5. Quelques lois discrètes

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "5. Quelques lois discrètes"

Transcription

1 5. Quelques lois discrètes MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois discrètes 1/46

2 Plan 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique 5. Loi de Poisson MTH2302D: Lois discrètes 2/46

3 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique 5. Loi de Poisson MTH2302D: Lois discrètes 3/46

4 Épreuve de Bernoulli Définition Une épreuve de Bernoulli est une expérience aléatoire dont le résultat peut être soit un succès, soit un échec, mais pas les deux simultanément. Exemple 1 On lance une pièce une fois et on note le résultat. On appelle succès le fait d obtenir PILE et échec le fait d obtenir FACE. Exemple 2 On choisit au hasard une pièce produite en série et on la teste pour détecter les défectuosités. La pièce peut être défectueuse (succès) ou conforme (échec). MTH2302D: Lois discrètes 4/46

5 Loi de Bernoulli Contexte Lors d une épreuve de Bernoulli, soit p la probabilité d un succès et q = 1 p la probabilité d un échec. Soit X le nombre de succès. Alors R X = {0, 1} et { 1 p si x = 0, p X (x) = p si x = 1. Si X suit une loi de Bernoulli de paramètre p alors on note X Bernoulli(p) (ou Bern(p)). MTH2302D: Lois discrètes 5/46

6 Loi de Bernoulli (suite) Théorème La fonction de répartition d une variable X Bernoulli(p) est 0 si x < 0, F X (x) = 1 p si 0 x < 1, 1 si x 1. MTH2302D: Lois discrètes 6/46

7 Espérance et variance Si X Bernoulli(p), alors 1. E(X) = p. 2. V(X) = p(1 p). MTH2302D: Lois discrètes 7/46

8 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique 5. Loi de Poisson MTH2302D: Lois discrètes 8/46

9 Loi binomiale Contexte On effectue n répétitions indépendantes d une épreuve de Bernoulli dont la probabilité de succès est p. Soit X le nombre de succès parmi les n résultats. Alors X suit une loi binomiale de paramètres n et p, dénoté X B(n, p). On a R X = {0, 1, 2,..., n}. MTH2302D: Lois discrètes 9/46

10 Loi binomiale (suite) La fonction de masse d une variable aléatoire X B(n, p) est p X (x) = pour x {0, 1, 2,..., n}. ( n x ) p x (1 p) n x MTH2302D: Lois discrètes 10/46

11 Loi binomiale (suite) La fonction de répartition de la loi binomiale est ( ) x n F X (x) = p k (1 p) n k si x {0, 1, 2,..., n}. k k=0 Si a x < a + 1 avec a entier, alors F X (x) = F X (a). Comme le calcul de F X (x) est fastidieux lorsque que n est grand, on utilise souvent en pratique une table de loi binomiale (disponible sur le site web du cours). Exemple 3 Prouver que F X (n) = 1. MTH2302D: Lois discrètes 11/46

12 Autres caractéristiques Si X B(n, p), alors : 1. E(X) = np. 2. V(X) = np(1 p). 3. Médiane : x = np. 4. Mode : x = (n + 1)p. Exemple 4 Démontrer que E(X) = np. MTH2302D: Lois discrètes 12/46

13 Exemple 5 Un lot contient 20 articles parmi lesquels 4 sont défectueux. On pige avec remise 7 articles du lot. Calculer 1. La probabilité d observer exactement un article défectueux. 2. La probabilité d observer au moins 4 articles défectueux. 3. La moyenne et la variance du nombre d articles défectueux. MTH2302D: Lois discrètes 13/46

14 Loi binomiale : calcul avec des logiciels Excel : p X (x) = LOI.BINOMIALE(x, n, p, 0). F X (x) = LOI.BINOMIALE(x, n, p, 1). R : p X (x) = dbinom(x, n, p). F X (x) = pbinom(x, n, p). MTH2302D: Lois discrètes 14/46

15 Loi binomiale : tracés en R Soit X B(n = 50, p = 0.2). Fonction de masse p X (x) : x=seq(0,50,1) ; px=dbinom ( x=x, size=50, prob=0.2 ) ; plot ( x, px, type= h, xlab= x, ylab= p(x), main= fonction de masse de X B(n=50,p=0.2) ). Fonction de répartition F X (x) : x=seq(0,50,0.1) ; Fx=pbinom ( q=x, size=50, prob=0.2 ) ; plot ( x, Fx, type= s, xlab= x, ylab= F(x), main= fonction de répartition de X B(n=50,p=0.2) ). MTH2302D: Lois discrètes 15/46

16 fonction de masse de X~B(n=50,p=0.2) p(x) x MTH2302D: Lois discrètes 16/46

17 fonction de répartition de X~B(n=50,p=0.2) F(x) x MTH2302D: Lois discrètes 17/46

18 Proportion de succès Soit X B(n, p) et ˆp = X n épreuves. Alors ˆp est une variable aléatoire et 1. E(ˆp) = p. p(1 p) 2. V(ˆp) =. n la proportion de succès parmi les n Exemple 6 Un procédé de fabrication produit 5% d articles non conformes. Un échantillon de 50 unités de cet article est prélevé. Quelle est la probabilité qu il y ait plus de 7% d articles non conformes dans l échantillon? MTH2302D: Lois discrètes 18/46

19 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique 5. Loi de Poisson MTH2302D: Lois discrètes 19/46

20 Loi géométrique Contexte On répète continuellement et de façon indépendante une épreuve de Bernoulli dont la probabilité de succès est p. Soit X le nombre d épreuves nécessaires pour obtenir un premier succès. Alors X suit une loi géométrique de paramètre p, dénoté X Geom(p). On a R X = {1, 2, 3,...}. MTH2302D: Lois discrètes 20/46

21 Loi géométrique (suite) La fonction de masse d une variable aléatoire X Geom(p) ou X G(p) est p X (x) = (1 p) x 1 p pour x = 1, 2, 3,.... La fonction de répartition d une variable aléatoire X Geom(p) est { 1 (1 p) a si x [a; a + 1[ avec a N et a 1, F X (x) = 0 sinon. MTH2302D: Lois discrètes 21/46

22 Loi géométrique (suite) Exemple 7 Montrer que p X est une fonction de masse. Exemple 8 Montrer que F X (x) = 1 (1 p) x si x est entier. MTH2302D: Lois discrètes 22/46

23 Loi géométrique (suite) Si X Geom(p) alors 1. E(X) = 1 p. 2. V(X) = 1 p p 2. MTH2302D: Lois discrètes 23/46

24 Loi géométrique : calcul Excel : faire les calculs directement. R (avec R X = {1, 2,..., }) : p X (x) = dgeom(x, p). F X (x) = pgeom(x, p). MTH2302D: Lois discrètes 24/46

25 fonction de masse de X~G(p=0.2) p(x) x MTH2302D: Lois discrètes 25/46

26 fonction de répartition de X~G(p=0.2) F(x) x MTH2302D: Lois discrètes 26/46

27 Exemple 9 On lance un dé continuellement jusqu à l obtention d un six. Soit X le nombre de lancers nécessaires. Quels sont la moyenne, la variance, et l écart-type de X? MTH2302D: Lois discrètes 27/46

28 Loi géométrique (suite) Théorème Propriété d absence de mémoire : si X Geom(p) alors pour tous t, s > 0 P (X > s + t X > t) = P (X > s). Exemple 10 Prouver le théorème. MTH2302D: Lois discrètes 28/46

29 Exemple 11 On lance un dé continuellement jusqu à l obtention d un 6. Soit X le nombre de lancers nécessaires. 1. Quelle est la probabilité d obtenir un premier 6 au deuxième lancer? 2. Quelle est la probabilité qu il faille plus de 10 lancers pour obtenir un 6? 3. Si aucun 6 n a été obtenu lors des 8 premiers lancers, quelle est la probabilité qu au moins deux autres lancers soient nécessaires? MTH2302D: Lois discrètes 29/46

30 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique 5. Loi de Poisson MTH2302D: Lois discrètes 30/46

31 Loi hypergéométrique Contexte On tire sans remise n objets d un ensemble de N objets dont D possédent une caractéristique particulière (et les autres N D ne la possèdent pas). Soit X le nombre d objets de l échantillon qui possèdent la caractéristique. Alors X suit une loi hypergéométrique de paramètres n, N, D, dénoté X H(N, D, n). On a R X = {max{0, n N + D},..., min(n, D)}. MTH2302D: Lois discrètes 31/46

32 Loi hypergéométrique (suite) La fonction de masse d une variable aléatoire X H(N, D, n) est ( ) ( ) D N D x n x p X (x) = ( ) N n pour x R X. MTH2302D: Lois discrètes 32/46

33 Loi hypergéométrique (suite) Si X H(N, D, n) alors 1. E(X) = n D N. 2. V(X) = n D N ( 1 D N ) ( ) N n. N 1 MTH2302D: Lois discrètes 33/46

34 Loi hypergéométrique : calcul Excel : p X (x) = LOI.HYPERGEOMETRIQUE.N (x, n, D, N, 0). F X (x) = LOI.HYPERGEOMETRIQUE.N (x, n, D, N, 1). R : p X (x) = dhyper(x=x, m=d, n=n D, k=n). F X (x) = phyper(q=x, m=d, n=n D, k=n). MTH2302D: Lois discrètes 34/46

35 Exemple 12 Une boîte contient 8 composants parmi lesquels 2 sont défectueux. Trois composants sont pris au hasard et sans remise de la boîte. Soit X le nombre de composants défectueux dans l échantillon. Donner la fonction de masse de X, ainsi que E(X) et V(X). MTH2302D: Lois discrètes 35/46

36 1. Loi de Bernoulli 2. Loi binomiale 3. Loi géométrique 4. Loi hypergéométrique 5. Loi de Poisson MTH2302D: Lois discrètes 36/46

37 Loi de Poisson Une variable aléatoire X suit une loi de Poisson de paramètre c > 0 si p X (x) = e c c x x! si x = 0, 1, 2,.... Ceci est dénoté X Poi(c). Le paramètre c correspond à la moyenne de la loi de Poisson. MTH2302D: Lois discrètes 37/46

38 Loi de Poisson : calcul Livre page 473 et site web du cours. Excel : p X (x) = LOI.POISSON (x, c, 0). F X (x) = LOI.POISSON (x, c, 1). R : p X (x) = dpois (x=x, lambda=c). F X (x) = ppois (q=x, lambda=c). MTH2302D: Lois discrètes 38/46

39 fonction de masse de X~Poi(c=2) p(x) x MTH2302D: Lois discrètes 39/46

40 fonction de répartition de X~Poi(c=2) F(x) x MTH2302D: Lois discrètes 40/46

41 Exemple 13 Une machine utilisée dans une chaîne de production tombe en panne en moyenne 2 fois par mois. Soit X le nombre de pannes par mois. En supposant que X suit une loi de Poisson, quelle est la probabilité que dans un mois donné la machine 1. Ne tombe pas en panne? 2. Tombe en panne au moins deux fois? MTH2302D: Lois discrètes 41/46

42 Loi de Poisson Si X Poi(c), alors 1. E(X) = c. 2. V(X) = c. Exemple 14 Démontrer que E(X) = c. Exemple 15 Trouver la médiane de X Poi(c = 2). MTH2302D: Lois discrètes 42/46

43 Processus de Poisson Considérons un type d événement survenant dans le temps. Le comptage du nombre de réalisations de l événement est un processus de Poisson si Pour deux intervalles de temps disjoints, le nombre de réalisations dans l un et l autre intervalle sont indépendants. Pour tout intervalle de temps de durée t, le nombre de réalisations suit une loi de Poisson de paramètre c = λt, où λ > 0 est le nombre moyen de réalisations par unité de temps. MTH2302D: Lois discrètes 43/46

44 Exemples supplémentaires Autres situations où la v.a. suit une loi de Poisson : 1. Le nombre de voitures arrivant à un feu de circulation en 5 minutes. 2. Le nombre de défauts sur une pièce usinée. 3. Le nombre d erreurs typographiques sur une page d un livre. 4. Le nombre de clients entrant dans un magasin en une journée. 5. Le nombre de particules alpha émises par un matériau radioactif en une minute. Remarque : On suppose, dans tous ces exemples, que le nombre moyen de réalisations de l événement d intérêt par unité de temps, dimension, nombre d épreuve, etc., est modéré. MTH2302D: Lois discrètes 44/46

45 Approximations Approximation d une loi hypergéométrique par une binomiale Soit X H(N, D, n). Si n/n est petit alors X suit approximativement une loi binomiale B(n, p), où p = D N : P (X = x) = ( D x pour x = 0, 1, 2,..., n (on suggère n/n < 0.1). ) ( ) N D n x ( ) N n ( n x ) ( ) D x ( 1 D ) n x N N MTH2302D: Lois discrètes 45/46

46 Approximations (suite) Approximation d une loi binomiale par une Poisson Soit X B(n, p). Si n est grand et p est petit (de sorte que np est modéré) alors X suit approximativement une loi de Poisson Poi(c), où c = np : ( ) n P (X = x) = p x (1 p) n x e np (np) x x x! pour x = 0, 1, 2,... (on suggère n > 20 et p < 0.05). MTH2302D: Lois discrètes 46/46

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50

1/4 2/4 3/4 4/4. 10. Estimation MTH2302D. S. Le Digabel, École Polytechnique de Montréal H2016. (v1) MTH2302D: estimation 1/50 10. Estimation MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: estimation 1/50 Plan 1. Introduction 2. Estimation ponctuelle 3. Estimation par intervalles de confiance 4. Autres

Plus en détail

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3

1 Variable aléatoire discrète... 1. 1.1 Rappels... 1. 1.2 Exemple... 2 2 Couples de variables aléatoires... 3. 2.1 Définition... 3 CHAPITRE : LOIS DISCRÈTES Sommaire Variable aléatoire discrète................................... Rappels........................................... Exemple......................................... Couples

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

1. Probabilités élémentaires

1. Probabilités élémentaires 1. Probabilités élémentaires MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: probabilités 1/48 Plan 1. Expériences aléatoires et événements 2. Probabilités 3. Analyse combinatoire

Plus en détail

Theme 4 - Lois usuelles discrètes

Theme 4 - Lois usuelles discrètes L2 AES TD de statistique 2008/2009 Cours de Mme Mériot M.-A. Jambu & S.Turolla Theme 4 - Lois usuelles discrètes Exercice 1 (Loi binomiale) A et B sont deux avions ayant respectivement 4 et 2 moteurs.

Plus en détail

Lois de probabilité (2/3) Anita Burgun

Lois de probabilité (2/3) Anita Burgun Lois de probabilité (2/3) Anita Burgun Contenu des cours Loi binomiale Loi de Poisson Loi hypergéométrique Loi normale Loi du chi2 Loi de Student Loi hypergéométrique La loi du tirage exhaustif Puce à

Plus en détail

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION

Mesures et analyses statistiques de données - Probabilités. Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION MASTER 1 GSI- Mentions ACCIE et RIM La Citadelle - ULCO Mesures et analyses statistiques de données - Probabilités Novembre 2012 - Contrôle Continu, Semestre 1 CORRECTION Exercice 1 Partie I 12pts 1 Étude

Plus en détail

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq»

Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Tests statistiques Formation «Analyse de données RNA-seq/ChiP-seq» Guy Perrière Pôle Rhône-Alpes de Bioinformatique 14 novembre 2012 Guy Perrière (PRABI) Tests statistiques 14 novembre 2012 1 / 40 Plan

Plus en détail

6. Quelques lois continues

6. Quelques lois continues 6. Quelques lois continues MTH2302D S. Le Digabel, École Polytechnique de Montréal H2016 (v1) MTH2302D: Lois continues 1/30 Plan 1. Loi uniforme 2. Loi exponentielle 3. Lois gamma / Weibull / bêta MTH2302D:

Plus en détail

Probabilités TD1. Axiomes des probabilités.

Probabilités TD1. Axiomes des probabilités. TD1. Axiomes des probabilités. 1. Une boîte contient 3 jetons, un rouge, un vert et un bleu. On considère l expérience consistant à tirer au hasard un jetons dans la boîte, à l y remetre puis à en tirer

Plus en détail

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités

Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007. Introduction aux probabilités Université de Pau et des Pays de l Adour Département de Mathématiques Année 2006-2007 Introduction aux probabilités Série n 3 Exercice 1 Une urne contient neuf boules. Quatre de ces boules portent le numéro

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Chapitre 8: Inférence, échantillonnage et estimation

Chapitre 8: Inférence, échantillonnage et estimation Chapitre 8: Inférence, échantillonnage et estimation 1. Echantillonnage aléatoire simple 2. Inférence statistique 3. Estimation 4. Evaluation graphique de l adéquation d un modèle de distribution 1 L inférence

Plus en détail

IUT d Orléans - Département d Informatique TD de Probabilités

IUT d Orléans - Département d Informatique TD de Probabilités IUT d Orléans - Département d Informatique TD de Probabilités Fiche 1 Dénombrement DENOMBREMENT : arrangements et combinaisons Le but de cette première partie est d introduire la fonction factorielle,

Plus en détail

Exercices chapitre 8. Probabilités.

Exercices chapitre 8. Probabilités. Lycée Descartes PC 2014-15 M. Besbes Exercices chapitre 8. Probabilités. Exercice 1. Soit (Ω, B, P ) un espace probabilisé. Montrer que l ensemble : A = {A B; P (A) = 0 ou P (A) = 1} est une tribu. Exercice

Plus en détail

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008

Statistiques. IUT Biotechnologie 2ème année. Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 Statistiques IUT Biotechnologie 2ème année Jean-Christophe Breton Université de La Rochelle Octobre-Novembre 2008 version du 04 octobre 2008 Table des matières 1 Lois de probabilité usuelles 1 1.1 Dénombrement................................

Plus en détail

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque

Feuille 1. L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009. A le chambre des députés d un pays composé de 100 départements, chaque Feuille 1 L3 Maths Appliquées lagache@biologie.ens.fr 27 Janvier 2009 1 Combinatoire 1.1 Exercice 1 A le chambre des députés d un pays composé de 100 départements, chaque département est représenté par

Plus en détail

Échantillonnage et estimation

Échantillonnage et estimation Échantillonnage et estimation Dans ce chapitre, on s intéresse à un caractère dans une population donnée dont la proportion est notée. Cette proportion sera dans quelques cas connue (échantillonnage),

Plus en détail

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle

Probabilité d un événement. Combinaisons d événements. Probabilité conditionnelle Probabilités classiques Mathématiques discrètes Théorie des probabilités Cours 31, MATH/COSC 1056F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne 7 novembre 00,

Plus en détail

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité

Corrrigé du sujet de Baccalaurat S. Pondichery 2015. Spécialité Corrrigé du sujet de Baccalaurat S Pondichery 2015 Spécialité EXERCICE 1 (4 points) commun à tous les candidats Partie A Soit f la fonction définie sur R par f(x) et la droite d équation et la droite d

Plus en détail

«Cours Statistique et logiciel R»

«Cours Statistique et logiciel R» «Cours Statistique et logiciel R» Rémy Drouilhet (1), Adeline Leclercq-Samson (1), Frédérique Letué (1), Laurence Viry (2) (1) Laboratoire Jean Kuntzmann, Dép. Probabilites et Statistique, (2) Laboratoire

Plus en détail

Schéma de Bernoulli Loi binomiale

Schéma de Bernoulli Loi binomiale Schéma de Bernoulli Loi binomiale I) Epreuve et loi de Bernoulli 1) Définition On appelle épreuve de Bernoulli de paramètre, toute expérience aléatoire admettant deux issues exactement : L une appelée

Plus en détail

Lois de probabilité. Anita Burgun

Lois de probabilité. Anita Burgun Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage

Plus en détail

Estimation. Anita Burgun

Estimation. Anita Burgun Estimation Anita Burgun Estimation Anita Burgun Contenu du cours Sondages Mesures statistiques sur un échantillon Estimateurs Problème posé Le problème posé en statistique: On s intéresse à une population

Plus en détail

Statistique (MATH-F-315, Cours #1)

Statistique (MATH-F-315, Cours #1) Statistique (MATH-F-315, Cours #1) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers

) 1 avec E. : «on obtient au moins une fois un 6 en n lancers». I. Méthode de dénombrement 1. Cas de deux lancers première question supplémentaire. Cette méthode mène à une variable aléatoire suivant la loi binomiale. Copie n 5 : ce groupe résout très rapidement la question en considérant l'événement contraire! Heureusement

Plus en détail

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant

Lois de probabilité. a ; avec a < b, toute fonction f vérifiant Lois de probabilité A) Lois à densité Loi continue Approche : Jusqu ici, les variables aléatoires étudiées prenaient un nombre fini de valeurs Or les issues d un grand nombre d expériences aléatoires prennent

Plus en détail

Sujets HEC B/L 2013-36-

Sujets HEC B/L 2013-36- -36- -37- Sujet HEC 2012 B/L Exercice principal B/L1 1. Question de cours : Définition et propriétés de la fonction de répartition d une variable aléatoire à densité. Soit f la fonction définie par : f(x)

Plus en détail

Baccalauréat ES Pondichéry 21 avril 2016

Baccalauréat ES Pondichéry 21 avril 2016 Exercice 1 Commun à tous les candidats Baccalauréat ES Pondichéry 21 avril 216 4 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions posées, une seule des

Plus en détail

Exercices de probabilités et statistique

Exercices de probabilités et statistique Exercices de probabilités et statistique Université Paris 1 Panthéon-Sorbonne Cours de deuxième année de licence de sciences économiques Fabrice Rossi & Fabrice Le Lec Cette œuvre est mise à disposition

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES/spé TL Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes.

Au menu. Cours 7: Classes Probabilistes. Application : Calcul de la médiane. Sous menu. Retours sur quelques algorithmes. Au menu Cours 7: Classes Probabilistes Olivier Bournez bournez@lix.polytechnique.fr LIX, Ecole Polytechnique Retours sur quelques algorithmes Quelques résultats INF561 Algorithmes et Complexité 1 2 Sous

Plus en détail

0.1 Espace de probabilité

0.1 Espace de probabilité 0.1. ESPACE DE PROBABILITÉ 1 0.1 Espace de probabilité Exercice 1 La population d une ville compte 48% d hommes et 52% de femmes. Le 1er Janvier 2002 5% des hommes et 1% des femmes avaient la grippe. a)

Plus en détail

Espérances et variances

Espérances et variances [http://mp.cpgedupuydelome.fr] édité le 29 décembre 201 Enoncés 1 Espérances et variances Exercice 1 [ 04018 ] [Correction] Soit X une variable aléatoire discrète à valeurs dans [a ; b]. a Montrer que

Plus en détail

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC

Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Lycée Fénelon Sainte-Marie Préparation Science-Po/Prépa HEC Dénombrement et probabilités Version du juillet 05 Enoncés Exercice - YouTube Sur YouTube, les vidéos sont identifiées à l aide d une chaîne

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Cours PS1 (Probabilités et Statistiques 1)

Cours PS1 (Probabilités et Statistiques 1) Bert Wiest Université de Rennes UFR Mathématiques et IRMAR Cours PS (Probabilités et Statistiques ) Organisation Il y a 5h de cours, dont 2h pour les contrôles continus. Détails sur ma page http://perso.univ-rennes.fr/bertold.wiest

Plus en détail

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique

Support du cours de Probabilités et Statistiques. IUT d Orléans, Département Informatique Support du cours de Probabilités et Statistiques IUT d Orléans, Département informatique Pierre Andreoletti IUT d Orléans, Département Informatique Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences)

Plus en détail

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A

Agrégation interne de Sciences économiques et sociales - Session 2008 Épreuve de Mathématiques - sujet A Épreuve de Mathématiques - sujet A Exercice Une société de location de voitures possède trois agences, une à Rennes, une à Lyon, une à Marseille. Lorsqu un client loue une voiture, un jour donné, dans

Plus en détail

suit la loi centrée réduite N(0;1). La courbe de f est symétrique par rapport à la droite d'équation x =

suit la loi centrée réduite N(0;1). La courbe de f est symétrique par rapport à la droite d'équation x = T ES/L EXERCICES : LOI DE PROBABILITE A DENSITE Rappel Exercice 1 Soit X une variable aléatoire. X suit la loi normale N( ;²) lorsque Z = X suit la loi centrée réduite N(0;1). La courbe de f est symétrique

Plus en détail

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction

Baccalauréat STL Biotechnologies juin 2014 Polynésie Correction Baccalauréat STL Biotechnologies juin 014 Polynésie Correction EXERCICE 1 Les trois parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire,

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Corrigé Baccalauréat ES/L Amérique du Sud 2 novembre 2 Corrigé A. P. M. E. P. EXERCICE Commun à tous les candidats 5 points. Diminuer le budget de 6 % sur un an revient à multiplier par 6 =,94. Diminuer le budget

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Arts & Métiers Filière PSI Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes

Plus en détail

Test de Poisson à 1 échantillon et à 2 échantillons

Test de Poisson à 1 échantillon et à 2 échantillons Test de Poisson à 1 échantillon et à 2 échantillons Sous-menus de Minitab 15 : Stat>Statistiques élémentaires>test de Poisson à 1 échantillon Stat>Statistiques élémentaires>test de Poisson à 2 échantillons

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

LOIS DE PROBABILITÉ À DENSITÉ

LOIS DE PROBABILITÉ À DENSITÉ LOIS DE PROBABILITÉ À DENSITÉ Une expérience aléatoire consiste à choisir au hasard un nombre réel X dans l'intervalle I = ]0 ; 0]. L'univers est l'intervalle I. C'est un univers infini. On ne peut pas

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES

DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Université Paris1, Licence 00-003, Mme Pradel : Principales lois de Probabilité 1 DEFINITION et PROPRIETES des PRINCIPALES LOIS de PROBABILITES Notations Si la variable aléatoire X suit la loi L, onnoterax

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

Cours Statistiques L2 Université Nice Sophia-Antipolis. François Delarue

Cours Statistiques L2 Université Nice Sophia-Antipolis. François Delarue Cours Statistiques L2 Université Nice Sophia-Antipolis François Delarue Table des matières Chapitre 1. Rappels de Probabilités 5 1. Espaces de probabilité et Variables aléatoires 5 2. Espérances et variances

Plus en détail

Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h

Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h Master de Mathématiques M1 Analyse fonctionnelle Examen du 16 juin 2011 1 - durée : 3h - Le seul document autorisé est un résumé manuscrit du cours de trois pages maximum. - Les téléphones portables et

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Séminaire de Statistique

Séminaire de Statistique Master 1 - Economie & Management Séminaire de Statistique Support (2) Variables aléatoires & Lois de probabilité R. Abdesselam - 2013/2014 Faculté de Sciences Economiques et de Gestion Université Lumière

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale

Principes Pourcentage / Standard Moyenne / Standard. Tests d'hypothèse. Formation Fondamentale Tests d'hypothèse Formation Fondamentale Sommaire 1 Principes Généralités 2 Pourcentage par rapport à un standard 3 Moyenne par rapport à un standard Sommaire 1 Principes Généralités 2 Pourcentage par

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

Contrôle de statistiques Sujet 2 Corrigé

Contrôle de statistiques Sujet 2 Corrigé Contrôle de statistiques Sujet 2 Corrigé L2 d économie - Université Paris 1 Panthéon-Sorbonne Nom : Prénom : Les exercices sont indépendants. Le barème est indicatif. L utilisation de documents, calculatrices,

Plus en détail

Transparents Philippe Lambert. Faculté des Sciences Sociales Université de Liège

Transparents Philippe Lambert. Faculté des Sciences Sociales Université de Liège SOCI1241-1 Eléments du calcul des probabilités appliquées aux sciences sociales et exercices pratiques (en ce compris les bases de statistiques inférentielles) Transparents Philippe Lambert http : //www.statsoc.ulg.ac.be/proba.html

Plus en détail

Extraits de Concours

Extraits de Concours Pierre-Louis CAYREL 2008-2009 Prépa HEC 2 disponible sur www.cayrel.net Lycée Lavoisier Feuille d extraits de concours Extraits de Concours 1 HEC Exercice 1 (via HEC - Oral 1997) Écrire un programme qui

Plus en détail

Question de cours. Exercice 1. Exercice 2

Question de cours. Exercice 1. Exercice 2 1 UBO, Faculté de Droit et Sciences Economiques de Brest STATISTIQUE : 2 ème année DEUG Sc. Eco Examen de Fevrier 1998 A. Nassiri Durée = 3 heures Attention : Une bonne présentation de la copie sera récompensée

Plus en détail

PROBABILITÉS Variable aléatoire

PROBABILITÉS Variable aléatoire PROBABILITÉS Variable aléatoire I Langage des événements Lors d'un oral de mathématiques, quatre questions sont proposées : une question de probabilités (P) ; une question de statistiques (S) ; une question

Plus en détail

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.

LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,

Plus en détail

LA THÉORIE DES FILES D ATTENTE

LA THÉORIE DES FILES D ATTENTE LA THÉORIE DES FILES D ATTENTE Origine de la théorie de la fille d attente Cette théorie est une approche mathématique permettant d analyser les files d attente. Elle est basée sur l étude des équipements

Plus en détail

TOPOLOGIE DE LA DROITE REELLE

TOPOLOGIE DE LA DROITE REELLE TOPOLOGIE DE LA DROITE REELLE P. Pansu 16 mai 2005 1 Qu est-ce que la topologie? C est l étude des propriétés des objets qui sont conservées par déformation continue. Belle phrase, mais qui nécessite d

Plus en détail

Leçon n 11 Statistiques et simulations

Leçon n 11 Statistiques et simulations Leçon n 11 Statistiques et simulations C est une leçon qui se prolongera les années suivantes. Il s agit de rapprocher «les statistiques» d une notion qui sera étudiée en première «les probabilités» et

Plus en détail

1 Introduction aux Probabilités

1 Introduction aux Probabilités Probabilités Mathématiques 218 1 Introduction aux Probabilités 1.1 Généralités Le hasard est le fait d évènements qu on ne peut pas prévoir et qui font partie de notre quotidien. Les exemples sont nombreux

Plus en détail

II. Eléments des probabilités

II. Eléments des probabilités II. Eléments des probabilités Exercice II.1 Définir en extension l ensemble fondamental Ω des résultats associé à chacune des expériences aléatoires suivantes: 1. jeter une pièce de monnaie et observer

Plus en détail

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni.

b) Exprimer B à l aide des événements A n et en déduire la probabilité de B Exercice 1.4. Inégalité de Bonferroni. MP 205/6 Feuille d exercices - Probabilités généralités). Univers, généralités Exercice.. Langage des probabilités. Soit Ω, A) un espace probabilisable. Soit A n ) n N une famille d événements et A, B,

Plus en détail

Statistique (MATH-F-315, Cours #3)

Statistique (MATH-F-315, Cours #3) Statistique (MATH-F-315, Cours #3) Thomas Verdebout Université Libre de Bruxelles 2015 Plan de la partie Statistique du cours 1. Introduction. 2. Théorie de l estimation. 3. Tests d hypothèses et intervalles

Plus en détail

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure.

Construction de la mesure de Lebesgue. 1 Mesure positive engendrée par une mesure extérieure. Université d Artois Faculté des Sciences Jean Perrin Analyse Fonctionnelle (Licence 3 Mathématiques-Informatique Daniel Li Construction de la mesure de Lebesgue 28 janvier 2008 Dans ce chapitre, nous allons

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Probabilités Épreuve de Bernoulli, loi de Bernoulli.

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Probabilités Épreuve de Bernoulli, loi de Bernoulli. 1 ère - 3 Chap.9 : Loi binomiale. Échantillonnage. 1 ère - Chapitre 9 : LOI BINOMIALE. ÉCHANTILLONNAGE. Textes officiels (30 septembre 2010) : CONTENU CAPACITÉ ATTENDUE COMMENTAIRE Probabilités Épreuve

Plus en détail

3. Caractéristiques et fonctions d une v.a.

3. Caractéristiques et fonctions d une v.a. 3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions

Plus en détail

Calculs de probabilités conditionelles

Calculs de probabilités conditionelles Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile

Plus en détail

Fiche méthodologique Les pièges dans les dénombrements

Fiche méthodologique Les pièges dans les dénombrements Fiche méthodologique Les pièges dans les dénombrements BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Dans cette fiche, on résume quelques points techniques sur les dénombrements et la théorie des probabilités.

Plus en détail

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités

UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie et Finance / Licence de Gestion MATH201 : Probabilités Chapitre II : Espaces probabilisés 1 Notions d événements 1.1 Expérience

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Amérique du Sud, novembre 2006

Amérique du Sud, novembre 2006 Exercice 1 ( 5 points) Commun à tous les candidats Un hôpital est composé de trois services : service de soins A, service de soins B, service de soins C. On s intéresse aux prises de sang effectuées dans

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Probabilités sur un univers ni

Probabilités sur un univers ni POIRET Aurélien TD n o 21 MPSI Probabilités sur un univers ni 1 Événements et probabilités Exercice N o 1 : Dans un centre de loisirs, une personne peut pratiquer trois activités. On considère les événements

Plus en détail

Modèles probabilistes

Modèles probabilistes 1 Cahier de Mathématiques Appliquées n o 3 Modèles probabilistes B Ycart Ceci n est pas un cours de probabilités, mais une introduction pratique à l utilisation des modèles probabilistes en statistique

Plus en détail

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve...

Sommaire. Les pourcentages. Les suites. Statistiques. Les probabilités. Descriptif de l épreuve... Conseils pour l épreuve... Sommaire Descriptif de l épreuve............................................. Conseils pour l épreuve............................................ Les pourcentages FICHES Pages 1 Pourcentage Proportions....................................7

Plus en détail

9. Distributions d échantillonnage

9. Distributions d échantillonnage 9. Distributions d échantillonnage MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v3) MTH2302D: distributions d échantillonnage 1/46 Plan 1. Échantillons aléatoires 2. Statistiques et distributions

Plus en détail

7. Loi normale et théorème central limite

7. Loi normale et théorème central limite 7. Loi normale et théorème central limite MTH2302D S. Le Digabel, École Polytechnique de Montréal A2016 (v1) MTH2302D: loi normale 1/35 Plan 1. Loi normale 2. Loi normale centrée réduite 3. Approximation

Plus en détail

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante.

Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Eléments de stratégie d échantillonnage à l adresse des diagnostiqueurs amiante. Essai de détermination du nombre de prélèvements à effectuer lors d un diagnostic amiante afin d assurer une représentativité

Plus en détail

Statistiques et estimation

Statistiques et estimation DERNIÈRE IMPRESSION LE 23 juillet 2014 à 16:35 Statistiques et estimation Table des matières 1 Intervalle de fluctuation 2 1.1 Simulation................................. 2 1.2 Définition.................................

Plus en détail

11. Tests d hypothèses (partie 1/2)

11. Tests d hypothèses (partie 1/2) 11. Tests d hypothèses (partie 1/2) MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v1) MTH2302D: tests d hypothèses 1/30 Plan 1. Introduction 2. Hypothèses et erreurs 3. Tests d hypothèses

Plus en détail

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT

Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Cours de Probabilités et statistiques L1 2011-2012 Maths-PC-SVT Université d Avignon Fichier dispo sur http://fredericnaud.perso.sfr.fr/ Une étude statistique dans la population montre que le Q.I. est

Plus en détail

Baccalauréat ES Polynésie 10 juin 2016

Baccalauréat ES Polynésie 10 juin 2016 Baccalauréat ES Polynésie 0 juin 06 EXERCICE Les parties A et B sont indépendantes On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre que %

Plus en détail

Chapitre I Théorie de la ruine

Chapitre I Théorie de la ruine Chapitre I Théorie de la ruine Olivier Wintenberger ISUP 2, Université Paris VI (slides Olivier Lopez) Année universitaire 2013-2014 1 Risque collectif 2 Modélisation des coûts de sinistres 3 Probabilité

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc

TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc TUTORAT UE4 2010-2011 Biostatistiques Concours Blanc Lorsque cela n est pas précisé (explicitement ou implicitement), les tests sont réalisés à 5% en bilatéral QCM n 1 : Généralités sur les probabilités

Plus en détail

TD 1 & 2 Rappels de probabilités

TD 1 & 2 Rappels de probabilités Master IF, ENS de Lyon Évaluation de performance 5 & 22 septembre 20 TD & 2 appels de probabilités lionel.rieg@ens-lyon.fr Probabilités discrètes. Calcul de probabilités Exercice Soient A et B des événements

Plus en détail

8. Statistique descriptive

8. Statistique descriptive 8. Statistique descriptive MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: statistique descriptive 1/47 Plan 1. Introduction 2. Terminologie 3. Descriptions graphiques des

Plus en détail

Correction du baccalauréat STMG Centres étrangers 17 juin 2014

Correction du baccalauréat STMG Centres étrangers 17 juin 2014 orrection du baccalauréat STMG entres étrangers 17 juin 2014 EXERIE 1 4 points On considère une fonction f définie sur l intervalle [ 5 ; 3] dont la représentation graphique f est donnée ci-dessous. Soit

Plus en détail

Chapitre 2. Applications mesurables. 2.1 Topologie et tribus boréliennes de R et R +

Chapitre 2. Applications mesurables. 2.1 Topologie et tribus boréliennes de R et R + Chapitre 2 Applications mesurables 2.1 Topologie et tribus boréliennes de R et R + Dans la théorie de l intégration de Lebesgue, il est très commode de travailler avec des fonctions à valeurs dans la droite

Plus en détail