Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique Exemple introductif

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif"

Transcription

1 Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications, variable selon le parenthésage. Exemple 1 On donne M 1 (100, 1), M 2 (1, 100), M 3 (100, 10), M 4 (10, 20) alors (M 1 M 2 )(M 3 M 4 ) prend multiplications scalaires : pour M 12 = M 1 M 2, (100, 100) et pour M 34 = M 3 M 4, (100, 20) puis pour M 12 M 34. M 1 ((M 2 M 3 )M 4 ) prend 3200 opérations : pour M 23 = M 2 M 3 (1, 10), 1 20 pour M 24 = M 23 M 4 (1, 20) et pour le produit final. Moralité : il faut calculer le meilleur parenthésage avant de se lancer dans les calculs, à condition que le calcul du parenthésage ne soit pas trop coûteux. Comme il y a un nombre exponentiel de parenthésage possibles, (voir exercice), il n est pas efficace de les énumérer tous. On va utiliser la programmation dynamique pour trouver le meilleur parenthésage possible. Généralisation : on généralise le problème en trouver le meilleur parenthésage pour M i M i+1...m j pour tout couple i, j tel que 1 i j n. La solution du problème initial est obtenue pour i = 1, j = n. On calcule c(i, j) le nombre minimal d opérations requis pour M i M i+1...m j. Formulation récursive : c(i, j) = Min i p<j (c(i, p) + c(p + 1, j) + m i m p+1 m j+1 ) Pour avoir aussi le parenthésage on se rappelle les p qui donnent le minimum. 1

2 2 CHAPITRE 6. PROGRAMMATION DYNAMIQUE. MÉTHODES P.S.E.P. Organisation des calculs de manière itérative : La formule récursive donne lieu à un arbre de calculs contenant beaucoup de redondance. Pour éviter ces calculs redondants on effectue les calculs en partant des feuilles de l arbre, en calculant successivement les c(i, j) pour j i = k, k une constante qui vaudra 0, 1,..., n 1. Etape 0 : Pour tout i = 1,..., n c 0 (i, i) = 0 Etape k : Pour tout i, j dans 1,...,n tels que j i = k, calculer c k (i, j) = Min i p<j (c p i (i, p) + c j p 1 (p + 1, j) + m i m p+1 m j+1 ) On retient les valeurs de p donnant le minimum. Arrêt pour k = n 1 et solution pour i = 1, j = n. Remontée des calculs : on trouve un parenthèsage optimal en remontant du résultat vers les feuilles en utilisant un p ayant donné la solution optimale. Pour l exemple les calculs effectués donnent : k = 0 c 0 (1, 1) = 0 c 0 (2, 2) = 0 c 0 (3, 3) = 0 c 0 (4, 4) = 0 k = 1 c 1 (1, 2) = c 1 (2, 3) = 1000 c 1 (3, 4) = k = 2 c 3 (1, 3) = 2000 c 3 (2, 4) = 1200 k = 3 c 4 (1, 4) = 3200 Le nombre de termes calculés est n = n(n 1)/2. Un terme sur la ligne correspondant à j i = k demande k multiplications. On fait donc Σ k=n 1 k=0 (n k)k = O(n 3 ) opérations Méthode La méthode est concue pour les problèmes vérifiant le principe suivant. Principe d optimalité des solutions induites. Le problème P peut se décomposer en deux sous-problèmes P 1 et P 2 tels que une solution S de P se décompose en S 1 solution de P 1 et S 2 solution de P 2. Dans ce cas si S est optimale alors S 1 et S 2 sont optimales. Exemple 2 Plus court chemin dans un graphe entre x et y : si un chemin x = x 1, x 2,...,x n = y est un chemin de longueur minimale entre x et y alors pour tout z de ce chemin (i) Le chemin x 1 = x, x 2,...,x k = z est un chemin de longueur minimale entre x et z et (ii) le chemin x k = z, x k+1,...,x n = y est un chemin de longueur minimale entre z et y. Le principe de la méthode est le suivant : 1. Chercher une formulation récursive. 2. Si échec en (1) alors généraliser et aller en (1) sinon aller en (3). 3. Organiser les calculs de manière itérative des feuilles vers la racine.

3 6.2. EXEMPLES 3 (a) Organisation des calculs en étapes. (b) Stockage (tabulation) des résultats intermédiaires pour n effectuer un calcul qu une seule fois. Explication : La formulation récursive conduit à une exploration d arbre de recherche qui est inefficace en général à cause des multiples calculs redondants (souvent le cout est exponentiel, (cf exemple de fibonacci). 4. Retrouver la solution en remontant les calculs effectués (exige d avoir stocké à chaque étape la(es) valeur(s) qui donne(nt) la solution optimale.) 6.2 Exemples Voyageur de commerce Problème. n villes x 0, x 1,...,x n 1 à visiter une et une seule fois en partant et revenant de x 0 et en minimisant le cout du trajet avec c x,y le cout pour aller directement de x à y. 1. Généralisation. F(y, S)= cout pour aller de y à x 0 en passant par toutes les villes de S avec S un sous-ensemble de villes avec y, x 0 S. 2. Formulation récursive. F(y, S) = Min z S (c y,z + F(z, S {z}) La solution du problème initial est obtenue avec F(x 0, S) avec S = {x 1,...,x n 1 }. 3. Organisation en étapes par cardinalité croissante des ensembles S. Etape 0. F 0 (y, ) = c y,x0 (avec c x0,x 0 = 0) et V 0 (y, ) =. Etape k. Pour tout y, S tel que y, x 0 S et S = k, calculer F k (y, S) = Min z S (c y,z + F k 1 (z, S {z})) et on se souvient des villes qui donnent le minimum V k (y, S) = {z z realise le minimum dans le calcul de F k (y, S)} Arret pour k = n 1 : on calcule donc F n 1 (x 0, {x 1,..., x n 1 }) qui donne la solution du problème initial. 4. Remontée des calculs. Choisir z 1 V n 1 (x 0, {x 1,...,x n 1 }) et définir S 1 = {x 1,...,x n 1 } {z 1 }. Tant que S p faire choisir z p V n p (z p, S p 1 ) S p = S p 1 {z p }. fait

4 4 CHAPITRE 6. PROGRAMMATION DYNAMIQUE. MÉTHODES P.S.E.P Programmation linéaire entière : cas simple Max z = Σ i=n i=1 c i.x i Σ i=n i=1 a ix i B 0 x i g i i = 1,..., n avec a i 0, c i 0 pour i = 1,..., n. Pour simplifier on suppose a i, c i, B, g i entiers. Il est important de réaliser que ce n est qu un cas très particulier de programmation linéaire : tous les coefficients sont positifs ou nul. 1. Généralisation : F k (b)= solution optimale du problème obtenu en posant x j = 0 pour j > k et remplacant B par b avec 0 b B. On a bien la solution du problème initial avec F n (B). 2. Formulation récursive : F k (b) = Max αk = 0,...,g k 0 b a k α k F k 1(b a k α k ) + c k α k 3. Organisation des calculs de manière itérative. Etape 0 : F 0 (b) = 0 Etape k : pour tout b = 0,..., B calculer F k (b) = Max αk = 1,...,g k 0 b a k α k F k 1(b a k α k ) + c k α k et on se souvient des valeurs qui donnent le maximum : fin pour k = n. Exemple : Les calculs des F k (b) sont donnés par : Max z = 5x 1 + 4x 2 + 6x 3 2x 1 + 2x 2 + 3x 3 4 x i {0, 1} i = 1,...,4 Exemple de calcul : F 2 (4) = Max α2 = 0, 1 4 2α 2 0 b F 0 (b) F 1 (b) F 2 (b) F 3 (b) (F 1 (4 2α 2 ) + 4α 2 ) = Max(F 1 (4), F 1 (2), F 1 (0)) = 9

5 6.3. MÉTHODES P.S.E.P. (BRANCH AND BOUND). 5 Cette méthode se généralise sans difficculté à un systèmes d équations (dont les coefficients sont 0). 6.3 Méthodes P.S.E.P. (branch and bound). P.S.E.P=programmation par séparation et évaluation progressive. Le principe est de séparer (branch) les solutions du problèmes en plusieurs ensembles de solutions et d utiliser une évaluation partielle pour éliminer des solutions grâce à des bornes sur les valeurs possibles des solutions (bound). Sans cette étape d élimination on énumerer explicitement toutes les solutions. Grâce aux bornes, l énumeration est implicite (certaines solutions ne sont pas calculées car on sait que c est inutile). Principe : On décompose S l ensemble des solutions de P en S 1, S 2,...,S m tels que { S = i=1,...,m S i S i < S pour i = 1,..., n et on itère la décomposition jusqu à ce qu on obtienne des ensembles de solutions calculables (typiquement quand S = 1, mais pas seulement) 6.4 Exemples Sac à dos Problème : n objets à prendre, l objet i pèse p i > 0 et rapporte c i > 0 quand il est vendu. Le poids total disponible est P. Modélisation : Max z = c 1 x c n x n p 1 x c n x n P x i {0, 1} i = 1,..., 4 Au problème on associe N le nombre de décision prises R le poids disponible B une majoration du bénéfice possible Séparation. La séparation consiste à décider de prendre ou laisser un objet de plus. choix sur x i x i = 0 x i = 1 N 1 = N + 1 R 1 = R B 1 = B c i N 2 = N + 1 R 2 = R p i B 2 = B L évaluation consiste d une part à s arrêter dès que R < 0 et surtout à utiliser des sous-problèmes résolus (donc pour lequel on connait le bénéfice) et la borne sur le bénéfice pour couper des branches de l arbre selon le principe suivant : si un noeud est caractérisé

6 6 CHAPITRE 6. PROGRAMMATION DYNAMIQUE. MÉTHODES P.S.E.P. par (N,R,B) et qu on a calculé une branche qui donne un bénéfice réel (attention pas une estimation, un bénéfice atteint) de B > B alors il est inutile de développer le noeud. Exemple. Max z = 8x x 2 + 6x 3 + 4x 4 5x 1 + 7x 2 + 4x 3 + 3x 4 14 x i {0, 1} On choisit la variable à instancier par un algorithme glouton en calculant c i /p i, ce qui donne x 1. (I) N = 0, B = 29, R = 14 x 1 = 1 x 1 = 0 (II) N = 1, R = 9, B = 29 (III) N = 1, R = 14, B = 21 On developpe de nouveau le problème (II) (on choisit une strategie en profondeur d abord de manière à obtenir rapidement une solution qui servira de borne. On choisit x 2 de la même manière que x 1. (II) N = 1, R =, B = 29 x 2 = 1 x 2 = 0 (IV ) N = 2, R = 2, B = 19 (V ) N = 2, R = 9, B = 18 Les developpements du problème (IV ) donne immédiatement x 3 = x 4 = 0 et un bénéfice réalisable de 19. cette borne 19 permet de couper l arbre au noeud (V ) B = 18 < 19. On développe (III) en choisissant x 2. (III) N = 1, R = 14, B = 21 x 2 = 1 x 2 = 0 (V I) N = 2, R = 7, B = 21 (V II) N = 2, R = 14, B = 10 Inutile de développer (V II) à cause de B = 10 < 19, on developpe (V I) : (V I) N = 2, R = 7, B = 21 x 3 = 1 x 3 = 0 (V III) N = 2, R = 3, B = 21 (IX) N = 2, R = 14, B = 15 On coupe (IX) et le dernier développement de (V III) donne la solution x 1 = 0, x 2 = x 3 = x 4 = 1 et z = 21. On a donc examiné 9 noeuds (à comparer aux 16 cas possibles) Programmation linéaire en nombre entiers On résoud le problème P à l aide du simplexe (ce qui donne une borne sur la valeur de la fonction objectif. S il la solution est entière on s arrête sinon on choisit un x k dont la valeur α k n est pas entière et on relance le simplexe sur les sous-problèmes P x k α k

7 6.4. EXEMPLES 7 et P x k α k On remarque que la solution x k = α k est éliminée. On itère le developpement de l arbre, une feuille étant obtenue lorsqu on a un problème ayant une solution entière et on utilise les solutions déjà obtenues pour couper des branches de l arbre. Rien ne garantit que le processus s arrête. En fait, l idée ci-dessus est utilisée dans des méthodes plus élaborées : les méthodes de coupe qui permettent d avoir des résultats de terminaison, mais sur les exemples traités la méthode suffit (en particulier en programmation 0-1, la méthode terminera toujours (car elle reviendra à instancier une variable par 0 ou 1). Exemple : On reprend le problème de programmation 0-1 précédent qu on va résoudre différemment. Max z = 8x x 2 + 6x 3 + 4x 4 5x 1 + 7x 2 + 4x 3 + 3x 4 14 x i {0, 1} Le simplexe donne : x 1 = x 2 = 1, x 3 = 0, 5, x 4 = 0, z = 22 ce qui ne fournit pas une solution entière. On relance (I) P x 3 0 qui donne une solution non entière et z = 21, 65 et (II) P x 3 1 qui donne une solution non entière et x 1 = x 3 = 1, x 4 = 0 et x 2 = 5/7, pour z = 21, 85. On developpe (II) en (III) II x 2 0 qui donne x 1 = x 3 = x 4 = 1, x 2 = 0 et z = 18 qui donne une première borne 18 et (IV ) II x 2 1 qui donne x 2 = x 3 = 1 x 4 = 0, x 1 = 3/5 et z = 21, 8. On developpe (IV ) en IV x 1 0 qui donne x 1 = 0, x 2 = x 3 = x 4 = 1 et z = 21 qui est une meilleure borne qui permet de couper le problème I (les coefficients étant entiers on ne peut pas avoir de solution meilleure que 21 puisque z vaut au mieux 21,65 et IV x 1 1

8 8 CHAPITRE 6. PROGRAMMATION DYNAMIQUE. MÉTHODES P.S.E.P. qui n a pas de solution. Donc le développement est fini et on a une solution pour un optimum z = 21. On a examiné 7 noeuds de l arbres et résolu 7 problèmes de simplexes (à comparer aux 16 possibilités pour les valeurs). Exercice Exercice 1 On reprend l exemple des multipications de matrices. 1. Montrer que le nombre de parenthésages possibles P(n) vérifie : P(n) = Σ 1 k n 1 P(k) P(n k) P(1) = 1 2. Montrer que P(n) = 1/n C n 1 2n 2 (nombres de Catalan) et que P(n) 2n 2. Exercice 2 Un étudiant désire travailler 4 heures maximum par semaine en lpus de ses cours. Il a 4 emplois possibles pour lesquels les salaires ne sont pas proportionnels aux heures de travail. Trouver les emplois qu il devrait choisir pour maximiser son salaire (utiliser la programmation dynamique) avec le tableau de salaire suivant : heure de travail emploi 1 emploi2 emploi3 emploi Exercice 3 Avec la programmation dynamique, trouver le circuit minimal que doit réaliser un facteur qui doit prendre le courrier dans 5 boites à lettres et le déposer au centre de tri, compte tenu du tableau de distances suivant. T ri B1 B2 B3 B4 B5 Tri B B B B B

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

PROGRAMMATION DYNAMIQUE

PROGRAMMATION DYNAMIQUE PROGRAMMATION DYNAMIQUE 1 Le principe d optimalité de Bellman La programmation dynamique est fondée sur le principe d optimalité de Bellman : Soit f une fonction réelle de x et y = (y 1, y 2,..., y n ).

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

Introduction à la théorie des jeux à deux

Introduction à la théorie des jeux à deux Introduction à la théorie des jeux à deux Table des matières 1 Arbres d évaluation 2 A) Minimax...................................... 2 B) α-β......................................... 3 2 Variantes et

Plus en détail

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts.

Mathématique pour l informatique Examen durée : 3 heures. Question 1. Mettre ce problème en forme standard en introduisant des variables d écarts. Mathématique pour l informatique Examen durée : 3 heures. Université de Provence Licence Informatique Année 2001-2002 Exercice 1 (Simplexe : 10 points) On donne le problème de programmation linéaire (P)

Plus en détail

Introduction à la programmation en variables entières Cours 3

Introduction à la programmation en variables entières Cours 3 Introduction à la programmation en variables entières Cours 3 F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 272 Sommaire Notion d heuristique Les algorithmes gloutons

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

EXERCICE 1. Corrigé ECRICOME Eco 2012 par Pierre Veuillez

EXERCICE 1. Corrigé ECRICOME Eco 2012 par Pierre Veuillez Corrigé ECRICOME Eco par Pierre Veuillez EXERCICE (M 3 (R), +,.) désigne l espace vectoriel des matrices carrées d ordre 3 à coeffi cients réels. Deux matrices A et B de M 3 (R) étant données, on suppose

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes

Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction. 9.1 Fonctions affines, convexes, strictement convexes Chp. 9. Convexité Avertissement! Dans tout ce chapître, C désigne une partie convexe de IR n, et f une fonction numérique partout définie sur C. 9.1 Fonctions affines, convexes, strictement convexes Définition

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

Les Jeux. Plan. Introduction. Le minimax. Le minimax α / β. Bilan

Les Jeux. Plan. Introduction. Le minimax. Le minimax α / β. Bilan Les Jeux Plan Introduction Qu est-ce qu un jeu? Pourquoi les jeux et quels jeux? Aperçu historique Informatisation Complexité Le minimax Création d un arbre ET / OU Fonction d évaluation Version simplifiée

Plus en détail

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM

M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Chapitre 5 :. Introduction aux méthodes par séparation et évaluation Les méthodes arborescentes ( Branch and Bound Methods ) sont des méthodes exactes d'optimisation qui pratiquent une énumération intelligente

Plus en détail

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce

Heuristique et métaheuristique. 8. Optimisation combinatoire et métaheuristiques. Optimisation combinatoire. Problème du voyageur de commerce Heuristique et métaheuristique IFT1575 Modèles de recherche opérationnelle (RO) 8. Optimisation combinatoire et métaheuristiques Un algorithme heuristique permet d identifier au moins une solution réalisable

Plus en détail

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes

Chapitre 7. Problèmes de flots. 7.1 Exemple. 7.2 Notions de base sur les graphes Chapitre 7 Problèmes de flots. 7.1 Exemple. Un réseau electrique est formé de lignes reliant des noeuds (transformateurs, centre de redistributions,...), chaque ligne a une capacité de transport maximale.

Plus en détail

V Recherche dans les arbres de jeux

V Recherche dans les arbres de jeux V Recherche dans les arbres de jeux Damien Olivier Damien.Olivier@univ-lehavre.fr Faculte des Sciences et Techniques du Havre Maitrise d informatique - Intelligence Artificielle p.1/30 Plan 1. Quels jeux?

Plus en détail

Chapitre 4 Automates à pile et langages hors-contexte

Chapitre 4 Automates à pile et langages hors-contexte Chapitre 4 Automates à pile et langages hors-contexte 87 Introduction Langage a n b n n est pas accepté par un automate fini. Par contre L k = {a n b n n k} est accepté. Mémoire finie, mémoire infinie,

Plus en détail

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

Corrigé du baccalauréat ES Asie 19 juin 2014

Corrigé du baccalauréat ES Asie 19 juin 2014 Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe

Plus en détail

Automates temporisés Partie 1: Définitions

Automates temporisés Partie 1: Définitions p.1 Automates temporisés Partie 1: Définitions p.2 Motivation Les automates temporisés constituent un des modèle de systèmes réactifs à temps continu proposé par Alur et Dill en 1991. Temps continu vs

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2013 2014 MATHS/STATS. Solution des exercices d algèbre linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 3 4 Master d économie Cours de M. Desgraupes MATHS/STATS Document : Solution des exercices d algèbre linéaire Table des matières

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations

Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations Optimisation numérique Introduction et exemples Daniele Di Pietro A.A. 2012-2013 Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples

Plus en détail

Algorithme du simplexe

Algorithme du simplexe Algorithme du simplexe Une solution à la programmation linéaire Hugues Talbot Laboratoire A2SI 18 mars 2008 Plan Algèbre linéaire Algorithme du simplexe Formulation et forme standard Notations Recherche

Plus en détail

Preuve de la correction de l algorithme alpha-bêta

Preuve de la correction de l algorithme alpha-bêta I02 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Preuve de la correction de l algorithme alpha-bêta Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre

Plus en détail

MAP-SIM2 : Planification de trajectoire

MAP-SIM2 : Planification de trajectoire MP-SIM : Planification de trajectoire sujet proposé par Nicolas Kielbasiewicz : nicolas.kielbasiewicz@ensta-paristech.fr 0 janvier 06 La planification de trajectoire consiste à déterminer une trajectoire,

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

Chapitre 4 Solutions des problèmes

Chapitre 4 Solutions des problèmes Chapitre 4 Solutions des problèmes 1. Résolution d'un modèle PLTE à deux variables. (a) La région issible de la relaxation continue ( ) est le polygone ABC représenté à la figure cidessous. La solution

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule

INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule 1 Préambule 1 sur 7 Le logiciel OMP est un produit de OM Partners. Le version mise à disposition est la version 9.27. OMP comporte : un compilateur de modèles et de données ; un optimiseur ; un générateur

Plus en détail

Programmation par Contraintes. Correctif des quelques exercices.

Programmation par Contraintes. Correctif des quelques exercices. Programmation par Contraintes. Correctif des quelques exercices. Ruslan Sadykov 22 décembre 204 Les règles de Golomb Une règle de Golomb est un ensemble d entiers naturels dans lequel les distances entre

Plus en détail

Méthodes de Résolution de problèmes En Intelligence Artificielle

Méthodes de Résolution de problèmes En Intelligence Artificielle Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une

Plus en détail

Notes de cours de spé maths en Terminale ES

Notes de cours de spé maths en Terminale ES Spé maths Terminale ES Lycée Georges Imbert 05/06 Notes de cours de spé maths en Terminale ES O. Lader Table des matières Recherche de courbes sous contraintes, matrices. Systèmes linéaires.......................................

Plus en détail

Algorithmique et Structures de Données

Algorithmique et Structures de Données 1.1 Algorithmique et Structures de Données Jean-Charles Régin Licence Informatique 2ème année 1.2 Itérations Jean-Charles Régin Licence Informatique 2ème année Itération : définition 3 En informatique,

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Puissance 4 intelligent I3 Algorithmique

Puissance 4 intelligent I3 Algorithmique Puissance 4 intelligent I3 Algorithmique Nicol Delestre Puissance 4. v2.0 1 / 29 Plan 1 Force brute 2 Analyse 3 Conception préliminaire 4 Conception détaillée 5 Développement 6 Conclusion Puissance 4.

Plus en détail

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Section d Informatique et de Systèmes de Communication

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Section d Informatique et de Systèmes de Communication ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Section d Informatique et de Systèmes de Communication Corrigé de la série 9 3 Juin 2005 1. Augmenter les poids a) Soit T l ensemble de tous les arbres couvrants

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Algorithmes pour les graphes

Algorithmes pour les graphes Algorithmes pour les graphes 1 Définitions Un graphe est représenté par : V : L ensemble des noeuds ou sommets. E : L ensemble des arcs ou arrêtes. E est un sous-ensemble de V xv. On note G = (V, E). Si

Plus en détail

Voyageur de commerce et solution exacte

Voyageur de commerce et solution exacte Voyageur de commerce et solution exacte uteurs :. Védrine,. Monsuez e projet consiste à réaliser un outil capable de trouver le plus court trajet pour un commercial qui doit visiter n villes, les n villes

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

1 Introduction. 2 Algorithmes sans élagage. 2.1 Minimax. Chapitre 3 : Jeux (Février 2007, Pierre Gançarski)

1 Introduction. 2 Algorithmes sans élagage. 2.1 Minimax. Chapitre 3 : Jeux (Février 2007, Pierre Gançarski) Chapitre 3 : Jeux (Février 2007, Pierre Gançarski) 1 Introduction Quatre caractérisques pour les jeux étudiés : jeux à deux : deux adversaires eectuent alternativement des coups, chaque défaillance de

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)

Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

Analyse de la complexité algorithmique (1)

Analyse de la complexité algorithmique (1) Analyse de la complexité algorithmique (1) L analyse de la complexité telle que nous l avons vue jusqu à présent nous a essentiellement servi à déterminer si un problème est ou non facile (i.e. soluble

Plus en détail

Chapitre 4 : Géométrie plane

Chapitre 4 : Géométrie plane hapitre 4 : Géométrie plane I Rappels et compléments sur les vecteurs I Vecteurs et géométrie Égalité de deux vecteurs : = D ssi D est un parallélogramme (éventuellement aplati) D ddition de vecteurs :

Plus en détail

COURS DE DENOMBREMENT

COURS DE DENOMBREMENT COURS DE DENOMBREMENT 1/ Définition des objets : introduction Guesmi.B Dénombrer, c est compter des objets. Ces objets sont créés à partir d un ensemble E, formé d éléments. A partir des éléments de cet

Plus en détail

De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même!

De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même! Chapitre 1 La récursivité De l art d écrire des programmes qui résolvent des problèmes que l on ne sait pas résoudre soi-même! 1.1 Définition et types de récursivité Définition 1 (Définition récursive,

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1.

ACCQ204 4 Jan. 2016. Cours 3. Définition 1 Pour tout entier r 2 un code de Hamming (binaire) a pour matrice de parité H r telle que : 1 0 1 0 1. ACCQ4 4 Jan 6 Cours 3 Enseignant: Aslan Tchamkerten Crédit: Pierre de Sainte Agathe Code de Hamming Définition Pour tout entier r un code de Hamming (binaire) a pour matrice de parité H r telle que : H

Plus en détail

Introduction à la RO

Introduction à la RO 1 Introduction à la RO Problèmes de flots dans les graphes Cédric BENTZ (CNAM) Christophe PICOULEAU (CNAM) 2 Capacité journalière d'un réseau ferroviaire (1/2) Sur le réseau ferroviaire, on a indiqué sur

Plus en détail

Plan. Bases de données. Cours 5 : Optimisation des requêtes. Exemple pour la suite du cours. Principe d'évaluation d'une requête. Polytech Paris-Sud

Plan. Bases de données. Cours 5 : Optimisation des requêtes. Exemple pour la suite du cours. Principe d'évaluation d'une requête. Polytech Paris-Sud Plan ases de données Polytech Paris-Sud Apprentis 4 ème année Cours 5 : Optimisation des requêtes kn@lri.fr http://www.lri.fr/~kn 1 Rappels 2 Stockage 3 Indexation 4 Optimisation des opérateurs 5 Optimisation

Plus en détail

Chapitre 14 Notion de résistance électrique. Loi d Ohm

Chapitre 14 Notion de résistance électrique. Loi d Ohm Chapitre 14 Notion de résistance électrique. Loi d Ohm Plan Introduction: I Mesurer avec un multimètre Mesure de l intensité Mesure de la tension II Pour aller plus loin Mesures en courant continu. Rappels

Plus en détail

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe

Table des Matières. Satisfaisabilité en logique propositionnelle ES pour les problèmes d optimisation Élagage à l aide d heuristiques Le Labyrinthe Table des Matières Essais Successifs (ES) 1 Rappels : Fonctions et Ordres de grandeurs 2 Diviser pour Régner 3 Approches Gloutonnes 4 Programmation Dynamique 5 Essais Successifs (ES) Le problème des n

Plus en détail

Fonctions exponentielles et logarithmes

Fonctions exponentielles et logarithmes Fonctions exponentielles et logarithmes Il s'agit de deux familles de fonctions étroitement liées, la première étendant à toutes les valeurs réelles la notion déjà connue de puissance. On en donne ici

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

Formes bilinéaires, produits scalaires Pour s entraîner...

Formes bilinéaires, produits scalaires Pour s entraîner... Formes bilinéaires, produits scalaires Pour s entraîner... I Savoir reconnaître un produit scalaire Les applications ci-dessous sont-elles des formes bilinéaires? Si oui sont-elles symétriques? Définies?

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Extraits de Concours

Extraits de Concours Pierre-Louis CAYREL 2008-2009 Prépa HEC 2 disponible sur www.cayrel.net Lycée Lavoisier Feuille d extraits de concours Extraits de Concours 1 HEC Exercice 1 (via HEC - Oral 1997) Écrire un programme qui

Plus en détail

TD : Microéconomie de l incertain. Emmanuel Duguet

TD : Microéconomie de l incertain. Emmanuel Duguet TD : Microéconomie de l incertain Emmanuel Duguet 2013-2014 Sommaire 1 Les loteries 2 2 Production en univers incertain 4 3 Prime de risque 6 3.1 Prime de risque et utilité CRRA.................. 6 3.2

Plus en détail

Résolution de systèmes linéaires creux par des méthodes directes

Résolution de systèmes linéaires creux par des méthodes directes Résolution de systèmes linéaires creux par des méthodes directes J. Erhel Janvier 2014 1 Stockage des matrices creuses Dans de nombreuses simulations numériques, la discrétisation du problème aboutit à

Plus en détail

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS

KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS KIT DE SURVIE EN RECHERCHE D EXTREMA LIÉS Remarques préliminaires : Ce court document n a nullement la prétention de présenter la question de la recherche d extrema liés avec toute la rigueur qui lui serait

Plus en détail

Fonctions à deux variables

Fonctions à deux variables Fonctions à deux variables ECE Lcée Carnot 5 janvier Aspect graphique Définition. Une fonction à deux variables est une application f : D R, où D est une sous-ensemble du plan R appelé domaine de définition

Plus en détail

Représentation de la Connaissance. Complément Pratique 7 novembre 2006

Représentation de la Connaissance. Complément Pratique 7 novembre 2006 Représentation de la Connaissance Les jeux en Prolog Introduction Complément Pratique 7 novembre 2006 Nous nous intéressons aux jeux à deux joueurs pour lesquels la situation du jeu est connue des deux

Plus en détail

1 Force brute. 2 Analyse. 3 Conception préliminaire. 4 Conception détaillée. 5 Développement. 6 Conclusion. Architecture des Systèmes d Information

1 Force brute. 2 Analyse. 3 Conception préliminaire. 4 Conception détaillée. 5 Développement. 6 Conclusion. Architecture des Systèmes d Information Plan Puissance 4 intelligent I3 Algorithmique Nicol Delestre 1 Force brute 2 Analyse 3 Conception préliminaire 4 Conception détaillée 5 Développement 6 Conclusion Puissance 4. v2.0 1 / 29 Puissance 4.

Plus en détail

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne

Séquence 3. 1 ère partie : 2 e partie : Second degré. Probabilités (1) Séquence 3 MA12. Cned - Académie en ligne Séquence 3 1 ère partie : Second degré e partie : Probabilités (1) Séquence 3 MA1 1 1 ère partie Second degré Sommaire 1. Pré-requis. Forme canonique, étude d une fonction du second degré 3. Équation du

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009

Second degré. Christophe ROSSIGNOL. Année scolaire 2008/2009 Second degré Christophe ROSSIGNOL Année scolaire 008/009 Table des matières 1 Polynômes du second degré 1.1 Définition................................................. 1. Forme canonique.............................................

Plus en détail

Tracé de lignes et de courbes planes

Tracé de lignes et de courbes planes Département d informatique Université de Toulon et du Var Plan 1 Introduction 2 Tracé de segments 3 Tracé de cercles 4 Tracé de courbes Définition Le processus de représentation d objets graphiques continus

Plus en détail

Algorithmique et Analyse d Algorithmes

Algorithmique et Analyse d Algorithmes Algorithmique et Analyse d Algorithmes L3 Info Cours 11 : Arbre couvrant Prétraitement Benjamin Wack 2015-2016 1 / 32 La dernière fois Rappels sur les graphes Problèmes classiques Algorithmes d optimisation

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0.

Sortie : OUI si n est premier, NON sinon. On peut voir Premier aussi comme une fonction, en remplaçant OUI par 1 et NON par 0. Université Bordeaux 1. Master Sciences & Technologies, Informatique. Examen UE IN7W11, Modèles de calcul. Responsable A. Muscholl Session 1, 2011 2012. 12 décembre 2011, 14h-17h. Documents autorisés :

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre

Recherche opérationnelle. Programmation linéaire et recherche opérationnelle. Programmation linéaire. Des problèmes de RO que vous savez résoudre Recherche opérationnelle Programmation linéaire et recherche opérationnelle Ioan Todinca Ioan.Todinca@univ-orleans.fr tél. 0 38 41 7 93 bureau : en bas à gauche Tentative de définition Ensemble de méthodes

Plus en détail

Optimisation en nombres entiers

Optimisation en nombres entiers Optimisation en nombres entiers p. 1/83 Optimisation en nombres entiers Michel Bierlaire michel.bierlaire@epfl.ch EPFL - Laboratoire Transport et Mobilité - ENAC Optimisation en nombres entiers p. 2/83

Plus en détail

Soit une suite. On dit qu elle est géométrique si, partant du

Soit une suite. On dit qu elle est géométrique si, partant du Suites géométriques I) Définition Soit est un nombre entier naturel. Soit une suite. On dit qu elle est géométrique si, partant du TERME INITIAL, pour passer d un terme au suivant, on MULTIPLIE toujours

Plus en détail

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre

Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :

Plus en détail

Utilisation des Structures Combinatoires pour le Test Statistique. Contexte. Plan. Le test de logiciel. Les structures combinatoires décomposables

Utilisation des Structures Combinatoires pour le Test Statistique. Contexte. Plan. Le test de logiciel. Les structures combinatoires décomposables Utilisation des Structures Combinatoires pour le Test Statistique Sandrine-Dominique GOURAUD Équipe Programmation et Génie Logiciel, L.R.I. Co-encadrants: M.-C. Gaudel et A. Denise Plan Contexte Structures

Plus en détail

Utilisation d EXCEL pour résoudre des problèmes de programmation linéaire

Utilisation d EXCEL pour résoudre des problèmes de programmation linéaire Utilisation d EXCEL pour résoudre des problèmes de programmation linéaire Introduction Le solveur d'excel est un outil puissance d'optimisation et d'allocation de ressources. Il peut vous aider à déterminer

Plus en détail

Baccalauréat Série S Métropole, juin 2014

Baccalauréat Série S Métropole, juin 2014 Baccalauréat Série S Métropole, juin 4 Sujet et Corrigé Stéphane PASQUET Disponible sur http://www.mathweb.fr juin 4 Exercice (5 points) - Commun à tous les candidats Partie A Dans le plan muni d un repère

Plus en détail

Résolution de problèmes en intelligence artificielle et optimisation combinatoire : les algorithmes A*

Résolution de problèmes en intelligence artificielle et optimisation combinatoire : les algorithmes A* Résolution de problèmes en intelligence artificielle et optimisation combinatoire : les algorithmes A* Michel Couprie Le 5 avril 2013 Ce document est une courte introduction à la technique dite A*. Pour

Plus en détail

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL LINF 2275 Stat. explor. multidim. 1 A.C.P.: Analyse en Composantes Principales Analyse de la structure de la matrice

Plus en détail

2 Correspondance des Points de Contrôle Spline - Bézier

2 Correspondance des Points de Contrôle Spline - Bézier COURBES B-SPLINES 1 Introduction Une courbe de Bézier est totalement modifiée dès qu on déplace un point de contrôle : on dit que la méthode de Bézier est une méthode globale. Les courbes B-Splines Uniformes,

Plus en détail

Plus courts chemins, programmation dynamique

Plus courts chemins, programmation dynamique 1 Plus courts chemins, programmation dynamique 1. Plus courts chemins à partir d un sommet 2. Plus courts chemins entre tous les sommets 3. Semi-anneau 4. Programmation dynamique 5. Applications à la bio-informatique

Plus en détail

Problèmes de transport

Problèmes de transport Problèmes de transport formulation des problèmes d affectation Hugues Talbot Laboratoire A2SI 31 mars 2009 Problèmes de Transport Introduction Distribution Théorie Équilibrage Modélisation Plan Solution

Plus en détail

Mathématiques pour. l informatique

Mathématiques pour. l informatique Xavier Chanet Patrick Vert Mathématiques pour l informatique Pour le BTS SIO Toutes les marques citées dans cet ouvrage sont des marques déposées par leurs propriétaires respectifs. Illustration de couverture

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail