Premières notions sur les espaces vectoriels
Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3
VÉRIFICATION DES SYSTÈMES À PILE AU MOYEN DES ALGÈBRES DE KLEENE
VINCENT MATHIEU VÉRIFICATION DES SYSTÈMES À PILE AU MOYEN DES ALGÈBRES DE KLEENE Mémoire présenté à la Faculté des études supérieures de l Université Laval dans le cadre du programme de maîtrise en informatique
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Annexe 6. Notions d ordonnancement.
Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. [email protected] Résumé Ce document
Objectifs du cours d aujourd hui. Informatique II : Cours d introduction à l informatique et à la programmation objet. Complexité d un problème (2)
Objectifs du cours d aujourd hui Informatique II : Cours d introduction à l informatique et à la programmation objet Complexité des problèmes Introduire la notion de complexité d un problème Présenter
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Normes de référence. Comparaison. Commande cognitive Sentiments épistémiques Incarnés dépendants de l activité
Séminaire Sciences Cognitives et Education 20 Novembre 2012 Collège de France L importance de la Métacognition: Joëlle Proust Institut Jean-Nicod, Paris [email protected] http://joelleproust.org.fr Plan
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé
Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e
Trépier avec règle, ressort à boudin, chronomètre, 5 masses de 50 g.
PHYSQ 130: Hooke 1 LOI DE HOOKE: CAS DU RESSORT 1 Introduction La loi de Hooke est fondamentale dans l étude du mouvement oscillatoire. Elle est utilisée, entre autres, dans les théories décrivant les
Exercices du Cours de la programmation linéaire donné par le Dr. Ali DERBALA
75. Un plombier connaît la disposition de trois tuyaux sous des dalles ( voir figure ci dessous ) et il lui suffit de découvrir une partie de chacun d eux pour pouvoir y poser les robinets. Il cherche
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Systèmes temps réel et embarqués Concepts de base, expression des contraintes temporelles
M2P GLRE Génie Logiciel, logiciels Répartis et Embarqués Systèmes temps réel et embarqués Concepts de base, expression des contraintes temporelles Z. Mammeri 1. Introduction Aujourd hui, les applications
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage
L analyse d images regroupe plusieurs disciplines que l on classe en deux catégories :
La vision nous permet de percevoir et d interpreter le monde qui nous entoure. La vision artificielle a pour but de reproduire certaines fonctionnalités de la vision humaine au travers de l analyse d images.
L apprentissage automatique
L apprentissage automatique L apprentissage automatique L'apprentissage automatique fait référence au développement, à l analyse et à l implémentation de méthodes qui permettent à une machine d évoluer
Logique binaire. Aujourd'hui, l'algèbre de Boole trouve de nombreuses applications en informatique et dans la conception des circuits électroniques.
Logique binaire I. L'algèbre de Boole L'algèbre de Boole est la partie des mathématiques, de la logique et de l'électronique qui s'intéresse aux opérations et aux fonctions sur les variables logiques.
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Tutorial et Guide TeamViewer
Tutorial et Guide TeamViewer TeamViewer est un programme qui permet de partager son bureau ou prendre la main d'un bureau à distance via internet partout dans le monde, et d'ainsi avoir l'opportunité de
1 Recherche en table par balayage
1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément
Chronogrammes et contraintes. à la modélisation de systèmes dynamiques à événements
Actes FAC 2007 Chronogrammes et contraintes pour la modélisation de systèmes dynamiques à événements discrets Gérard Verfaillie Cédric Pralet Michel Lemaître ONERA/DCSD Toulouse 2 av. Édouard Belin, BP
Comment évaluer une banque?
Comment évaluer une banque? L évaluation d une banque est basée sur les mêmes principes généraux que n importe quelle autre entreprise : une banque vaut les flux qu elle est susceptible de rapporter dans
Optimisation Discrète
Prof F Eisenbrand EPFL - DISOPT Optimisation Discrète Adrian Bock Semestre de printemps 2011 Série 7 7 avril 2011 Exercice 1 i Considérer le programme linéaire max{c T x : Ax b} avec c R n, A R m n et
UNIVERSITÉ DEMONTRÉAL
UNIVERSITÉ DEMONTRÉAL VÉRIFICATION ÀLAVOLÉE DE CONTRAINTES OCL ÉTENDUES SUR DES MODÈLES UML RAVECA-MARIA OARGA DÉPARTEMENT DE GÉNIE INFORMATIQUE ÉCOLE POLYTECHNIQUE DE MONTRÉAL MÉMOIRE PRÉSENTÉ ENVUEDEL
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
Surveillance et maintenance prédictive : évaluation de la latence de fautes. Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG)
Surveillance et maintenance prédictive : évaluation de la latence de fautes Zineb SIMEU-ABAZI Univ. Joseph Fourier, LAG) SURVEILLANCE Analyser une situation et fournir des indicateurs! Détection de symptômes!
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Cours de Recherche Opérationnelle IUT d Orsay. Nicolas M. THIÉRY. E-mail address: [email protected] URL: http://nicolas.thiery.
Cours de Recherche Opérationnelle IUT d Orsay Nicolas M. THIÉRY E-mail address: [email protected] URL: http://nicolas.thiery.name/ CHAPTER 1 Introduction à l optimisation 1.1. TD: Ordonnancement
TP N 57. Déploiement et renouvellement d une constellation de satellites
TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les
IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -
IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Manuel d utilisation
Manuel d utilisation Table des matières 1. Fonctionnalités 2. Caractéristiques 3. Pièces et accessoires 4. Vue rapide de l appareil 5. Installation d un disque dur SATA 6. Le logiciel de sauvegarde 6.1
Potimart. Manuel d'installation de la machine virtuelle 30/11/10
Potimart Programmes Open source pour le Traitement de l Information Multimodale et l Analyse des Réseaux de Transport. Manuel d'installation de la machine virtuelle 30/11/2010 1/18 Mises à jour du rapport:
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I
Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
Dan Istrate. Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier
Détection et reconnaissance des sons pour la surveillance médicale Dan Istrate le 16 décembre 2003 Directeur de thèse : Eric Castelli Co-Directeur : Laurent Besacier Thèse mené dans le cadre d une collaboration
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test
11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP
Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP Christophe Joubert Séminaire VASY 2002 30 Octobre 2002 Aix les Bains Contexte du projet
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE
INTRODUCTION A L ELECTRONIQUE NUMERIQUE ECHANTILLONNAGE ET QUANTIFICATION I. ARCHITECTURE DE L ELECRONIQUE NUMERIQUE Le schéma synoptique ci-dessous décrit les différentes étapes du traitement numérique
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Model checking temporisé Algorithmes efficaces et complexité
Model checking temporisé Algorithmes efficaces et complexité (Mémoire d habilitation à diriger des recherches) François Laroussinie Laboratoire Spécification et Vérification ENS de Cachan & CNRS UMR 8643
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Ordonnancement temps réel
Ordonnancement temps réel [email protected] Version 1.5 Problématique de l ordonnancement temps réel En fonctionnement normal, respecter les contraintes temporelles spécifiées par toutes les tâches
HERAKLES Page 1 sur 6 COMMENT CREER DES FACTURES D ACCOMPTE FICHE 051-01 COMMENT CREER DES FACTURES D ACCOMPTE?
HERAKLES Page 1 sur 6 COMMENT CREER DES FACTURES D ACCOMPTE? OBJECTIFS L objectif est d établir automatiquement des factures d acompte directement associées aux commandes clients. Les montants d acompte
Rapport de Stage. Environnements d édition de workflow
Rapport de Stage Présenté par Michaël TISSOT Environnements d édition de workflow Effectué dans le cadre du projet Opéra - INRIA Date : 24 Août 2000 Responsable : Laurent Tardif Remerciements Je tiens
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS. Odile PAPINI, LSIS. Université de Toulon et du Var. papini@univ-tln.
MASTER SIS PRO : logique et sécurité DÉTECTION D INTRUSIONS Odile PAPINI, LSIS. Université de Toulon et du Var. [email protected] Plan Introduction Généralités sur les systèmes de détection d intrusion
Echantillonnage Non uniforme
Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas
Modélisation et Simulation
Cours de modélisation et simulation p. 1/64 Modélisation et Simulation G. Bontempi Département d Informatique Boulevard de Triomphe - CP 212 http://www.ulb.ac.be/di Cours de modélisation et simulation
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003
Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation
I- Définitions des signaux.
101011011100 010110101010 101110101101 100101010101 Du compact-disc, au DVD, en passant par l appareil photo numérique, le scanner, et télévision numérique, le numérique a fait une entrée progressive mais
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Procap Accessibilité et intégration. Adresses web. www.goswim.ch Accès sans obstacles aux piscines
Adresses web Le Guide des piscines pour personnes avec handicap www.goswim.ch Bureau fédéral de l égalité pour les personnes handicapées BFEH www.edi.admin.ch/ebgb Procap Accessibilité et intégration www.procap.ch
1 Introduction C+ + Algorithm e. languag. Algorigramm. machine binaire. 1-1 Chaîne de développement. Séance n 4
1 Introduction 1-1 Chaîne de développement Algorithm e C+ + Algorigramm e languag e machine binaire Le programme est écrit à l aide de Multiprog sous forme d algorigramme puis introduit dans le microcontrôleur
CSI351 Systèmes d exploitation Instructions pour rouler Linux avec Virtual PC dans la salle de labo 2052
CSI351 Systèmes d exploitation Instructions pour rouler Linux avec Virtual PC dans la salle de labo 2052 Une machine virtuelle Linux, appelé SiteDev (version 9 de Redhat) peut être roulé avec Virtual PC
Jean-Philippe Préaux http://www.i2m.univ-amu.fr/~preaux
Colonies de fourmis Comment procèdent les colonies de fourmi pour déterminer un chemin presque géodésique de la fourmilière à un stock de nourriture? Les premières fourmis se déplacent au hasard. Les fourmis
APPROCHE DE LA SURVEILLANCE DES SYSTEMES PAR RESEAUX DE PETRI SYNCHRONISES FLOUS
THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEMY, Series A, OF THE ROMANIAN ACADEMY Volume 9, Number 2/2008, pp. 000 000 APPROCHE DE LA SURVEILLANCE DES SYSTEMES PAR RESEAUX DE PETRI SYNCHRONISES
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
CRYPTOGRAPHIE. Signature électronique. E. Bresson. [email protected]. SGDN/DCSSI Laboratoire de cryptographie
CRYPTOGRAPHIE Signature électronique E. Bresson SGDN/DCSSI Laboratoire de cryptographie [email protected] I. SIGNATURE ÉLECTRONIQUE I.1. GÉNÉRALITÉS Organisation de la section «GÉNÉRALITÉS»
Saisir des règlements par le relevé de banque
Fiche procédure n 7 24 juillet 2012 Saisir des règlements par le relevé de banque Préambule et explications générales Pourquoi saisir le règlement des factures directement en banque? En fonctionnement
Ordonnancement. N: nains de jardin. X: peinture extérieure. E: électricité T: toit. M: murs. F: fondations CHAPTER 1
CHAPTER 1 Ordonnancement 1.1. Étude de cas Ordonnancement de tâches avec contraintes de précédences 1.1.1. Exemple : construction d'une maison. Exercice. On veut construire une maison, ce qui consiste
Intelligence Artificielle Planification
Intelligence Artificielle Planification Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy [email protected] Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Qualité du logiciel: Méthodes de test
Qualité du logiciel: Méthodes de test Matthieu Amiguet 2004 2005 Analyse statique de code Analyse statique de code Étudier le programme source sans exécution Généralement réalisée avant les tests d exécution
Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes
Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction
Julien MATHEVET Alexandre BOISSY GSID 4. Rapport RE09. Load Balancing et migration
Julien MATHEVET Alexandre BOISSY GSID 4 Rapport Load Balancing et migration Printemps 2001 SOMMAIRE INTRODUCTION... 3 SYNTHESE CONCERNANT LE LOAD BALANCING ET LA MIGRATION... 4 POURQUOI FAIRE DU LOAD BALANCING?...
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Quantification d incertitude et Tendances en HPC
Quantification d incertitude et Tendances en HPC Laurence Viry E cole de Physique des Houches 7 Mai 2014 Laurence Viry Tendances en HPC 7 Mai 2014 1 / 47 Contents 1 Mode lisation, simulation et quantification
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Apprentissage Automatique
Apprentissage Automatique Introduction-I [email protected] www.lia.univ-avignon.fr Définition? (Wikipedia) L'apprentissage automatique (machine-learning en anglais) est un des champs
Logiciel Libre Cours 3 Fondements: Génie Logiciel
Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli [email protected] Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/
Transmission d informations sur le réseau électrique
Transmission d informations sur le réseau électrique Introduction Remarques Toutes les questions en italique devront être préparées par écrit avant la séance du TP. Les préparations seront ramassées en
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
UEO11 COURS/TD 1. nombres entiers et réels codés en mémoire centrale. Caractères alphabétiques et caractères spéciaux.
UEO11 COURS/TD 1 Contenu du semestre Cours et TDs sont intégrés L objectif de ce cours équivalent a 6h de cours, 10h de TD et 8h de TP est le suivant : - initiation à l algorithmique - notions de bases
Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur
Université Paris-Sud Licence d Informatique Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Adresse de l auteur : LIX École Polytechnique
RapidMiner. Data Mining. 1 Introduction. 2 Prise en main. Master Maths Finances 2010/2011. 1.1 Présentation. 1.2 Ressources
Master Maths Finances 2010/2011 Data Mining janvier 2011 RapidMiner 1 Introduction 1.1 Présentation RapidMiner est un logiciel open source et gratuit dédié au data mining. Il contient de nombreux outils
En face du commanditaire, on met un chef de projet qui connait le domaine (banque, administration, etc.)
Atelier «Science du projet» séance 4 8 novembre 2008 Compte rendu 1. Sébastien Larribe : la méthode AGILE, méthode de gestion de projet Sébastien Larribe part de l hypothèse que des méthodes de conception,
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
!-.!#- $'( 1&) &) (,' &*- %,!
0 $'( 1&) +&&/ ( &+&& &+&))&( -.#- 2& -.#- &) (,' %&,))& &)+&&) &- $ 3.#( %, (&&/ 0 ' Il existe plusieurs types de simulation de flux Statique ou dynamique Stochastique ou déterministe A événements discrets
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
opti-vm Serveur Vocal et Standard Automatique Siemens HiPath 11xx et Hipath 12xx Installation et Guide Utilisateur Version 1.0
opti-vm Serveur Vocal et Standard Automatique Siemens HiPath 11xx et Hipath 12xx Installation et Guide Utilisateur Version 1.0 SOMMAIRE SOMMAIRE 1- INTRODUCTION... 4 1.1 Standard Automatique...4 1.2 Messagerie
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Outils pour les réseaux de neurones et contenu du CD-Rom
Outils pour les réseaux de neurones et contenu du CD-Rom Depuis le développement théorique des réseaux de neurones à la fin des années 1980-1990, plusieurs outils ont été mis à la disposition des utilisateurs.
