Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP

Dimension: px
Commencer à balayer dès la page:

Download "Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP"

Transcription

1 Outils logiciels pour la combinaison de vérification fonctionnelle et d évaluation de performances au sein de CADP Christophe Joubert Séminaire VASY Octobre 2002 Aix les Bains

2 Contexte du projet Groupe FMT (Formal( Methods and Tools) Spécification, conception et analyse formelle de systèmes distribués complexes Collaborations avec le projet INRIA/VASY Expertise dans le domaine des modèles stochastiques (chaînes de Markov) Motivations Union des travaux pour confectionner une plateforme d outils efficace en vérification fonctionnelle et en évaluation de performances Determinator - VASY'02 2

3 Évaluation de performance programme spécification Algèbre de processus stochastique Réseaux de Pétri stochastiques propriétés temporelles modèle compilateur Méthode algébrique espace d états mesure de performance Analyse numérique Simulation Chaînes de Markov Matrice de transition creuse vecteur-solution probabiliste Determinator - VASY'02 3

4 Objectifs et plan 1. Modèles stochastiques 2. Réducteur de modèles mixtes 3. Expérimentations et résultats 4. Bilan et perspectives Determinator - VASY'02 4

5 Modèles stochastiques Processus stochastique Famille de variables aléatoires {X t, t є T} X t est caractérisée par une fonction de distribution Processus Markovien Processus stochastique + propriété Markovienne (comportement futur entièrement défini par l instant présent, donc totalement indépendant de son histoire) Chaîne de Markov Processus Markovien + homogénéité + espace d états discret CTMC (Continuous Time Markov Chain) Chaîne de Markov + temps continu Determinator - VASY'02 5

6 Modèles STE stochastiques Généralisation des STE d algèbre de processus: M = (S, A, T, R, s 0 ) Chaînes de Markov Interactives (IMC) [Hermanns98] : TOUT; prob 0,8 SEND; rate 5,7 ACK τ DELIV; rate 3,0 RECV; prob 0,2 STE probabilistes : transitions "prob p" et "label ; prob p " STE stochastiques : transitions "rate λ" et "label ; rate λ" STE mixtes : (STE probabiliste STE stochastique) + transitions étiquetées par des actions "label" Determinator - VASY'02 6

7 Réducteur de modèles mixtes Motivations Générer un CTMC à partir d un STE mixte sous forme d IMC Réduire par factorisation le non-déterminisme présent dans les modèles mixtes Simplifier à la volée selon la condition de «bonne spécification» Determinator - VASY'02 7

8 Définitions Bien spécifié : se dit d une IMC dont la CTMC résultante est unique, quelque soit les décisions non-déterministes choisies. Types d états dans modèles mixtes Stable : que des transitions stochastiques sortantes Case : au moins une transition probabiliste sortante, et de possibles transitions stochastiques sortantes ignorées Décision : au moins une transition d action sortante, et de possibles transitions stochastiques sortantes ignorées Determinator - VASY'02 8

9 Algorithme Principal s, stable(s) : s succ(s) : E = wsc(s ) (n,v) E P(s,n) = P(s,s ). v Determinator - VASY'02 9

10 Algorithme WSC récursif wsc(s) : Stable(s) : {(s,1)} Case(s) : E = s succ(s) : E E = wsc(s ) (n,v) E if (n,v ) E E = E \ (n,v ) E = E (n, v + P(s,s ).v) else E = E (n, P(s,s ).v) Décision(s) : E 1 = E 2 = s succ(s) : if E 1 = else E 1 E 1 = wsc(s ) E 2 = wsc(s ) if E 1 E 2 ERREUR pas «bien spécifié» Determinator - VASY'02 10

11 Modèle bien spécifié Exemple λ * 0,666 action2 0 L; λ 1 3 action1 0,4 2 A; 0,333 Z; 0,4 0,666 5 γ État stable État décision État case C; 0,2 4 µ 1 0,666 0,333 et et λ * 0,333 µ 2 O,4 O,2 + 0,4*0,666 0,4*0,333 = 12/30 6/ /30 4/30 = 0,666 0,333 Determinator - VASY'02 11

12 Modèle bien spécifié Exemple λ * 0,666 0 État stable État décision 5 γ État case 4 µ 1 λ * 0,333 µ 2 Determinator - VASY'02 12

13 OPEN/CAESAR LOTOS STE automates communicants SDL UML/RT CAESAR BCG.OPEN EXP.OPEN IF.OPEN UMLAUT API Open/Caesar STE implicite bibliothèques Open/Caesar génération de STE simulation interactive exécution aléatoire vérification à la volée vérification partielle génération de tests Determinator - VASY'02 13

14 Intégration du nouveau composant Minimisation à la volée de modèles stochastiques bien spécifiés, contenant du non-déterminisme. programme source entrées/sorties compilateur API Open/Caesar DETERMINATOR Modèles minimisés, sans nondéterminisme si bien spécifiés Determinator - VASY'02 14

15 Évaluation de performance REDUCTION GENERATION Determinator BCG_MIN ANALYSE LOTOS CAESAR(.ADT) BCG BCG_TRANSIENT Λ i BCG_LABELS BCG_STEADY Λ i rate λ i ETMCC VERIFICATION Determinator - VASY'02 15

16 Évaluation de performance Determinator PDAC (Performance and Dependability Analysis Components) BCG_MIN LOTOS CAESAR(.ADT) BCG BCG_TRANSIENT Λ i BCG_LABELS BCG_STEADY Λ i rate λ i ETMCC Determinator - VASY'02 16

17 Bilan Un outil complètement implémenté, utilisant la technologie de CADP : Determinator : réducteur de modèles mixtes PDAC : une extension de CADP aux aspects temporels des systèmes Bcg_Transient Bcg_Steady Bcg_Min Determinator Bibliothèque de fonctions d analyse de STE mixtes Determinator - VASY'02 17

18 Perspectives Intégration de PDAC dans la prochaine version de CADP (2003) Bibliothèque générique utilisée par les composants de PDAC Travaux futurs Au niveau de la spécification Génération automatique de contraintes stochastiques dans un STE classique Au niveau de la vérification Connections à des simulateurs existants Conception de simulateurs Markoviens parallèles Determinator - VASY'02 18

Résolution générique à la volée de systèmes d équations booléennes et applications

Résolution générique à la volée de systèmes d équations booléennes et applications Résolution générique à la volée de systèmes d équations booléennes et applications Radu Mateescu INRIA Rhône-Alpes / VASY Plan Introduction Systèmes d équations booléennes d alternance 1 Algorithmes de

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

I.M.A.G ECOLE DOCTORALE MATHEMATIQUES ET INFORMATIQUE DEA D INFORMATIQUE: SYSTEMES ET COMMUNICATIONS. Projet présenté par. Christophe JOUBERT

I.M.A.G ECOLE DOCTORALE MATHEMATIQUES ET INFORMATIQUE DEA D INFORMATIQUE: SYSTEMES ET COMMUNICATIONS. Projet présenté par. Christophe JOUBERT Université Joseph Fourier U.F.R. Informatique et Mathématiques Appliquées Institut National Polytechnique de Grenoble E.N.S.I.M.A.G. I.M.A.G ECOLE DOCTORALE MATHEMATIQUES ET INFORMATIQUE DEA D INFORMATIQUE:

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23

Table des Matières. Table des Figures 7. Introduction Générale 9. Chapitre 1 - Langages de description d architectures matérielles hybrides 23 Table des Figures 7 Introduction Générale 9 1. Outils et plate-formes de construction d application 9 2. Intégration de paradigmes de conception dans le cycle de vie 10 2.1. Equilibrage de charge et équilibrage

Plus en détail

Avec vous, pour vos projets, à chaque instant. Utilisation des réseaux de Pétri avec GRIF

Avec vous, pour vos projets, à chaque instant. Utilisation des réseaux de Pétri avec GRIF Avec vous, pour vos projets, à chaque instant Utilisation des réseaux de Pétri avec GRIF 2010 Projets pour le grand accélérateur de particules GANIL CEA/CNRS Vérification des automatismes de gestion du

Plus en détail

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0

Formellement, un processus aléatoire est une succession de variables aléatoires (X n ) n 0 Chapitre 1 Modélisation markovienne 11 Introduction Un processus aléatoire est un phénomène dont une partie de l évolution temporelle est aléatoire On rencontre ces processus dans divers domaines de la

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

Modélisation aléatoire en fiabilité des logiciels

Modélisation aléatoire en fiabilité des logiciels collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.

Plus en détail

M3301-2: Méthodologie de la production de logiciels Modélisation et construction des logiciels (C. Attiogbé) Travaux dirigés/pratiques - 2015/2016

M3301-2: Méthodologie de la production de logiciels Modélisation et construction des logiciels (C. Attiogbé) Travaux dirigés/pratiques - 2015/2016 M3301-2: Méthodologie de la production de logiciels Modélisation et construction des logiciels (C. Attiogbé) Travaux dirigés/pratiques - 2015/2016 encadrés par Christian Attiogbé, Amine Aouadhi Cahier

Plus en détail

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013»

Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» Résumé du document «Programmes des classes préparatoires aux Grandes Écoles ; Discipline : Informatique ; Première et seconde années - 2013» I Objectifs Niveau fondamental : «on se fixe pour objectif la

Plus en détail

ÉVALUATION SYMBOLIQUE DE SYSTÈMES PROBABILISTES À ESPACE D ÉTATS CONTINU

ÉVALUATION SYMBOLIQUE DE SYSTÈMES PROBABILISTES À ESPACE D ÉTATS CONTINU SIMON PAQUETTE ÉVALUATION SYMBOLIQUE DE SYSTÈMES PROBABILISTES À ESPACE D ÉTATS CONTINU Mémoire présenté à la Faculté des études supérieures de l Université Laval dans le cadre du programme de maîtrise

Plus en détail

Thème 11 Réseaux de Petri Places-Transitions

Thème 11 Réseaux de Petri Places-Transitions Thème 11 Réseaux de Petri Places-Transitions Contenu du thème 1. Introduction 2. RdP PT 3. Protocoles de communication Références Diaz, Michel (2001) Les Réseaux de Petri Modèles fondamentaux, Hermes Science

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Chapitre 1 Prise en main de MATLAB et SIMULINK

Chapitre 1 Prise en main de MATLAB et SIMULINK Table des matières Chapitre 1 Prise en main de MATLAB et SIMULINK I. PRISE EN MAIN DE MATLAB... 1 I.1. L AIDE DANS MATLAB... 1 I.2. TYPES DE DONNÉES... 4 I.3. NOTIONS DE BASE DE MATLAB... 4 I.4. TABLEAUX...

Plus en détail

Caroline PONZONI CARVALHO CHANEL le vendredi 12 avril 2013

Caroline PONZONI CARVALHO CHANEL le vendredi 12 avril 2013 Institut Supérieur de l Aéronautique et de l Espace(ISAE) Caroline PONZONI CARVALHO CHANEL le vendredi 12 avril 2013 Planification de perception et de mission en environnement incertain: Application à

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

Mathématiques financières

Mathématiques financières Mathématiques financières Arnaud Triay Table des matières 1 Introduction Position du problème.1 Pricing des options........................................... Formalisme..............................................

Plus en détail

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans

Introduction aux CRF via l annotation par des modèles graphiques. Isabelle Tellier. LIFO, Université d Orléans Introduction aux CRF via l annotation par des modèles graphiques Isabelle Tellier LIFO, Université d Orléans Plan 1. Annoter pour quoi faire 2. Apprendre avec un modèle graphique 3. Annnoter des chaînes

Plus en détail

EVALUATION DE LA SURETE DE FONCTIONNEMENT DES SYSTEMES DYNAMIQUES PAR

EVALUATION DE LA SURETE DE FONCTIONNEMENT DES SYSTEMES DYNAMIQUES PAR EVALUATION DE LA SURETE DE FONCTIONNEMENT DES SYSTEMES DYNAMIQUES PAR MODELISATION RECURSIVE Résumé : CABARBAYE André 1 - LAULHERET Roland 2 Centre National d Etudes Spatiales (CNES) (1) & (2) 18, avenue

Plus en détail

Application au protocole POTS

Application au protocole POTS Présentation de la boîte à outils CADP: Application au protocole POTS Benoît Fraikin et Jacob Tchoumtchoua Groupe de Recherche en Génie Logiciel Département de Mathématiques et d Informatique Université

Plus en détail

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...

I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème... TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................

Plus en détail

WP2T23 «APPLICATION de de REFERENCE» Prototypage rapide d une application de traitement d images avec SynDEx EADS

WP2T23 «APPLICATION de de REFERENCE» Prototypage rapide d une application de traitement d images avec SynDEx EADS WP2T23 «APPLICATION de de REFERENCE» Prototypage rapide d une application de traitement d images avec SynDEx EADS Avec l appui de l INRIA www-rocq.inria.fr/syndex 1 PLAN I. Présentation du sujet II. Présentation

Plus en détail

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux

Chapitre 2 Maîtrise des flux. - Chapitre 2 - Maîtrise des flux - - Facteurs agissant sur les flux Les modèles pour les SP Les réseaux de files d attente 1 Facteurs agissant sur les flux Au niveau physique : L implantation Le nombre de machines Automatisation (robots,

Plus en détail

Evaluation de performance en Sûreté de Fonctionnement

Evaluation de performance en Sûreté de Fonctionnement Groupe SdF Midi-Pyrénées Toulouse 5 juin 2015 Evaluation de performance en Sûreté de Fonctionnement - Andre.cabarbaye Plan Introduction Types de performances Finalité des analyses Attentes du donneur d

Plus en détail

TINA (Time Petri Net Analyser) Vérification avec les outils TINA/Fiacre

TINA (Time Petri Net Analyser) Vérification avec les outils TINA/Fiacre TINA (Time Petri Net Analyser) Vérification avec les outils TINA/Fiacre Bernard Berthomieu Didier le Botlan Silvano Dal Zilio François Vernadat École d été Temps Réel Inria Rennes Bretagne Atlantique Rennes

Plus en détail

Customisation Rhapsody et Henri BOULOUET DITV/AEEV/EECH. approche méthodologique

Customisation Rhapsody et Henri BOULOUET DITV/AEEV/EECH. approche méthodologique Customisation Rhapsody et approche méthodologique Retour d expérience sur l implémentation d un langage et profil UML associé 1 Sommaire Principe d un développement méthodologique Evocation d ISR (Ingénierie

Plus en détail

CONCEPTION des SYSTÈMES d INFORMATION UML

CONCEPTION des SYSTÈMES d INFORMATION UML CONCEPTION des SYSTÈMES d INFORMATION UML 4 : Analyse organique Epitech 3 Automne 2007 Bertrand LIAUDET SOMMAIRE ANALYSE ORGANIQUE 2 Diagrammes de séquence 3 Exemple de diagramme de séquence 8 Diagramme

Plus en détail

Vérification avec TINA

Vérification avec TINA Vérification avec TINA B. Berthomieu, F. Vernadat LAAS-CNRS Journée AFSEC Outils - Juin 2007 Insa Lyon 22 Juin 2007 Le contexte Vérification de Systèmes Réactifs, Protocoles, Logiciels Temps Réel Points

Plus en détail

Certifying an Automated Code Generator Using Formal Tools

Certifying an Automated Code Generator Using Formal Tools Certifying an Automated Code Generator Using Formal Tools Preliminary experiments in the GeneAuto Project N. Izerrouken, X. Thirioux, M. Pantel, M. Strecker IRIT-ACADIE Continental Automotive Toulouse,

Plus en détail

1 de 1. Algorithmique. Récursivité. Florent Hivert. Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert

1 de 1. Algorithmique. Récursivité. Florent Hivert. Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert 1 de 1 Algorithmique Récursivité Florent Hivert Mél : Florent.Hivert@lri.fr Adresse universelle : http://www.lri.fr/ hivert 2 de 1 Récursivité et Récurrence Deux notions très proche : mathématiques : récurrence

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Modélisations et analyses de réseaux de capteurs

Modélisations et analyses de réseaux de capteurs Modélisations et analyses de réseaux de capteurs Ludovic Samper Soutenance de thèse, le 7 avril 2008 France Télécom R&D / VERIMAG JURY Marc Pouzet LRI, Université Paris-Sud Président Isabelle Guérin-Lassous

Plus en détail

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test

Grandes lignes ASTRÉE. Logiciels critiques. Outils de certification classiques. Inspection manuelle. Definition. Test Grandes lignes Analyseur Statique de logiciels Temps RÉel Embarqués École Polytechnique École Normale Supérieure Mercredi 18 juillet 2005 1 Présentation d 2 Cadre théorique de l interprétation abstraite

Plus en détail

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI)

Groupe. Chapter 1. Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Chapter 1 Groupe Félix Abecassis (CSI) Christopher Chedeau (CSI) Gauthier Lemoine (SCIA) Julien Marquegnies (CSI) Nous avons choisi d implémenter le projet avec le langage Javascript. L avantage offert

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d

chargement d amplitude variable à partir de mesures Application à l approche fiabiliste de la tolérance aux dommages Modélisation stochastique d un d Laboratoire de Mécanique et Ingénieriesnieries EA 3867 - FR TIMS / CNRS 2856 ER MPS Modélisation stochastique d un d chargement d amplitude variable à partir de mesures Application à l approche fiabiliste

Plus en détail

Introduction à la Programmation Parallèle: MPI

Introduction à la Programmation Parallèle: MPI Introduction à la Programmation Parallèle: MPI Frédéric Gava et Gaétan Hains L.A.C.L Laboratoire d Algorithmique, Complexité et Logique Cours du M2 SSI option PSSR Plan 1 Modèle de programmation 2 3 4

Plus en détail

Problème de contrôle optimal pour une chaîne de Markov

Problème de contrôle optimal pour une chaîne de Markov Problème de contrôle optimal pour une chaîne de Markov cours ENSTA MA206 Il s agit de résoudre un problème d arrêt optimal pour une chaîne de Markov à temps discret. Soit X n une chaîne de Markov à valeurs

Plus en détail

Arbres Binaires de Recherche : Introduction

Arbres Binaires de Recherche : Introduction Arbres Binaires de Recherche : Introduction I. Guessarian cours ISN 11 janvier 2012 LIAFA, CNRS and University Paris Diderot 1/13 Arbre Binaire de Recherche Un Arbre Binaire de Recherche (ABR) est un arbre

Plus en détail

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais.

Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. Yongwe Jean-Luc Travail d Initiative Personnel Encadré : Chaines de Markov et protocole de gestion des communications radios par satellite relais. (Système ALOHA) (Sous la tutelle de Madame Anne Perrut)

Plus en détail

Configuration et Déploiement d Applications Réparties par Intégration de l Hétérogénéité des Implémentations dans un Langage de Description d

Configuration et Déploiement d Applications Réparties par Intégration de l Hétérogénéité des Implémentations dans un Langage de Description d Configuration et Déploiement d Applications Réparties par Intégration de l Hétérogénéité des Implémentations dans un Langage de Description d Architecture Doctorant: Directeurs de thèse: Bechir ZALILA

Plus en détail

JOURNEES SYSTEMES & LOGICIELS CRITIQUES le 14/11/2000. Mise en Œuvre des techniques synchrones pour des applications industrielles

JOURNEES SYSTEMES & LOGICIELS CRITIQUES le 14/11/2000. Mise en Œuvre des techniques synchrones pour des applications industrielles JOURNEES SYSTEMES & LOGICIELS CRITIQUES le 14/11/2000 Mise en Œuvre des techniques synchrones pour des applications industrielles Mise en œuvre des techniques synchrones pour des applications industrielles

Plus en détail

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Emmanuel Rachelson 1 Patrick Fabiani 1 Frédérick Garcia 2 Gauthier Quesnel 2 1 ONERA-DCSD

Plus en détail

Génération aléatoire de structures ordonnées

Génération aléatoire de structures ordonnées Génération aléatoire de structures ordonnées Olivier Roussel Équipe APR Laboratoire d Informatique de Paris 6 Université Pierre et Marie Curie ALÉA 2011 7 mars 2011 Olivier Roussel (LIP6) Génération de

Plus en détail

Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel

Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel J. Blondel, L. Marle - CRIGEN A. Abdesselam GRTgaz F. Brissaud - DNV France Presentation Plan Objectifs

Plus en détail

Éco-conception du stationnement

Éco-conception du stationnement Chaire Éco-Conception des ensembles bâtis et des infrastructures Atelier Stationnement Éco-conception du stationnement Application à la Cité Descrates Houda Boujnah Laboratoire Ville Mobilité Transport

Plus en détail

Regime Switching Model : une approche «pseudo» multivarie e

Regime Switching Model : une approche «pseudo» multivarie e Regime Switching Model : une approche «pseudo» multivarie e A. Zerrad 1, R&D, Nexialog Consulting, Juin 2015 azerrad@nexialog.com Les crises financières survenues dans les trente dernières années et les

Plus en détail

Christian Lemaître (LANIA, MX), Xavier Prat (Crim, P. VI), Laurent Magnin (Crim, UdM), Arnaud Dury (Crim)

Christian Lemaître (LANIA, MX), Xavier Prat (Crim, P. VI), Laurent Magnin (Crim, UdM), Arnaud Dury (Crim) Description, programmation et validation d'interactions par Coupled Augmented Transition Network (CATN) Christian Lemaître (LANIA, MX), Xavier Prat (Crim, P. VI), Laurent Magnin (Crim, UdM), Arnaud Dury

Plus en détail

1. Les fondements de l informatique 13

1. Les fondements de l informatique 13 Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

DUT Informatique - Module M-4102C Modélisation et construction des applications réparties

DUT Informatique - Module M-4102C Modélisation et construction des applications réparties DUT Informatique - Module M-4102C Modélisation et construction des applications réparties Applications réparties (distributed systems) J. Christian Attiogbé Février 2009, maj 2015 J. Christian Attiogbé

Plus en détail

INTRODUCTION AUX SYSTEMES D EXPLOITATION. TD2 Exclusion mutuelle / Sémaphores

INTRODUCTION AUX SYSTEMES D EXPLOITATION. TD2 Exclusion mutuelle / Sémaphores INTRODUCTION AUX SYSTEMES D EXPLOITATION TD2 Exclusion mutuelle / Sémaphores Exclusion mutuelle / Sémaphores - 0.1 - S O M M A I R E 1. GENERALITES SUR LES SEMAPHORES... 1 1.1. PRESENTATION... 1 1.2. UN

Plus en détail

Apport des Méthodes formelles pour la certification du Falcon 7X Division DÉFENSE

Apport des Méthodes formelles pour la certification du Falcon 7X Division DÉFENSE Apport des Méthodes formelles pour la certification du Falcon 7X février 04 1 Les analyses Sdf utilisées dans le cadre d une certification aéronautique civile; un processus précis et réglementé Normes

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Rapport de TER: Analyse de pointeur dans LLVM

Rapport de TER: Analyse de pointeur dans LLVM Rapport de TER: Analyse de pointeur dans LLVM Aurélien CHEMIER Janvier-Février 2014 Résumé Les optimisations réalisées à l intérieur d un compilateur, pour améliorer l efficacité du code généré, ont besoin

Plus en détail

Chaînes de Markov. Mireille de Granrut

Chaînes de Markov. Mireille de Granrut Chaînes de Markov Mireille de Granrut Quelques précisions à propos de ce cours : Préambule 1. Tel que je l ai conçu, le cours sur les chaînes de Markov interviendra dès la rentrée, pour faire un peu de

Plus en détail

Semestre 1. Volume horaire hebdomadaire. Cours TD TP T.Perso. Total. Calcul de Probabilité 3 1,5 1,5 6 84 2. Introduction à l Economie 1,5 1,5 3 42 2

Semestre 1. Volume horaire hebdomadaire. Cours TD TP T.Perso. Total. Calcul de Probabilité 3 1,5 1,5 6 84 2. Introduction à l Economie 1,5 1,5 3 42 2 3ème Année Semestre 1 N MODULES MATIERES Volume horaire hebdomadaire Cours TD TP T.Perso. Total Volume horaire semestriel (14 semaines) Coefficients Régime d'examen 1 Modèle Probabiliste 1,5 1,5 1,5 4,5

Plus en détail

Dimensionnement Introduction

Dimensionnement Introduction Dimensionnement Introduction Anthony Busson Dimensionnement Pourquoi dimensionner? Création d un système informatique ou réseau Problème de décision (taille des différents paramètres) Evaluer les performances

Plus en détail

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique

Algorithmique - Techniques fondamentales de programmation Exemples en Python (nombreux exercices corrigés) - BTS, DUT informatique Introduction à l'algorithmique 1. Les fondements de l informatique 13 1.1 Architecture de Von Neumann 13 1.2 La machine de Turing 17 1.3 Représentation interne des instructions et des données 19 1.3.1

Plus en détail

Module : Méthodes et Spécifications Formelles (Approche orientée modèle) Christian Attiogbé UFR Sciences Nantes Dpt. Informatique

Module : Méthodes et Spécifications Formelles (Approche orientée modèle) Christian Attiogbé UFR Sciences Nantes Dpt. Informatique Méthodes formelles 1 Module : Méthodes et Spécifications Formelles (Approche orientée modèle) Slide 1 Christian Attiogbé UFR Sciences Nantes Dpt. Informatique Christian.Attiogbe@univ-nantes.fr maj. janvier

Plus en détail

Windows Forms. 1 Introduction. 1.1 Objectifs. 1.2 Le C# 1.3 Visual Studio. C# tp 0 Octobre 2013. Epita

Windows Forms. 1 Introduction. 1.1 Objectifs. 1.2 Le C# 1.3 Visual Studio. C# tp 0 Octobre 2013. Epita Windows Forms 1 Introduction 1.1 Objectifs Durant ce TP, vous allez découvrir un nouveau langage, le C#. Vous serez confrontés à une nouvelle façon de coder, avec un nouveau langage, sous un nouvel environnement.

Plus en détail

Eco-conception de maisons à énergie positive

Eco-conception de maisons à énergie positive MEXICO Rencontres 2015, Clermont-Ferrand 06 octobre 2015 Eco-conception de maisons à énergie positive Mots-clés : Optimisation multicritère, algorithme génétique, fronts de Pareto Thomas RECHT : thomas.recht@mines-paristech.fr

Plus en détail

Module OMGL - UE ModDyn

Module OMGL - UE ModDyn Module OMGL - UE ModDyn Modélisation de la dynamique / Réseaux de Petri J. Christian Attiogbé Février 2009, maj 2012 J. Christian Attiogbé (Février 2009, maj 2012) Module OMGL - UE ModDyn 1 / 34 Plan de

Plus en détail

Introduction à Java. Matthieu Herrb CNRS-LAAS. Mars 2014. http://homepages.laas.fr/matthieu/cours/java/java.pdf

Introduction à Java. Matthieu Herrb CNRS-LAAS. Mars 2014. http://homepages.laas.fr/matthieu/cours/java/java.pdf Introduction à Java Matthieu Herrb CNRS-LAAS http://homepages.laas.fr/matthieu/cours/java/java.pdf Mars 2014 Plan 1 Concepts 2 Éléments du langage 3 Classes et objets 4 Packages 2/28 Histoire et motivations

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Les processus d évolution génétique en filtrage de signaux et en analyse de risques

Les processus d évolution génétique en filtrage de signaux et en analyse de risques Les processus d évolution génétique en filtrage de signaux et en analyse de risques P. Del Moral IRIA Centre Bordeaux-Sud Ouest Séminaire de Stat. et Santé Publique de l IFR 99, décembre 08 qq-références

Plus en détail

Analyse syntaxique IFT-15752 Compilation et interpr etation c! Danny Dub e 2006

Analyse syntaxique IFT-15752 Compilation et interpr etation c! Danny Dub e 2006 Analyse syntaxique Introduction Les grammaires hors-contexte sont les outils que nous utiliserons pour spécifier la structure syntaxique des programmes. Les grammaires hors-contexte ont plusieurs avantages:

Plus en détail

Analyse descendante LL(k)

Analyse descendante LL(k) Bureau 203 - M3 extension mirabelle.nebut at lifl.fr 2012-2013 Principes Factorisation à gauche Suppression de la récursivité à gauche 2/119 Objectif du cours Comprendre le fonctionnement des générateurs

Plus en détail

Conception des systèmes répartis

Conception des systèmes répartis Conception des systèmes répartis Principes et concepts Gérard Padiou Département Informatique et Mathématiques appliquées ENSEEIHT Octobre 2012 Gérard Padiou Conception des systèmes répartis 1 / 37 plan

Plus en détail

Programmation parallèle et distribuée

Programmation parallèle et distribuée ppd/mpassing p. 1/43 Programmation parallèle et distribuée Communications par messages Philippe MARQUET Philippe.Marquet@lifl.fr Laboratoire d informatique fondamentale de Lille Université des sciences

Plus en détail

Modélisation: outillage et intégration

Modélisation: outillage et intégration Modélisation: outillage et intégration Emmanuel Gaudin emmanuel.gaudin@pragmadev.com Un réel besoin Le logiciel double tous les deux ans. Le volume final rend extrêmement difficile de garantir le niveau

Plus en détail

Les réseaux de Petri stochastiques modèles et méthodes. 1. Introduction décembre 2003

Les réseaux de Petri stochastiques modèles et méthodes. 1. Introduction décembre 2003 Les réseaux de Petri stochastiques modèles et méthodes 1. Introduction décembre 2003 Serge HADDAD LAMSADE - CNRS Université Paris-Dauphine Patrice MOREAUX LAMSADE & LERI-RESYCOM - URCA t 2 p 3 t 4 p 6

Plus en détail

5. Equivalences d automates

5. Equivalences d automates 5. Equivalences d automates 5.1. Le problème du déterminisme 5.2. Différentes sortes d AEF 5.3. Déterminisation d un AEF 5.4. Déterminisation d un AEF avec ɛ-transitions 5.5. Minimisation d un AEF déterministe

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

Approche dirigée par les modèles pour la spécification, la vérification formelle et la mise en œuvre des services Web composés

Approche dirigée par les modèles pour la spécification, la vérification formelle et la mise en œuvre des services Web composés Approche dirigée par les modèles pour la spécification, la vérification formelle et la mise en œuvre des services Web composés Christophe Dumez Laboratoire Systèmes et Transports (SeT) Université de Technologie

Plus en détail

Analyse de risques des systèmes dynamiques avec la plate-forme de modélisation Figaro-KB3

Analyse de risques des systèmes dynamiques avec la plate-forme de modélisation Figaro-KB3 Analyse de risques des systèmes dynamiques avec la plate-forme de modélisation igaro-kb3 Roland DONAT roland.donat@edgemind.net Séminaire Maîtrise des Risques et Systèmes Complexes Vannes, 5 juin 2014

Plus en détail

Probabilités 5. Simulation de variables aléatoires

Probabilités 5. Simulation de variables aléatoires Probabilités 5. Simulation de variables aléatoires Céline Lacaux École des Mines de Nancy IECL 27 avril 2015 1 / 25 Plan 1 Méthodes de Monte-Carlo 2 3 4 2 / 25 Estimation d intégrales Fiabilité d un système

Plus en détail

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes

Contents. 1 Introduction Objectifs des systèmes bonus-malus Système bonus-malus à classes Système bonus-malus : Principes Université Claude Bernard Lyon 1 Institut de Science Financière et d Assurances Système Bonus-Malus Introduction & Applications SCILAB Julien Tomas Institut de Science Financière et d Assurances Laboratoire

Plus en détail

Rapprocher les méthodes formelles, l analyse statique et les tests. 29 mai 2013

Rapprocher les méthodes formelles, l analyse statique et les tests. 29 mai 2013 Rapprocher les méthodes formelles, l analyse statique et les tests 29 mai 2013 Présentation du projet Déroulement du projet Réalisations Démonstrations Perspectives Présentation du projet Déroulement du

Plus en détail

Sémantique formelle et synthèse de client pour services Web

Sémantique formelle et synthèse de client pour services Web Sémantique formelle et synthèse de client pour services Web Séminaire «Services Web» 24 Janvier 2006 sylvain.rampacek@univ-reims.fr CReSTIC LAMSADE Plan Introduction Services Web Description de la plate-forme

Plus en détail

Planification et ordonnancement sous incertitudes Application à la gestion de projet

Planification et ordonnancement sous incertitudes Application à la gestion de projet Toulouse, 14 mai 2003 Planification et ordonnancement sous incertitudes Application à la gestion de projet Julien Bidot Plan Séminaire au LAAS Planification de tâches et ordonnancement Domaine d application

Plus en détail

Modélisation et validation formelle de systèmes globalement asynchrones et localement synchrones.

Modélisation et validation formelle de systèmes globalement asynchrones et localement synchrones. Modélisation et validation formelle de systèmes globalement asynchrones et localement synchrones Fatma Jebali, Mouna Tka Mnad, Christophe Deleuze, Frédéric Lang, Radu Mateescu, Ioannis Parissis To cite

Plus en détail

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique

Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Processus Markoviens Déterministes par Morceaux et Fiabilité Dynamique Karen Gonzalez Benoîte de Saporta et François Dufour IMB, Université Bordeaux Neuvième Colloque Jeunes Probabilistes et Statisticiens

Plus en détail

Scicos et Modelica. Ramine Nikoukhah

Scicos et Modelica. Ramine Nikoukhah Scicos et Modelica Ramine Nikoukhah 1 C est quoi Scicos? Editeur, simulateur et générateur du code pour les systèmes dynamiques hybrides Objectif : Utilisations industrielles mais aussi l enseignement

Plus en détail

Réunion GDS 13 octobre 2006

Réunion GDS 13 octobre 2006 École normale supérieure de Lyon Réunion GDS 13 octobre 2006 Plan Introduction 1 Introduction 2 3 4 5 6 Les workflows Ensemble de tâches connectées La structure du workflow représente la relation temporelle

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

CarrotAge, un logiciel pour la fouille de données agricoles

CarrotAge, un logiciel pour la fouille de données agricoles CarrotAge, un logiciel pour la fouille de données agricoles F. Le Ber (engees & loria) J.-F. Mari (loria) M. Benoît, C. Mignolet et C. Schott (inra sad) Conférence STIC et Environnement, Rouen, 19-20 juin

Plus en détail

Conception des Systèmes Numériques et Mixtes

Conception des Systèmes Numériques et Mixtes Conception des Systèmes Numériques et Mixtes Daniela Dragomirescu 1,2, Michael Kraemer 1,2, Marie-Line Boy 3, Philippe Bourdeau d Aguerre 3 1 - Université de Toulouse : INSA Toulouse, 135 Av. de Rangueil

Plus en détail

Introduction au model-checking et application à la vérification des protocoles cryptographiques

Introduction au model-checking et application à la vérification des protocoles cryptographiques Introduction au model-checking et application à la vérification des protocoles cryptographiques Prof. John MULLINS École Polytechnique de Montréal Prof. John MULLINS (École Polytechnique) Introduction

Plus en détail

Expressions rationnelles, automates, analyse lexicale

Expressions rationnelles, automates, analyse lexicale Chapitre 2 Expressions rationnelles, automates, analyse lexicale L analyse lexicale est la première phase d un compilateur ou d un interprète : elle consiste à identifier et à catégoriser les différents

Plus en détail

Langage C et aléa, séance 4

Langage C et aléa, séance 4 Langage C et aléa, séance 4 École des Mines de Nancy, séminaire d option Ingénierie Mathématique Frédéric Sur http://www.loria.fr/ sur/enseignement/courscalea/ 1 La bibliothèque GMP Nous allons utiliser

Plus en détail

Module 4 - Ordonnancement Processus. Lecture: Chapitre 5

Module 4 - Ordonnancement Processus. Lecture: Chapitre 5 Module 4 - Ordonnancement Processus Lecture: Chapitre 5 1 Aperçu du module Concepts de base Critères d ordonnancement Algorithmes d ordonnancement Ordonnancement de multiprocesseurs Évaluation d algorithmes

Plus en détail

Analyse de performance et optimisation. David Geldreich (DREAM)

Analyse de performance et optimisation. David Geldreich (DREAM) Analyse de performance et optimisation David Geldreich (DREAM) Plan de l exposé Analyse de performance Outils Optimisation Démonstrations Analyse de performance Pas d optimisation sans analyse de performance

Plus en détail

EXPERIENCE DE COUPLAGE DE MODELES ALTARICA AVEC DES INTERFACES METIERS EXPERIMENT OF COUPLING ALTARICA MODELS WITH SPECIALIZED INTERFACES

EXPERIENCE DE COUPLAGE DE MODELES ALTARICA AVEC DES INTERFACES METIERS EXPERIMENT OF COUPLING ALTARICA MODELS WITH SPECIALIZED INTERFACES EXPERIENCE DE COUPLAGE DE MODELES ALTARICA AVEC DES INTERFACES METIERS EXPERIMENT OF COUPLING ALTARICA MODELS WITH SPECIALIZED INTERFACES PERROT Benoit, PROSVIRNOVA Tatiana, RAUZY Antoine, SAHUT D IZARN

Plus en détail

Techniques et outils de test pour les logiciels réactifs synchrones

Techniques et outils de test pour les logiciels réactifs synchrones Journées Systèmes et Logiciels Critiques Institut IMAG ; 14-16 nombre 2000 Techniques et outils de test pour les logiciels réactifs synchrones Farid Ouabdesselam 1 Méthodes de test : classification générale

Plus en détail

SDL: 20 ans de programmation basée modèle

SDL: 20 ans de programmation basée modèle SDL: 20 ans de programmation basée modèle Emmanuel Gaudin emmanuel.gaudin @ pragmadev.com Principes MDE, MDA et MDD: Approche orienté modèle PIM: Platform Independant Model PDM: Platform Definition Model

Plus en détail

ENSEIGNEMENT DU GÉNIE INDUSTRIEL EN S7-S8-S9 T. Coudert B. Grabot F. Pérès

ENSEIGNEMENT DU GÉNIE INDUSTRIEL EN S7-S8-S9 T. Coudert B. Grabot F. Pérès ENSEIGNEMENT DU GÉNIE INDUSTRIEL EN S7-S8-S9 T. Coudert B. Grabot F. Pérès 11/01/2016 DÉFINITION DU GÉNIE INDUSTRIEL Le génie industriel s'intéresse : à l'étude des organisations industrielles et à l'amélioration

Plus en détail

Série notée Sujet 1. Règles et recommandations : Instructions

Série notée Sujet 1. Règles et recommandations : Instructions EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE LAUSANNE POLITECNICO FEDERALE LOSANNA SWISS FEDERAL INSTITUTE OF TECHNOLOGY LAUSANNE Faculté Informatique et Communication Introduction à la POO SIN/SSC Faltings B.

Plus en détail

Paradigmes et langages non classiques INF355

Paradigmes et langages non classiques INF355 Paradigmes et langages non classiques INF355 Samuel TARDIEU 12 mai 2014 Exposé du problème Tout le monde connaît les langages classiques : Java C PHP Python Ces langages sont très similaires.

Plus en détail