Contenu. Sources et références. Classification supervisée. Classification supervisée vs. non-supervisée
|
|
- Nicolas Crépeau
- il y a 2 ans
- Total affichages :
Transcription
1 PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe Master 1 Informatique PJE B. Derbel L. Jourdan A. Liefooghe Contenu Classification supervisée Classification bayésienne Exemple : Classification de texte Sources et références Apprentissage artificiel : Concepts et algorithmes, A. Cornuéjols et L. Miclet Fouille de données, F. Decomité Fouille de données, P. Preux Apprentissage à partir d'exemples, F. Denis et R. Gilleron Classification supervisée Classification supervisée vs. non-supervisée Clustering Le but est de regrouper des objets similaires (pas d'attribut particulier) Fouille supervisée Il existe un attribut particulier : la classe Le but est de «deviner» la classe d'un exemple en ne connaissant que la valeur de ses autres attributs
2 Classification supervisée vs. non-supervisée Clustering On conserve toutes les données Fouille supervisée On modélise : les données servent à construire le modèle et sont (généralement) oubliées ensuite 2 types de classifieurs Classifieurs qui utilisent directement les exemples pour prédire la classe d une donnée Classifieurs pour lesquels on a d abord construit un modèle et qui, ensuite, utilisent ce modèle pour effectuer leur classification/prédiction Problèmes Méthode d induction du classifieur? Comment utiliser le classifieur obtenu? Comment évaluer la qualité du classifieur obtenu : taux d erreur (ou de succès)? Comment traiter les attributs manquants dans le jeu d apprentissage? dans une donnée à classer? Comment estimer la tolérance au bruit? Le bruit concerne ici la valeur des attributs de l exemple avec lequel on construit le classifieur Vocabulaire Classification : prévoir une classe discrète Prédiction : prévoir une valeur continue (degré de confiance) Principe Une instance = une suite de valeurs d attributs et une classe (a1, a2,..., an, c) À l aide d un ensemble d exemples, on veut construire un modèle des données (classifieur, prédicteur,...) On demande à ce classifieur de trouver la classe de nouveaux exemples Principe Modèle : découvrir la structure des données Quels sont les attributs importants pour deviner une classe?
3 Mode opératoire Schéma Etape 1 : Construction du modèle à partir de l ensemble d apprentissage (training set) Etape 2 : Evaluation de la qualité/précision du classifieur Etape 3 : Utilisation du modèle pour la classification de nouvelles instances Nouvel exemple Exemples 3 1 Classifieur 2 Algo 3 Classe 1 - Construction du modèle Chaque instance est supposée appartenir à une classe prédéfinie La classe d une instance est déterminée par l attribut «classe» L ensemble des instances d apprentissage est utilisé dans la construction du modèle Le modèle est représenté par des règles de classification, arbres de décision, formules mathématiques, Évaluation du modèle Estimer le taux d erreur La classe connue d une instance test est comparée avec le résultat du modèle Taux d erreur = pourcentage de tests incorrectement classés par le modèle 3 - Utilisation du modèle Classification de nouvelles instances (inconnues) Domaines d application Délivrance de crédit Diagnostic médical Prédiction du cours d une action Optimisation d un envoi de courrier...
4 La classification dans le processus du data-mining Collecte, préparation des données Données d apprentissage Évaluation, validation Apprentissage On manipule : Des données Des hypothèses On veut trouver la meilleure hypothèse en fonction des données disponibles Quelques méthodes de classification Arbres de décision : minimiser l erreur de classification Classification bayésienne (classifieur naïf, réseaux bayésiens) : hypothèse la plus probable Réseaux de neurones : minimiser l erreur quadratique... Qu est-ce qu un bon classifieur? Intuition : classifieurs binaires discrets 4 cas Vrai positif : exp. positif classé positif Faux négatif : exp. positif classé négatif Vrai négatif : exp. négatif classé négatif Faux positif : exp. positif classé négatif Matrice de confusion Taux vrai classe classé positif négatif positif VP FP négatif FN VN total P N Proportion de positifs bien classés tp-rate = VP / P Proportion de négatifs mal classés fp-rate = FP / N
5 Figure tp-rate F A D fp-rate C E B 1 A = tous négatifs B = tous positifs C = k% positifs D = conservateur E < aléatoire F = class. idéal Classification bayésienne Principe On doit inférer (deviner) des quantités gouvernées (décrites) par des probabilités : on veut se servir de ces probabilités pour guider l inférence Cadre plus général que la classification Classification bayésienne À chaque hypothèse : On associe une probabilité (probabilité d être la solution) L observation d une (ou de plusieurs) instances peut modifier cette probabilité On peut parler de l hypothèse la plus probable, au vu des instances Buts (possibles) Formaliser les méthodes et les intuitions Préciser la notion de plus probable Nouveaux algorithmes d apprentissage Analyse d autres algorithmes ne manipulant pas explicitement des probabilités Classification bayésienne Approche probabiliste Basée sur les probabilités conditionnelles (et la règle de Bayes) Connaissances a priori Prévision du futur à partir du passé Suppose l'indépendance des attributs
6 Classification bayésienne Différente de l approche basée sur les fréquences! Fréquences : on estime la probabilité d'occurrence d un événement Bayésienne : on estime la probabilité d'occurrence d un événement sachant qu une hypothèse préliminaire est vérifiée (connaissance) Probabilités La probabilité d un événement A est notée P(A) Elle est comprise entre 0 et 1 La probabilité d un événement certain vaut 1 La probabilité d un événement impossible vaut 0 Si A et B sont indépendants P(A B) = P(A) + P(B) P(non A) = 1 - P(A) Probabilités conditionnelles Probabilités conditionnelles P(A B) = Probabilité que l'événement A survienne si l'événement B survient P(A B) = P(A B) / P(B) P(A B) = P(A B) P(B) = P(B A) P(A) Exemple 99% des sujets atteint d une maladie M sont positifs à un test de dépistage La maladie M touche 10% de la population Quelle est la fraction de la population des sujets malades positifs au test de dépistage? P(M)=0.1, P(T M)=0.99 P(T M) = P(T M) P(M) = = 9.9% Indépendance Deux événements sont indépendants si la connaissance de l un ne modifie pas la probabilité de l autre Si A et B sont indépendants, alors : P(A B) = P(A) Deux événements A et B sont indépendants si P(A B) = P(A) P(B), P(A), P(B) > 0
7 Théorème de Bayes P(A B) = P(A B) / P(B) P(A B) = P(B A) P(A) Donc, P(A B) = P(B A) P(A) / P(B) Problématique On veut calculer, pour chaque classe, la probabilité pour que ce soit la solution, sachant qu on a observé (a1,...,an) Garder la meilleure Rejeter les hypothèses de probabilité nulle Tout garder (traitements ultérieurs) Problématique Quelle est l hypothèse la plus probable, au vu de l ensemble d apprentissage? Pour une instance donnée, au vu de l ensemble d apprentissage, quelle sera la classification la plus probable de cet exemple? Classifieur bayésien optimal Classification optimale si les probabilités de chaque hypothèse sont connues Pas souvent le cas : Trop d hypothèses, trop de calculs, trop d estimations Simplification? Application à la classification P(ck a1,...,an) = P(a1,...,an ck) P(ck) / P(a1,...,an) P(a1,...,an ck), P(a1,...,an) et P(ck) peuvent être estimées sur les instances de l'ensemble d apprentissage Application à la classification P(ck a1,...,an) = P(a1,...,an ck) P(ck) / P(a1,...,an) P(ck) proportion d instances de la classe ck P(a1,...,an) proportion d instances d attributs (a1,...,an) P(a1,...,an ck) nb fois où on rencontre (a1,...,an) dans les instances de la classe ck (vraissemblance)
8 Quelques observations P(ck a1,...,an) = P(a1,...,an ck) P(ck) / P(a1,...,an) P(ck a1,...,an) croît quand P(ck) croît : plus ck est probable, plus il y a de chances qu elle soit la classe P(ck a1,...,an) croît quand P(a1,...,an ck) croît : si (a1,...,an) arrive souvent quand ck est la classe, alors il y a des chances que ck soit la classe P(ck a1,...,an) décroît quand P(a1,...,an) croît : si (a1,...,an) est courant, il nous apprend peu sur ck Classification bayésienne C = (c1,...,ck) ensemble de classes (chacune munie d une probabilité) (a1,...,an) un ensemble d attributs Retourner la classe ayant la probabilité la plus forte après l observation de (a1,...,an) Hypothèse Maximale A Posteriori : hmap hmap = argmaxck C P(a1,...,an ck) P(ck)/P(a1,...,an) Hypothèses MAP, ML hmap = argmaxck C P(a1,...,an ck) P(ck) / P(a1,...,an) P(a1,...,an) est constant hmap = argmaxck C P(a1,...,an ck) P(ck) Maximum de vraisemblance hml = argmaxck C P(a1,...,an ck) Classifieur bayésien naïf Appliquer le théorème de Bayes pour définir un algorithme de classification simple et efficace (en pratique) Caractéristiques : Classification supervisée Classes discrètes Classifieur bayésien naïf On suppose que tous les attributs sont indépendants (eg. absence d information) P(a1,...,an ck) = P(ai ck) hmap = argmaxck C P(ai ck) P(ck) P(ai ck) estimé à partir de l ensemble d apprentissage Classifieur bayésien naïf Attribut discret P(ai c) = nic / nc nic = nombre d instances de la classe c qui ont comme valeur ai pour l attribut considéré nc = nombre d instances de la classe c
9 Classifieur bayésien naïf Attributs binaires : 2n valeurs à estimer Attributs indépendants Naïf : hypothèse d indépendance (jamais vérifiée, simplification) Procédure sub-optimale, mais intérêt pratique Validité? Robustesse? Classifieur bayésien naïf Soit X = (a1,...,an) l exemple à classer Estimer P(X ck) P(ck) pour chaque classe ck Affecter à X la classe ck telle que la probabilité P(X ck) P(ck) est la plus grande Exemple: contrôle fiscal Faut-il effectuer un contrôle fiscal? Echantillon Contrôler? salaire impôts étudiant contrôle < 30 < 20 % oui négatif < 20 % non positif < 20 % oui positif > 20 % non négatif > 50 < 20 % non positif 35 6 % oui? Exemple: contrôle fiscal À classer : X = (sal=35, imp=6%,etu=oui) P(pos X)? P(neg X)? Positif : P(sal=30-50 pos) P(imp<20% pos) P(etu=oui pos) P(pos) = (2/3 1 1/3) / 3/5 = 0.13 Négatif : P(sal=30-50 neg) P(imp<20% neg) P(etu=oui neg) P(neg) = (1/2 1/2 1/2) / 2/5 = 0.05 On effectuera donc un contrôle! Exemple: tennis Ciel, Température,Humidité,vent,Jouer? Soleil,Chaud,Forte,faible,Non Soleil,Chaud,Forte,Fort,Non Couvert,Chaud,Forte,faible,Oui Pluie,Doux,Forte,faible,Oui Pluie,Frais,Normale,faible,Oui Pluie,Frais,Normale,Fort,Non Couvert,Frais,Normale,Fort,Oui Soleil,Doux,Forte,faible,Non Soleil,Frais,Normale,faible,Oui Pluie,Doux,Normale,faible,Oui Soleil,Doux,Normale,Fort,Oui Couvert,Doux,Forte,Fort,Oui Couvert,Chaud,Normale,faible,Oui Pluie,Doux,Forte,Fort,Non Exemple: tennis Quelle classe attribuer à : (Soleil,Frais,Forte,Fort)?
10 Exemple: tennis Exemple: tennis X = (Soleil,Frais,Forte,Fort) P(X oui) P(oui) = 2/9 3/9 3/9 3/9 9/14 = P(X non) P(non) = 3/5 1/5 4/5 3/5 5/14 = oui non P(h) 9/14 5/14 Soleil 2/9 3/5 Frais 3/9 1/5 Forte 3/9 4/5 Fort 3/9 3/5 Confiance accordée à la classification P(non X) = / ( ) = Remarques Pas de construction de modèle Pas d explication Efficacité comparable à celle d autres algorithmes Qualités du classifieur bayésien naïf Prédiction : comparable aux autres algorithmes Vitesse : linéaire en apprentissage, constant en classification Robustesse (bruit) : très bonne Changement d échelle : les exemples ne sont pas en mémoire centrale (occupation mémoire = nb attributs x nb classes) Lisibilité : nulle Aller plus loin...? Deux cas extrêmes Hypothèse d indépendance des attributs : classifieur naïf, programmable mais approximatif Dépendance des attributs deux-à-deux : trop complexe Aller plus loin...? Certains attributs sont liés par l intermédiaire de la classe (ou d un autre attribut) Fixer un petit nombre de dépendances entre les attributs
11 Classification de textes Classification de texte Algo basé sur le classifieur bayésien naïf Simplifications supplémentaires Modèle de données modifié Classification supervisée Méthode efficace, mise en œuvre facile Classification de textes Les exemples sont des textes, munis d une classe : Lettres : {V. Hugo, Napoléon} quel auteur? AFP{sujets} quel sujet? News {Newsgroups} quel groupe? Mails : {Spam, Non Spam} filtrer (certains filtres d s performants) Classification de textes Comment transformer un texte brut en schéma (attributs,valeurs)? Quel sens donner à P(ck A), A étant un texte? Représentation Texte : suite de caractères, lettres, chiffres, ponctuation, espaces,... Représentation pour classification bayésienne? Attributs? Première possibilité Schéma (attributs,valeurs) Un attribut est une position dans le texte Valeur de l attribut : le mot présent en cette position Exemple : il était une fois... a1 a2 a3 a4 P(ck) P(a1= il ck) P(a2= était ck)...
12 Première possibilité Remarques P(a1= il ck) grand quand ck = conte Hypothèse d indépendance très simplificatrice (voir fausse!) : il était une fois caractéristique des contes Simplification nécessaire Probas sur les mots, pas sur les textes Première possibilité Quel sens donner à P(ck A)? Impossible! P(ai=wj ck) ai : position dans le texte 100 positions wj : mot du texte mots ck : classe 2 classes 4 millions de probabilités à estimer! Il faudrait plus de 4 millions de textes! Deuxième possibilité La probabilité de rencontrer un mot dans un texte est indépendante de sa position Attribut = mot du vocabulaire Booléen : présence/absence du mot On ne se préoccupe ni de l ordre de mots, ni de leur organisation dans le texte, ni de leur nombre d occurrences Deuxième possibilité P(ai=mj ck) = P(mj ck) = njk / nk njk : nombre de fois où le mot mj apparaît dans un texte de la classe ck nk : nombre total de mots des textes de la classe ck Représentation Abstraction de l ordre des mots, de la syntaxe, et de la sémantique des textes Classification de textes Texte suite de mots sac de mots Algorithme (apprentissage) : Pour chaque classe ck, estimer P(ck) = nk / n nk : nombre de textes de la classe ck n : nombre total de texte Pour tout mot mj, estimer P(mj ck)
13 Classification de textes Algorithme (classification) : D : texte à classifier Pour chaque mot mj de D Pour chaque classe ck P(mj ck) pour chaque classe ck P(ck D) = j D P(mj ck) P(ck) Retourner la classe ck maximisant P(ck D) Classification de textes Complexité : O(n log(n)), avec n nombre de mots total (recherche d un mot) Simplifications abusives? Efficace?
PJE : Analyse de comportements avec Twitter Classification supervisée
PJE : Analyse de comportements avec Twitter Classification supervisée Arnaud Liefooghe arnaud.liefooghe@univ-lille1.fr Master 1 Informatique PJE2 2015-16 B. Derbel L. Jourdan A. Liefooghe 1 2 Agenda Partie
Les Réseaux de Neurones avec
Les Réseaux de Neurones avec Au cours des deux dernières décennies, l intérêt pour les réseaux de neurones s est accentué. Cela a commencé par les succès rencontrés par cette puissante technique dans beaucoup
Distance et classification. Cours 4: Traitement du signal et reconnaissance de forme
Distance et classification Cours 4: Traitement du signal et reconnaissance de forme Plan Introduction Pré-traitement Segmentation d images Morphologie mathématique Extraction de caractéristiques Classification
Reconnaissance des formes
Reconnaissance des formes Discrimination A. Belaïd LORIA - Nancy Discrimination linéaire Notion d hyperplan Discrimination linéaire Principe Une forme x R d (vecteur forme) Rôle de la Trouver D : R d x
Régression logistique
Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités
Apprentissage Automatique Numérique
Apprentissage Automatique Numérique Loïc BARRAULT Laboratoire d Informatique de l Université du Maine (LIUM) loic.barrault@lium.univ-lemans.fr 16 septembre 2015 1/42 Problème classique Automatique Autre
Comparaison d approches statistiques pour la classification de textes d opinion. Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM)
Comparaison d approches statistiques pour la classification de textes d opinion Michel Plantié, Gérard Dray, Mathieu Roche (LGI2P/EMA LIRMM) Caractéristiques des traitements Approche identique pour les
Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.
Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation
1 Données synthétiques
Master 2 MIMSE 2015-2016 Apprentissage automatique TP1 : les k plus proches voisins 1 Données synthétiques Récupérer les jeux de données synth_train.txt et synth_test.txt. On a Y 1, 2 et X R 2. On dispose
Apprentissage statistique Stratégie du Data-Mining
Apprentissage statistique Stratégie du Data-Mining Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Apprentissage statistique
Qualité d une classification
Méthodes en classification automatique Qualité d une classification Yves Lechevallier INRIA-Rocquencourt E_mail : Yves.Lechevallier@inria.fr Master ISI Qualité d une partition Validation interne À partir
Stéphane GOBRON HES SO HE Arc
Stéphane GOBRON HES SO HE Arc 2015 Algorithmes Numériques 7 chapitres Codage des nombres Résolution d équations Systèmes linéaires Dérivation Intégration Equation différentielles Mots clés du cours : introduction
Initiation à la fouille de données et à l apprentissage automatiq
Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/
La classification 2012-2013. Fabien Chevalier Jérôme Le Bellac
La classification 2012-2013 Fabien Chevalier Jérôme Le Bellac Introduction : Classification : méthode d analyse de données Objectif : Obtenir une représentation schématique simple d'un tableau de données
Data Mining. Master 1 Informatique - Mathématiques UAG
Data Mining Master 1 Informatique - Mathématiques UAG Chapitre 2 Classification supervisée Classification supervisée Principes Classement par induction d arbres de décision KNN Approche probabiliste -
Intelligence Artificielle
Intelligence Artificielle p. 1/1 Intelligence Artificielle Les arbres de décisions Maria Malek Département Systèmes Informatiques Formels & Intelligents Intelligence Artificielle p. 2/1 Extraire les connaissances
Prof.É.D.Taillard. Classification automatique @Prof. E. Taillard 1 EIVD, Informatique logiciel, 4 e semestre
INFORMATIQUE ORIENTATION LOGICIELS CLASSIFICATION AUTOMATIQUE Prof.É.D.Taillard Classification automatique @Prof. E. Taillard EIVD, Informatique logiciel, 4 e semestre CLASSIFICATION AUTOMATIQUE But :
Les Tables de Hachage
NICOD JEAN-MARC Licence 3 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2007 NICOD JEAN-MARC 1 / 34 Référence Tables à adressage directe Thomas H. Cormen, Charles E.
Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé)
Baccalauréat ES/L Métropole 21 juin 2013 (sujet dévoilé) EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses
ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I
ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction
Exercices supplémentaires
Exercices supplémentaires Christophe Lalanne Emmanuel Chemla Exercices Exercice 1 Un grand magasin a n portes d entrée ; r personnes arrivent à des instants divers et choisissent au hasard une entrée indépendamment
Estimation. Anita Burgun
Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population
Evaluation des procédures diagnostiques. Objectifs pédagogiques. Faculté de Médecine Montpellier-Nîmes. Evaluation des procédures diagnostiques
Evaluation des procédures diagnostiques Objectifs pédagogiques Evaluer un signe, un examen, une décision médicale en calculant leur sensibilité et leur spécificité, leurs valeurs prédictives positives
Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée
Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr
BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L
BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques
Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal
Commission Réseau Sémantique Universel Étude de cas n 1 : routage postal La meilleure méthode pour mettre au point une méthode étant de la tester sur le plus grand nombre possible de cas concrets, voici
Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie (EA3181) CHRU Besançon
PACES - APEMK UE 4 Evaluation des méthodes d analyses appliquées aux sciences de la vie et de la santé Estimateur et Estimation Prof Franck Bonnetain Unité de méthodologie & de qualité de vie en cancérologie
Recherche et Extraction d'information Généralités
Recherche et Extraction d'information Généralités Mathieu Roche Cours ECDA 2014/2015 Plan Motivations Veille technologie Les défis Les méthodes en RI Généralités Les limites des approches actuelles Approches
Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant
Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.
Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif
Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,
Arbre de décision Evaluation de l apprentissage - Elagage. Biais en apprentissage [Mitchell, 97]
Sources du cours et plan Cours n 2 d Aomar Osmani, Apprentissage Symbolique, MICR 2006-2007 Arbre de décision Evaluation de l apprentissage - Elagage Decision Trees, Occam s Razor, and Overfitting, William
Méthodes de Résolution de problèmes En Intelligence Artificielle
Méthodes de Résolution de problèmes En Intelligence Artificielle Résolution de Problèmes et Intelligence Artificielle Résoudre des puzzles Jouer aux échecs Faire des mathématiques Et même conduire une
Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html
Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide
Cours Fouille de données avancée
Ministère de l Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider - Biskra Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie Département d Informatique
M2 Informatique/Réseaux Université Pierre et Marie Curie UE APMM
TD TECHNIQUES DE CODAGE ET DE COMPRESSION. LANGAGE / CODAGE / VALENCE.. Rappels Toute fraction intelligible d un message est constituée de symboles. Le langage est l ensemble de ces symboles. Un codage
M2 MPRO. Optimisation dans les Graphes 2014-2015
M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie
Programmation linéaire
Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple
CONTRÔLE DE GESTION. DCG - Session 2008 Corrigé indicatif
CONTRÔLE DE GESTION DCG - Session 2008 Corrigé indicatif DOSSIER 1 MISE EN PLACE D OUTILS D AIDE A LA DECISION Question 1 : Rédiger une note d environ une page destinée au directeur général visant à lui
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Introduction a la recherche d information Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers prénom.nom@cnam.fr Département
Module 3 : Introduction à la Modélisation SOUS MODELER
Module 3 : Introduction à la Modélisation SOUS MODELER 1 Techniques prédictives Passé pour prédire l avenir 2 Concepts de la modélisation Données test / apprentissage Généralement créées par l utilisateur
Fiche de révisions - Algorithmique
Fiche de révisions - Algorithmique Rédigé par : Jimmy Paquereau 1. Généralités Algorithme : un algorithme est la description d une procédure à suivre afin de résoudre un problème donné. Il n est pas nécessairement
Modélisation de la demande de transport
Modélisation de la demande de transport Fabien Leurent ENPC / LVMT Introduction Approche empirique Fonctions de répartition Position microéconomique : préférences et rationalité Distribution des décideurs,
SY09 Rapport TP4 : Analyse discriminante, régression logistique
UNIVERSITÉ DE TECHNOLOGIE DE COMPIÈGNE SY09 Rapport TP4 : Analyse discriminante, régression logistique CUNI Frédéric 15 juin 2015 Objectifs du TP : Le but de ce TP est l application de l analyse discriminante
Corrigé du baccalauréat ES Asie 19 juin 2014
Corrigé du baccalauréat ES Asie 9 juin 4 EXERCICE 4 points Commun à tous les candidats Proposition : fausse f (4) est le coefficient directeur de la tangente à la courbe au point C ; cette droite passe
Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»
Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan
Thème. Contrôle de gestion et généralités. Exercice 1 Contrôle de gestion et stratégie. C orrigé. 1 Analyse systémique des organisations
Contrôle de gestion et généralités Thème 1 Exercice 1 Contrôle de gestion et stratégie La suppression de la norme française de fabrication des cuves ouvrira le marché français aux concurrents étrangers.
1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50
10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres
Apprentissage de structure à partir de données incomplètes et application à la classication
Apprentissage de structure à partir de données incomplètes et application à la classication Olivier François, Philippe Leray Francois.Olivier.C.H@gmail.com, Philippe.Leray@insa-rouen.fr Laboratoire d'informatique,
Complexité des algorithmes
Complexité des algorithmes par Robert Rolland R. Rolland, Aix Marseille Université, Institut de Mathématiques de Marseille I2M Luminy Case 930, F13288 Marseille CEDEX 9 e-mail : robert.rolland@acrypta.fr
Baccalauréat ES Pondichéry 21 avril 2016
Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des
Introduction à la RO
1 Introduction à la RO Problèmes de flots dans les graphes Cédric BENTZ (CNAM) Christophe PICOULEAU (CNAM) 2 Capacité journalière d'un réseau ferroviaire (1/2) Sur le réseau ferroviaire, on a indiqué sur
INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz)
INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) Terminologie Recherche Opérationnelle Méthodes quantitatives de gestion Mathématiques
Mesurer l incidence de BDC sur ses clients
Équipe de la Recherche et de l analyse économique de BDC Juillet 213 DANS CE RAPPORT Le présent rapport est fondé sur une analyse statistique réalisée par Statistique Canada visant à évaluer l incidence
EVALUATION, BILAN/SUIVI, INDICATEURS
EVALUATION, BILAN/SUIVI, INDICATEURS NOTION EVALUATION L évaluation, c est la production d un jugement de valeur concernant une politique publique. Elle vise à mesurer les effets de la politique évaluée.
Méthodes de placement multidimensionnelles. Fabrice Rossi Télécom ParisTech
Méthodes de placement multidimensionnelles Fabrice Rossi Télécom ParisTech Plan Introduction Analyse en composantes principales Modèle Qualité et interprétation Autres méthodes 2 / 27 F. Rossi Plan Introduction
Intelligence Artificielle. Dorra BEN AYED
Intelligence Artificielle Dorra BEN AYED Chapitre 2 Résolution de problème en IA Par recherche Introduction Résoudre un pb c est chercher un chemin qui permet d aller d une situation initiale à une situation
Classification, Apprentissage, Décision
Classification, Apprentissage, Décision Rémi Eyraud remi.eyraud@lif.univ-mrs.fr http://www.lif.univ-mrs.fr/~reyraud/ Cours inspiré par ceux de François Denis et Laurent Miclet. Plan général du cours Introduction
Devoir Surveillé informatique MP, PC, PSI
NOM : Classe : Devoir Surveillé informatique MP, PC, PSI L utilisation des calculatrices n est pas autorisée pour cette épreuve. Le langage de programmation choisi est Python. L espace laissé pour les
La problématique posée pour l analyse : Description du stockage des données:
Cas d étude : PACES Date de rédaction : 9 novembre 2015 Scénarios : S2 et S3 Auteurs de l analyse : Samy Foudil, Laura Dupuis, Muriel Ney, Nadine Mandran Période de l analyse : printemps 2014 puis été-automne
Les Jeux. Plan. Introduction. Le minimax. Le minimax α / β. Bilan
Les Jeux Plan Introduction Qu est-ce qu un jeu? Pourquoi les jeux et quels jeux? Aperçu historique Informatisation Complexité Le minimax Création d un arbre ET / OU Fonction d évaluation Version simplifiée
Manipuler, jouer pour faire des apprentissages numériques en maternelle
Manipuler, jouer pour faire des apprentissages numériques en maternelle 1 Prévenir l innumérisme à l école BO n 10 du 10 mars 2011 Innumérisme : incapacité à mobiliser les notions élémentaires de mathématiques,
Statistique (MATH-F-315, Cours #3)
Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles
Approche empirique du test χ 2 d ajustement
Approche empirique du test χ 2 d ajustement Alain Stucki, Lycée cantonal de Porrentruy Introduction En lisant des rapports, on rencontre souvent des raisonnements du style : «le premier groupe est meilleur
Applications orientées données (NSY135)
Applications orientées données (NSY135) 10 Lecture de données Auteurs: Raphaël Fournier-S niehotta et Philippe Rigaux (philippe.rigaux@cnam.fr,fournier@cnam.fr) Département d informatique Conservatoire
Informatique 1ère Année 2012-2013
SERIE D EXERCICES N 1 INTRODUCTION, STRUCTURE CONDITIONNELLE : IF..ELSE Exercice 1 Ecrire le programme qui lit deux entiers saisis et affiche leur produit. Modifier ensuite ce programme pour saisir des
Plan. Définition et Objectifs Analyse discriminante Régression logistique Arbres de décision Réseaux bayésiens Exemple
La classification Plan Définition et Objectifs Analyse discriminante Régression logistique Arbres de décision Réseaux bayésiens Exemple Définition et Objectifs Prévoir l appartenance à une «classe» non
Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES
Erik PERNOD Calcul Scientifique 3 ème Année RESEAUX DE NEURONES 1 TABLE DES MATIERES TABLE DES MATIERES... 2 I PERCEPTRON SIMPLE... 3 I.1 Introduction... 3 I.2 Algorithme... 3 I.3 Résultats... 4 1er exemple
CHAPITRE II NOTIONS DE PROBABILITES
CHAPITRE II NOTIONS DE PROBABILITES II.1. Un exemple : le poker Distribuer une main de poker (5 cartes sur 52) revient à tirer au hasard 5 cartes parmi 52. On appelle expérience aléatoire une telle expérience
Intelligence Artificielle Jeux
Intelligence Artificielle Jeux Bruno Bouzy http://web.mi.parisdescartes.fr/~bouzy bruno.bouzy@parisdescartes.fr Licence 3 Informatique UFR Mathématiques et Informatique Université Paris Descartes Programmation
Baccalauréat ES Polynésie 10 juin 2016
Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %
Extraits de l article à paraître : GALILÉE OU DESCARTES? ÉTUDE D UN SCÉNARIO D INTRODUCTION HISTORIQUE AU CALCUL DES PROBABILITÉS
Extraits de l article à paraître : GALILÉE OU DESCARTES? ÉTUDE D UN SCÉNARIO D INTRODUCTION HISTORIQUE AU CALCUL DES PROBABILITÉS Éric BUTZ IREM de la Réunion et lycée Lislet Geoffroy, Saint-Denis. Résumé
Le Data Mining au service du Scoring ou notation statistique des emprunteurs!
France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative
SPLEX Statistiques pour la classification et fouille de données en
SPLEX Statistiques pour la classification et fouille de données en génomique Classification Linéaire Binaire CLB Pierre-Henri WUILLEMIN DEcision, Système Intelligent et Recherche opérationnelle LIP6 pierre-henri.wuillemin@lip6.fr
Master 2 IMOI - Mathématiques Financières
Master 2 IMOI - Mathématiques Financières Exercices - Liste 1 1 Comportement d un investisseur face au risque Exercice 1 Soit K la matrice définie par 1 2 [ 3 1 1 3 1.1 Montrer que K est la matrice de
Introduction au Logiciel GAMS (General Algebraic Modeling System)
Introduction au Logiciel GAMS (General Algebraic Modeling System) J.-M. Reneaume SOMMAIRE A. INTRODUCTION... 1 B. DESCRIPTION DU MODELE... 3 1. Structure générale du modèle... 3 a) Structure du fichier
INTRODUCTION À OMP PROBLÈME D USINAGE 1 Préambule
1 Préambule 1 sur 7 Le logiciel OMP est un produit de OM Partners. Le version mise à disposition est la version 9.27. OMP comporte : un compilateur de modèles et de données ; un optimiseur ; un générateur
CRÉER MA BOÎTE en étant étudiant?
CRÉER MA BOÎTE en étant étudiant? Promotion Petit Poucet 2008 er et 3 mois de conseil 10 lauréats récompensésp Diagnostic personnalisé offert aux 30 finalistes Conception : Agence Cavernamuth www.cavernamuth.com
Probabilité conditionnelle. Probabilités. Probabilité conditionnelle et indépendance. Julian Tugaut
Probabilité conditionnelle et indépendance Télécom Saint-Étienne 2014 Sommaire 1 Probabilité conditionnelle Notion de probabilité conditionnelle Définition et premières propriétés Théorème de Bayes (ou
Planification des salles opératoires avec durées d interventions aléatoires
Planification des salles opératoires avec durées d interventions aléatoires Mehdi LAMIRI, Xiaolan XIE, Alexandre DOLGUI et Frédéric GRIMAUD Centre Ingénierie et santé Centre Génie Industriel et Informatique
Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.
9A Probabilités conditionnelles et théorème de Bayes Probabilités conditionnelles Tel que mentionné à la section 9.5, les probabilités utilisées dans les arbres de décision sont des probabilités conditionnelles.
Échantillonnage et estimation
Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),
GROUPE CONSULTATIF TECHNIQUE SUR LES DOCUMENTS DE VOYAGE LISIBLES À LA MACHINE QUINZIÈME RÉUNION. Montréal, 17 21 mai 2004
TAG-MRTD/15-WP/17 27/4/04 GROUPE CONSULTATIF TECHNIQUE SUR LES DOCUMENTS DE VOYAGE LISIBLES À LA MACHINE QUINZIÈME RÉUNION Montréal, 17 21 mai 2004 Point 2 : Rapport du Groupe de travail sur le contenu
SOL1020- Hiver 2016 INTRODUCTION À LA STATISTIQUE SOCIALE El Hadj Touré, Ph. D. Sociologie
Faculté des arts et des sciences Département de sociologie SOL1020- Hiver 2016 INTRODUCTION À LA STATISTIQUE SOCIALE El Hadj Touré, Ph. D. Sociologie Horaire du cours : Théorie :, 13:00-15:00 (B-3325 Pav.
Chapitre 7 Tests d hypothèse (partie 1)
Chapitre 7 Tests d hypothèse (partie 1) I Qu est ce qu un test statistique? La philosophie est toujours la même : déterminer des informations sur une population à partir d informations sur un échantillon
FILIÈRE MP - OPTION SCIENCES INDUSTRIELLES
ÉCOLE POLYTECHNIQUE ÉCOLE SUPÉRIEURE DE PHYSIQUE ETCHIMIEINDUSTRIELLES CONCOURS 2002 FILIÈRE MP - OPTION SCIENCES INDUSTRIELLES FILIÈRE PC ÉPREUVE FACULTATIVE D INFORMATIQUE (Durée : 2 heures) L utilisation
Détection de nouvelles attaques. Yacine Bouzida, Frédéric Cuppens, Sylvain Gombault
Détection de nouvelles attaques Yacine Bouzida, Frédéric Cuppens, Sylvain Gombault Contexte Problèmes Réseau : principal vecteur des attaques Nouvelles formes d attaque (+ 1000 /an) Variante d une attaque
Laboratoire 2 Extraction des caractéristiques
Laboratoire 2 Extraction des caractéristiques L objectif de l extraction et de la sélection de caractéristiques est d identifier les caractéristiques importantes pour la discrimination entre classes. Après
Structure de l exposé. Introduction à l aide multicritère à la décision. Concepts clés. Qu est-ce que l aide multicritère à la décision?
Structure de l exposé Les midis de la science Qu est-ce que l aide multicritère à la décision? Concepts clés Branche de la Recherche Opérationnelle (RO) [Roy, 1992]: Chercher à prendre appui sur la science
DESCRIPTION DE COURS. Nom du cours : Mathématiques 8. Nom de l enseignante : Mme Dianne L. Doucet. Année Scolaire : 2009 2010
DESCRIPTION DE COURS Nom du cours : Mathématiques 8 Nom de l enseignante : Mme Dianne L. Doucet Année Scolaire : 2009 2010 1. Description du cours : Le programme de mathématiques de la 8 e année vise à
Analyse en composantes principales
Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l
CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER
CHAPITRE 2 APPLICATION AU CHOIX DE PORTEFEUILLE FINANCIER OBJECTIF Décision d'investissement? Comment un individu décide-t-il d'allouer sa richesse entre différents actifs (maison, actions, obligations,
Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6
Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes
Algorithmique et Structures de Données
1.1 Algorithmique et Structures de Données Jean-Charles Régin Licence Informatique 2ème année 1.2 Itérations Jean-Charles Régin Licence Informatique 2ème année Itération : définition 3 En informatique,
Plate-forme semi-automatique : E-quity
Plate-forme semi-automatique : E-quity Bringay Sandra 1, Pinlou Alexandre 1, Durand Sylvain 1, Pro Sébastien 1, Séébold Patrice 1 Département MIAp, Université Paul-Valéry, Montpellier 3, Route de Mende,
Analyse de la complexité algorithmique (1)
Analyse de la complexité algorithmique (1) L analyse de la complexité telle que nous l avons vue jusqu à présent nous a essentiellement servi à déterminer si un problème est ou non facile (i.e. soluble
I. Qu est-ce qu une probabilité?
I. Qu est-ce qu une probabilité? 1. Première approche : Une probabilité en mathématique est un chiffre compris entre 0 et 1. Ce chiffre représente une évaluation du caractère probable d un événement. Si
LOGISTIQUE & ENTREPOSAGE 3 ème partie
ITIP PARIS LOGISTIQUE & ENTREPOSAGE 3 ème partie 26 Novembre 2009 Yan Dupeyre Directeur de Projets GEODIS Logistics Renaud Fontaine Directeur de Projets GEODIS Global Solutions Organisation du module Date
Corrigé du baccalauréat ES Pondichéry 16 avril 2015
Corrigé du baccalauréat ES Pondichéry 16 avril 2015 Exercice 1 Commun à tous les candidats 5 points Partie A On appelle B l événement «la batterie est défectueuse» ; l événement «le disque dur est défectueux».
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
Notation de la microfinance
Notation de la microfinance Mark Schreiner (c) 2005, Microfinance Risk Management, L.L.C http://www.microfinance.com Développer une institution multiproduits Cali, 18 mai 2005 Agenda Qu est-ce que la notation?