Corrigé : Notions de fonctions et Théorèmes classiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé : Notions de fonctions et Théorèmes classiques"

Transcription

1 Corrigé : Notions de fonctions et Théorèmes classiques Exercice 1 On considère la fonction f définie par : f (x) = 5x Calculer l'image de 3 par f. L'image de 3 par f est donnée par f ( 3). Comme f (x) = 5x + 1, f ( 3) = 5 ( 3) + 1 = = 16. Conclusion : L'image de 3 par f est Calculer l'antécédent de 4 par f. Calculer l'antécédent de 4 par f revient à chercher la valeur de x telle que f (x) = 4. On doit donc résoudre l'équation : 5x + 1 = 4. Dans ce cas, 5x = 4 1 = 3. 3 Par conséquent, x = 5 = 0,6. Conclusion : L'antécédent de 4 par f est 0,6. Exercice 2 La copie d'écran ci-dessous montre le travail qu'a effectué Camille à l'aide d'un tableur à propos des fonctions g et h définies par : g (x) = 5x² + x 7 et h (x) = 2x 7 1. Donner un nombre qui a pour image 1 par la fonction g. D'après le tableau, un nombre qui a pour image 1 par la fonction g est Écrire les calculs montrant que : g ( 2) = 11. Comme g (x) = 5x² + x 7, alors g ( 2) = 5 ( 2)² + ( 2) 7 = = = 20 9 = Quelle formule Camille a-t-elle saisie dans la cellule B3? Dans la cellule B3, Camille a saisi la formule "=2*B1 7". 4. a) Déduire du tableau une solution de l'équation 5x² + x 7 = 2x 7. Pour que x soit une solution de 5x² + x 7 = 2x 7, il faut que les résultats des lignes 2 et 3 soient identiques. Or, on a deux résultats égaux à 7. Cela se produit pour x = 0. Ainsi, une solution de l'équation 5x² + x 7 = 2x 7 est 0. b) Cette équation a-t-elle une autre solution que celle trouvée grâce au tableur? Résoudre l'équation 5x² + x 7 = 2x 7 revient à résoudre 5x² + x = 2x (On a ajouté 7 aux deux membres). ou encore : 5x² x = 0 (En enlevant 2x aux deux membres). Après factorisation, cela donne : x(5x 1) = 0. Il y a donc bien une autre valeur de x qui peut annuler ce produit : il s'agit de = 1 1 = 0. Par conséquent, il y a une autre solution que celle trouvée grâce au tableur. ou 0,2. En effet :

2 Exercice 3 Une usine de Moorea fabrique du jus de fruits. Soit C une fonction qui, à une quantité de jus fabriquée en litre(s) associe le coût de fabrication en Franc (Franc Pacifique utilisé en Polynésie Française). On a représenté ci-dessous la fonction C pour une quantité de jus comprise entre 0 et 130 litres. À l'aide du graphique ci-dessus, répondre aux questions suivantes : 1. a) Donner le coût de fabrication de 100 litres de jus. D'après les traits de lecture noirs, le coût de fabrication de 100 litres de jus s'élève à 400 F. b) Pour quelle(s) quantité(s) de jus, le coût de fabrication est-il supérieur à 550 F? D'après les traits de lecture rouges, le coût de fabrication est supérieur à 550 F lorsqu'on fabrique entre 0 et 65 litres de jus environ. 2. a) Donner l'image de 85 par la fonction C. D'après les traits de lecture verts, l'image de 85 par la fonction C est environ 450. b) Lire C(75). D'après les traits de lecture bleus, C(75) est légèrement inférieur à 500. c) Donner le(s) antécédent(s) de 600 par la fonction C. D'après les traits de lecture jaunes, les antécédents de 600 par la fonction C sont 0 et 55 environ.

3 Exercice 4 Pour son anniversaire, Julien a reçu un coffret de tir à l'arc. Il tire une flèche. La trajectoire de la pointe de cette flèche est représentée ci-dessous. La courbe donne la hauteur en mètres en fonction de la distance horizontale en mètres parcourue par la flèche. 1. Dans cette partie, les réponses seront données grâce à des lectures graphiques. Vous ferez une phrase réponse sur votre copie. a. De quelle hauteur la flèche est-elle tirée? La flèche est tirée à 1 m de haut. b. À quelle distance de Julien la flèche retombe-t-elle au sol? Elle retombe à 10 m de Julien. c. Quelle est la hauteur maximale atteinte par la flèche? La flèche atteint une hauteur maximale d'environ 3 mètres. 2. La courbe ci-dessus représente la fonction f définie par f (x) = 0,1x² + 0,9x + 1. a. Calculer f (4) et f (5). f (4) = 0,1 4² + 0, = 0, , = 1,6 + 3,6 + 1 = = 3. f (5) = 0,1 5² + 0, = 0, , = 2,5 + 4,5 + 1 = = 3. b. La flèche s'élève-t-elle à plus de 3 m de hauteur? La flèche ne peut pas rester à 3 m de hauteur tout en s'éloignant de Julien de 1 mètre : elle ne peut pas rester à l'horizontal... Elle est donc à 3 mètres de hauteur lorsqu'elle est à 4 mètres de Julien, puis elle monte encore un peu et redesend enfin à 3mètres lorsqu'elle se trouve à 5 mètres de Julien. Pour preuve, calculons par exemple f (4,5). f (4,5) = 0,1 4,5² + 0,9 4,5 + 1 = 0,1 20,25 + 0,9 4,5 + 1 = 2, , = 3,025 > 3

4 Exercice 5 1. Le graphique ci-dessous donne le niveau de bruit (en décibels) d'une tondeuse à gazon en marche, en fonction de la distance (en mètres) entre la tondeuse et l'endroit où s'effectue la mesure. En utilisant ce graphique, répondre aux deux questions suivantes. Laissez visibles vos traits de construction. a) Quel est le niveau de bruit à une distance de 100 mètres de la tondeuse? À 100 mètres de la tondeuse, le niveau de bruit est de 45 décibels. (tracés orange) b) À quelle distance de la tondeuse se trouve-t-on quand le niveau de bruit est égal à 60 décibels? Si le niveau de bruit est à 60 décibels, c'est que l'on se trouve à environ 23 mètres de la tondeuse. (tracés verts) 2. Voici les graphiques obtenus pour deux machines très bruyantes d'une usine. Dans l'usine, le port d'un casque antibruit est obligatoire à partir d'un même niveau de bruit. Pour la machine A, il est obligatoire quand on se trouve à moins de 5 mètres de la machine. En utilisant ces graphiques, déterminer cette distance pour la machine B. Le tracé violet indique que, en ce trouvant à moins de 5 m de la machine A, le niveau sonore est supérieur à 88 décibels. Le tracé rose indique lui, qu'avec ce même niveau de bruit, on se trouve à environ 6,5 mètres de la machine B.

5 Exercice 6 La copie d'écran ci-dessous montre le travail effectué par Léa pour étudier trois fonctions f, g et h telles que : f (x) = x² + 3x 7 g (x) = 4x + 5 h est une fonction dela forme ax + b dont Léa a oublié d'écrire l'expression dans la cellule A4. 1. Donner un nombre qui a pour image 7 par la fonction f. Un nombre qui a pour image 7 par f est 0 (tracé rouge). 2. Vérifier à l'aide d'un calcul détaillé que f (6) = 47. f (6) = 6² = = 54 7 = Expliquer pourquoi le tableau permet de donner une solution de l'équation : x² + 3x 7 = 4x + 5. Quelle est cette solution? Résoudre l'équation x² + 3x 7 = 4x + 5 correspond à trouver une valeur de x telle que f (x) = g (x). Or le tracé vert montre que f (x) = g (x) = 21 pour x = 4 (donné en E1). 4. À l'aide du tableau, retrouver l'expression algébrique h(x) de la fonction h. On voit que h (0) = 5 ce qui signifie que a 0 + b = 5 ou bien encore que b = 5. De plus h (2) = 1 ce qui s'écrit : a = 1 d'où 2a = 4 et donne a = 2. Ainsi h (x) = 2x + 5. Exercice 7 Vrai ou Faux - Justifier vos réponses Affirmation 1 : 0 a un seul antécédent par la fonction qui à tout nombre x associe 3x + 5. Trouver l'antécédent de 0 par la fonction x 3x + 5 revient à résoudre 3x + 5 = 0 Cela donne 3x = 5 et finalement x = 0,6. Il n'y a donc bien qu'un seul antécédent de 0 par cette fonction, qui est 0,6. L'affirmation est vraie. Affirmation 2 : Le quadrilatère ci-contre est un trapèze. (On rappelle qu'un trapèze est un quadrilatère ayant deux côtés opposés parallèles.) Les points D, I, B d'une part et A, I, C d'autre part sont alignés dans le même ordre. De plus, DI IB = = 1,

6 et IA IC = = 1,5 On remarque que DI IB = IA =1,5. L'égalité du théorème de Thalès étant vérifiée, les droites (AD) et (BC) sont IC parallèles et donc le quadrilatère ABCD est bien un trapèze. L'affirmation est vraie. Exercice 8 Dans la figure ci-contre, qui n'est pas à l'échelle : les points D, P et A sont alignés ; les points K, H et A sont alignés ; DA = 60 cm ; DK = 11 cm ; DP = 45 cm. 1. Calculer KA au millimètre près. Dans le triangle DKA rectangle en K, d'après le théorème de Pythagore, on a : DA² = DK² + KA² 60² = 11² + KA² = KA² KA² = = KA = cm au mm près. 2. Calculer HP. Les droites (PD) et (KH) sont sécantes en A et (PH) // (DK). D'après le théorème de Thalès, on a : AP AD = AH AK = PH DK d'où = AH = HP 11(60 45) On en déduit : HP = = 2,75 cm Exercice 9 Un marionnettiste doit faire un spectacle sur le thème de l'ombre. Pour cela, il a besoin que sa marionnette de 30 cm ait une ombre de 1,2 m. La source de lumière C est située à 8 m de la toile (AB). La marionnette est représentée par le segment [DE]. 1. Démontrer que les droites (AB) et (DE) sont parallèles. (AB) et (DE) sont toutes les deux perpendiculaires à la même droite (BC), elles sont donc parallèles entre elles. 2. Calculer EC pour savoir où il doit placer sa marionnette.

7 Les droites (BE) et (AD) sont sécantes en C et (AB) // (DE) d'après la question 1. Donc le théorème de Thalès permet d'écrire : CE CB = CD CA = DE AB d'où CE 8 = CD CA = 0,3 8 0,3. On en déduit : CE = 1,2 1,2 = 2 m. Le marionnettiste doit placer sa marionnette à 2 mètres de la source de lumière pour qu'elle ait une ombre de 1,2m sur la toile. Exercice 10 Les droites (TP) et (YG) sont sécantes en I. On donne les longueurs : IP = 5 cm ; IG = 7 cm ; IY = 1,4 cm ; YT = 0,8 cm et TI = 1 cm. 1. Montrer que les droites (PG) et (YT) sont parallèles. Les points P, I, T d'une part et les points G, I, Y d'autre part sont alignés dans le même ordre. De plus, IP TI = 5 1 = 5 et On remarque que IP TI = IG IY sont parallèles. IG IY = 7 1,4 = 5 = 5. L'égalité du théorème de Thalès est vérifiée et donc les droites (GP) et (YT) 2. Calculer le périmètre du triangle IGP. Périmètre (IGP) = IG + IP + PG. Calculons PG : Les droites (TP) et (GY) sont sécantes en I et d'après la question 1, (PG) // (YT). Le théorème de Thalès nous IP donne donc les égalités suivantes : TI = IG IY = PG PG c'est-à-dire : 5 = donc PG = 5 0,8 = 4 cm. YT 0,8 On peut donc reprendre le calcul précédent : Périmètre (IGP) = IG + IP + PG = = 16 cm. Exercice 11 Un maçon veut vérifier que deux murs sont bien perpendiculaires. Pour cela, il marque un point A à 60 cm du point O et un point B à 80 cm du point O. Il mesure alors la distance AB et il trouve 1 mètre. Prouver que les murs sont bien perpendiculaires.

8 Le côté le plus long du triangle AOB est [AB] et AB² = 1² = 1 Par ailleurs, AO² + OB² = 0,6² + 0,8² = 0,36 + 0,64 = 1. On remarque donc que AB² = AO² + OB². L'égalité du théorème de Pythagore étant vérifiée, le triangle AOB est rectangle en O et les murs sont donc bien perpendiculaires. Exercice 12 À Pise vers après J.C. (Problème attribué à Léonard de Pise, dit Fibonacci, mathématicien italien du moyenâge). Une lance, longue de 20 pieds*, est posée verticalement le long d'une tour considérée comme perpendiculaire au sol. Si on éloigne l'extrémité de la lance qui repose sur le sol de 12 pieds de la tour, de combien descend l'autre extrémité de la lance le long du mur? * Un pied est une unité de mesure anglo-saxonne valant environ 30 cm. La tour étant supposée perpendiculaire au sol, le triangle formé sur le dessin est rectangle. On peut donc y appliquer le théorème de Pythagore : 20² = 12² + x² où x est la longueur de la lance moins h. 400 = x² et donc x² = 256 Ainsi x = 256 = 16 pieds. La lance descend de 4 pieds (20 16) ce qui représente 1,2 m (4 0,3 m).

Notion de fonction et Théorèmes classiques Exercice 1 Exercice 2 4. a) Exercice 3 1. a) 2. a)

Notion de fonction et Théorèmes classiques Exercice 1 Exercice 2 4. a) Exercice 3 1. a) 2. a) Notion de fonction et Théorèmes classiques Exercice 1 On considère la fonction f définie par : f (x) = 5x + 1. 1. Calculer l'image de 3 par f. 2. Calculer l'antécédent de 4 par f. Exercice 2 La copie d'écran

Plus en détail

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%.

2. Si x désigne le prix d un article, exprimer en fonction de x le prix de cet article après une baisse de 20%. 3 ème REVISIONS BREVET EXERCICE 1 : Soit P = (x 2) (2x + 1) (2x + 1)² 1. Développer et réduire P. 2. Factoriser P. 3. Résoudre l équation (2x + 1) (x + 3) = 0 4. Pour x = 3, écrire P sous forme fractionnaire.

Plus en détail

Brevet Blanc de Mathématiques

Brevet Blanc de Mathématiques Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 (En précisant les différentes étapes du calcul): 1. Calculer le nombre A et donner

Plus en détail

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin.

COLLÈGE LA PRÉSENTATION. Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments usuels de dessin. COLLÈGE LA PRÉSENTATION BREVET BLANC Mai 2013 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

2 nde CORRIGE : DEVOIR COMMUN DE

2 nde CORRIGE : DEVOIR COMMUN DE 2 nde CORRIGE : DEVOIR COMMUN DE MATHEMATIQUES Exercice 1 : (4 points) 1. Compléter le tableau à double entrée ci-dessous. Elèves vaccinés Elèves non vaccinés Total Elèves ayant eu la grippe 14 133 147

Plus en détail

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1

Institution Stanislas Brevet Blanc de Mathématiques Mai 2010 1 BREVET BLANC DE MATHEMATIQUES Mai 2010 La calculatrice est autorisée. Le soin et la qualité de la rédaction seront pris en compte dans la notation. N candidat : Observations Présentation et rédaction :

Plus en détail

DIPLOME NATIONAL DU BREVET AVRIL 2013- CORRIGE

DIPLOME NATIONAL DU BREVET AVRIL 2013- CORRIGE DIPLOME NATIONAL DU BREVET AVRIL 2013- CORRIGE Exercice 1 : 3 points Voici les réponses proposées par un élève à un exercice. Pour chaque réponse, expliquer pourquoi elle est correcte ou inexacte. a. 2

Plus en détail

Devoir-maison, à rendre le lundi 4 novembre 2013

Devoir-maison, à rendre le lundi 4 novembre 2013 Devoir-maison, à rendre le lundi 4 novembre 2013 Ce devoir-maison donnera lieu à une note sur 20 qui sera intégrée dans la moyenne du premier trimestre. Soin et orthographe : 1 point. Exercice 1. Brevet

Plus en détail

Le tricercle de Mohr

Le tricercle de Mohr Sujet 1 Épreuve pratique de mathématiques en troisième Fiche élève Le tricercle de Mohr On considère un segment [AB] tel que AB = 10 cm et un point C quelconque du segment [AB]. Soit 1 le demi-cercle de

Plus en détail

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x

Exercice 1 Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x Exercice Aux quatre coins d une feuille de papier format A4, on découpe des carrés pour fabriquer une boîte : x A B E F H G D Le fond de la boîte est le rectangle EFGH. La feuille est au format A4, donc

Plus en détail

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2

Correction du brevet blanc du 12 Mai 2011. 1ère étape : 2 3 + 1 = 2 3 + 3 3 = 5 3. 2ème étape : 3ème étape : 25 9 ( 2 2 PARTIE NUMÉRIQUE (14 points) Correction du brevet blanc du 12 Mai 2011 Exercice 1 1.a. Le nombre de départ est 1 1ère étape : 1 + 1 = 2 2ème étape : 2² = 4 3ème étape : 4 1² 4-1²= 4 1 = 3 Le résultat final

Plus en détail

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures

Mathématiques Contrôle commun de Seconde Mardi 01 mars 2011 Durée de l épreuve : 2 heures Mathématiques Contrôle commun de Seconde Mardi 01 mars 011 Durée de l épreuve : heures L usage de la calculatrice est autorisé. Aucun prêt de matériel n est toléré. La qualité de la rédaction et le soin

Plus en détail

Brevet des collèges Polynésie septembre 2012

Brevet des collèges Polynésie septembre 2012 Brevet des collèges Polynésie septembre 2012 Durée : 2 heures Activités numériques Exercice 1 : On donne le programme de calcul suivant : Choisir un nombre. Lui ajouter 1. Calculer le carré de cette somme.

Plus en détail

8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes

8 + 12 1 + 3 = 20 4 = 5. 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Exercice 1 3pts 1. Calculer le nombre A = 8 + 3 x 4 1 + 2 x 1,5 = 8 + 12 1 + 3 = 20 4 = 5 2. Pour calculer A, un élève a tapé sur sa calculatrice la succession de touches suivantes Expliquer pourquoi il

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - ANTILLES - GUYANE Septembre 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 Cédric s entraîne pour l épreuve de vélo d un triathlon. La courbe

Plus en détail

Brevet blanc à rendre début mars. 1/7

Brevet blanc à rendre début mars. 1/7 Brevet blanc à rendre à la rentrée de mars 20 Partie Numérique Exercice 1. Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question une seule réponse est exacte. Aucune justification

Plus en détail

Correction du brevet blanc n 2

Correction du brevet blanc n 2 Correction du brevet blanc n 2 Rédaction et présentation : 4 points Applications numériques : 12 points 1 Exercice 1: On donne: A = 3 5 6 3 2 1.Je calcule Aet donne le résultat sous forme d'une fraction

Plus en détail

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00

DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 DIPLÔME NATIONAL DU BREVET DNB BLANC JANVIER 2013 ------------------ MATHEMATIQUES SERIE COLLEGE --------------- DUREE DE L EPREUVE : 2 h 00 ------------------------- Le candidat répondra sur une copie

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 Mars 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

CORRECTION DU SUJET DE MATHÉMATIQUES

CORRECTION DU SUJET DE MATHÉMATIQUES (AVRIL 014) Collège François Mitterrand Créon CORRECTION DU SUJET DE MATHÉMATIQUES EXERCICE 1 ( POINTS) SOIN, PRÉSENTATION ET QUALITÉ DE LA RÉDACTION : 4 POINTS 1. Donner l'écriture décimale du nombre.

Plus en détail

DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007

DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007 1 sur 7 http://www.ilemaths.net/maths_3-sujet-brevet-07-01-correction.php#c... DIPLÔME NATIONAL DU BREVET PONDICHÉRY - SESSION 2007 L'emploi de la calculatrice est autorisé. La rédaction et la présentation

Plus en détail

DNB, Métropole, correction, mathématiques

DNB, Métropole, correction, mathématiques DNB, Métropole, correction, mathématiques jeudi 28 juin 2012 Activités numériques, 12 points Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Exercice n o 1 1.

Plus en détail

Correction du Brevet Blanc de Mathématiques - Mai 2014

Correction du Brevet Blanc de Mathématiques - Mai 2014 Correction du Brevet Blanc de Mathématiques - Mai 014 Exercice 1 Amérique du Sud 01 3 points Cet exercice est un questionnaire à choix multiple (QCM). Pour chaque ligne du tableau trois réponses sont proposées,

Plus en détail

COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014. Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE. Durée de l'épreuve : 2 heures Coefficient : 3

COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014. Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE. Durée de l'épreuve : 2 heures Coefficient : 3 COLLÈGE LA PRÉSENTATION BREVET BLANC N 2 MAI 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l'épreuve : 2 heures Coefficient : 3 Le candidat répond sur une copie apportée par ses soins. Ce sujet

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Juin 2014 Durée : 2h00 Calculatrice autorisée Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour chaque

Plus en détail

DIPLÔME NATIONAL DU BREVET

DIPLÔME NATIONAL DU BREVET DIPLÔME NATIONAL DU BREVET SESSION 2012 MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L ÉPREUVE : 2 h 00 Coefficient 2 Le candidat répondra sur une copie Éducation Nationale. Ce sujet comporte 7 pages numérotées

Plus en détail

Brevet Blanc n 1. Mathématiques

Brevet Blanc n 1. Mathématiques Brevet Blanc n 1 Novembre 2010 Mathématiques Durée de l'épreuve : 2h00 Le candidat répondra sur une copie L'usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. Activités

Plus en détail

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 2 mars 2011 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points) Exercice

Plus en détail

Brevet blanc Mathématiques.

Brevet blanc Mathématiques. Collège Jean Lecanuet Avril 2014 Brevet blanc Mathématiques. (Durée 2h00) La qualité de la rédaction (soin, orthographe, résultats encadrés ou soulignés) interviendra dans l appréciation de la copie pour

Plus en détail

Feuille de révision n 3 pour le brevet

Feuille de révision n 3 pour le brevet Feuille de révision n 3 pour le brevet Cette feuille est constituée d exercices tirés des annales des brevets des années antérieures et traite les chapitres abordés en classe depuis le deuxième brevet

Plus en détail

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame

Diplôme National du Brevet. Épreuve blanche Proposition de corrigé. Externat Notre Dame Diplôme National du Brevet Épreuve blanche Proposition de corrigé Externat Notre Dame Vendredi 9 décembre 2011 durée de l'épreuve : 2 h I - Activités numériques II - Activités géométriques III Problème

Plus en détail

Fonctions Nombre Dérivé Fonction dérivée

Fonctions Nombre Dérivé Fonction dérivée Fonctions Nombre Dérivé Fonction dérivée Ce chapitre est le chapitre central de la classe de Terminale STG. Il permet (en partie) de clore ce qui avait été entamé dés le collège avec les fonctions affines

Plus en détail

Diplôme National du Brevet Brevet Blanc n 1

Diplôme National du Brevet Brevet Blanc n 1 Janvier 2011 Diplôme National du Brevet Brevet Blanc n 1 MATHÉMATIQUES Série Collège DURÉE DE L'ÉPREUVE : 2 h 00 L usage de la calculatrice est autorisé Le candidat remettra sa copie, accompagnée des documents

Plus en détail

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1

Chapitre 1 Second degré. Table des matières. Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré TABLE DES MATIÈRES page -1 Chapitre 1 Second degré Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

BREVET BLANC SESSION MAI 2013 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE: 2 H 00

BREVET BLANC SESSION MAI 2013 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE: 2 H 00 BREVET BLANC SESSION MAI 2013 ÉPREUVE DE MATHÉMATIQUES SÉRIE COLLÈGE DURÉE DE L'ÉPREUVE: 2 H 00 Le candidat répondra uniquement sur une copie. Le sujet ne sera pas ramassé. Ce sujet comporte 8 exercices.

Plus en détail

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie.

Brevet Blanc de Mathématiques. 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Brevet Blanc de Mathématiques 4 Points sont réservés à la propreté et à la qualité de rédaction de la copie. Exercice 1 : Le graphique ci contre représente une fonction h. Pour chaque question, donner

Plus en détail

Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9

Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9 Brevet blanc ÉPREUVE DE MATHÉMATIQUES février 2015 page 1/9 C o r r e c t i o n Soigner la rédaction des explications et des réponses : la qualité de cette rédaction et la maîtrise de la langue sont notées

Plus en détail

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations

C k A C. x 5 4 + Signe de f (x) + 0 0 + x 4 2 2 + Variations nde Eléments de correction du DNS 1 Lectures graphiques Soient f et g deux fonctions définies sur IR. Leurs représentations graphiques, notées respectivement C f et C g, sont tracées dans le repère ci-dessous.

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

CORRIGÉ DU BREVET BLANC 2011 Épreuve : MATHÉMATIQUES Collège Simone De Beauvoir Durée : 2 heures

CORRIGÉ DU BREVET BLANC 2011 Épreuve : MATHÉMATIQUES Collège Simone De Beauvoir Durée : 2 heures CORRIGÉ DU BREVET BLANC 2011 Épreuve : MATHÉMATIQUES Collège Simone De Beauvoir Durée : 2 heures Numéro de candidat : L'épreuve est notée sur 40 points. Elle est constituée de trois parties indépendantes

Plus en détail

Exercice 2 On considère le triangle DNB tel que DN = 5 cm ; NB = 12 cm et BD = 13 cm. La figure ci-contre n est pas en vraie grandeur.

Exercice 2 On considère le triangle DNB tel que DN = 5 cm ; NB = 12 cm et BD = 13 cm. La figure ci-contre n est pas en vraie grandeur. BREVET BLANC de MATHEMATIQUES n 1 Janvier 2008 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques ( points) Exercice

Plus en détail

Partie Numérique (12 points)

Partie Numérique (12 points) Partie Numérique (12 points) Commentaire : Petit exercice sur les probabilités (niveau ème, très facile) 1) La bonne réponse est b. Il y a cas possibles équiprobables ( portes à ouvrir) et on en choisit

Plus en détail

45 Développe et réduis les expressions suivantes. A = 3 2 5 3 A = 2 3 15 B = 5 2 2 7 18

45 Développe et réduis les expressions suivantes. A = 3 2 5 3 A = 2 3 15 B = 5 2 2 7 18 44 Diagonale d'un carré A? N 45 Développe et réduis les expressions suivantes. A 5 A 5 A 5 A 5 M,5 cm I A 15 a. Calcule la longueur exacte de la diagonale AI du carré MANI. triangle ANI rectangle en N

Plus en détail

Brevet des Collèges Centre étranger juin 2014 Correction

Brevet des Collèges Centre étranger juin 2014 Correction Brevet des Collèges Centre étranger juin 2014 Correction EXERCICE 1 6 points Voici une feuille de calcul obtenue à l aide d un tableur. Dans cet exercice, on cherche à comprendre comment cette feuille

Plus en détail

DIPLÔME NATIONAL DU B REVET

DIPLÔME NATIONAL DU B REVET REPÈRE 14DNBGENMATMEAG1 DIPLÔME NATIONAL DU B REVET SESSION 2014 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie modèle Éducation

Plus en détail

Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul :

Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul : Exemples d activités sur le thème : Fonctions permettant une acquisition progressive des compétences de calcul : Sous-thèmes Compétences de calcul travaillées Notion de Fonctions : Introduction du vocabulaire

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation.

Si le travail n est pas terminé, laisse tout de même une trace de recherche. Elle sera prise en compte dans la notation. 3 ème E IE3 théorème de Thalès 2015-2016 S1 Les droites (TP) et (YG) sont sécantes en I. IP = 5 cm ; IG = 7 cm ; IY = 1,4 cm ; YT = 0,8 cm ; TI = 1 cm. 1) Les droites (PG) et (YT) sont-elles parallèles?

Plus en détail

LYCEE VICTOR HUGO 3.3 Exercice 1 : (6 points) Partie A : Partie B : Partie C :

LYCEE VICTOR HUGO 3.3 Exercice 1 : (6 points) Partie A : Partie B : Partie C : LYCEE VICTOR HUGO 3.3 L attention est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements entrent pour une part importante dans l appréciation des copies. Exercice

Plus en détail

4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées..

4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées.. 3 ème CORRECTION détaillée du Brevet blanc n 2 4 points sont réservés à : - la présentation générale de la copie : bien écrit / propre / questions numérotées / réponses soulignées.. Vous devez vous efforcer

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour 4 points. Exercice 1 6

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques mai 2015 Brevet blanc de mathématiques 3 ème. Il sera tenu compte de la rédaction, de la présentation et de l orthographe (4 points). L usage de la calculatrice est autorisé. Avant de commencer le devoir,

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A

2 nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 2013. Lectures graphiques (9 points) Les 2 parties sont indépendantes Partie A nde Corrigé de l évaluation n 3 de mathématiques Lundi 13 Mai 013 Lectures graphiques (9 points) Les parties sont indépendantes Partie A Tous les clients d un petit restaurant ont opté pour la formule

Plus en détail

1 Extrait du DNB Juin 2014 3ème

1 Extrait du DNB Juin 2014 3ème Exemples d activités et extraits d évaluations Pour chacune des évaluations et activités suivantes, 1 résoudre le problème et anticiper les différentes démarches que les élèves pourraient envisager 2 déterminer,

Plus en détail

Chapitre 4 : «Notion de fonction»

Chapitre 4 : «Notion de fonction» Chapitre 4 : «Notion de fonction» I. Activités 1/ Activité 1 Sur un circuit de 13,2 km, un pilote réalise des essais d'une nouvelle voiture de course. Des capteurs placés sur le circuit mesurent la vitesse

Plus en détail

Brevet blanc de mathématiques

Brevet blanc de mathématiques Brevet blanc de mathématiques avril 2011 L'usage de la calculatrice est autorisé. I Activités numériques 12 points II Activités géométriques 12 points III Problème 12 points Qualité de rédaction et présentation

Plus en détail

Épreuve pratique de mathématiques 2014 Classe de troisième

Épreuve pratique de mathématiques 2014 Classe de troisième Sujet n 1 : Installation d une canalisation Énoncé On souhaite installer des canalisations d eau provenant d un point M, situé dans une rivière et atteignant les points A et B. La situation est schématisée

Plus en détail

D I P L Ô M E N AT I O N A L D U B R E V E T

D I P L Ô M E N AT I O N A L D U B R E V E T REPÈRE 15DNBGENMATMEAG1 D I P L Ô M E N AT I O N A L D U B R E V E T SESSION 2015 Épreuve de : MATHÉMATIQUES SÉRIE GÉNÉRALE Durée de l épreuve : 2 h 00 Coefficient : 2 Le candidat répond sur une copie

Plus en détail

Corrigé DNB blanc février 2016

Corrigé DNB blanc février 2016 Corrigé DNB blanc février 2016 Exercice 1 Réponse A Réponse B Réponse C 1 2 3 L écriture en notation scientifique du nombre 587 000 000 est : Si on développe et réduit l expression (x + 2)(3x 1) on obtient

Plus en détail

Brevet des collèges Polynésie septembre 2014

Brevet des collèges Polynésie septembre 2014 Brevet des collèges Polynésie septembre 2014 Durée : 2 heures Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si une indication contraire est donnée. Pour

Plus en détail

LFI DURAS HO CHI MINH VILLE. BREVET BLANC n 2 06/05/2013

LFI DURAS HO CHI MINH VILLE. BREVET BLANC n 2 06/05/2013 LFI DURAS HO CHI MINH VILLE BREVET BLANC n 2 06/05/2013 MATHEMATIQUES SERIE COLLEGE DUREE DE L EPREUVE : 2h00 Ce sujet comporte 5 pages numérotés de 1 à 5. Dès que ce sujet vous remis, assurez-vous qu

Plus en détail

Brevet Blanc de Mathématiques n 2

Brevet Blanc de Mathématiques n 2 Collège Liberté 93700 Drancy Brevet Blanc de Mathématiques n 2 Mercredi 7 mai 2008 Durée de l'épreuve : 2 heures Ce sujet comporte 5 pages numérotées de 1 à 5. La page 5, qui est sur une feuille annexe,

Plus en détail

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013

BREVET BLANC de Mathématiques. Jeudi 16 mai 2013 BREVET BLANC de Mathématiques Jeudi 16 mai 2013 ********************************** Durée de l épreuve : 2 heures ********************************** Le sujet comporte 5 pages. Dès que ce sujet vous est

Plus en détail

CORRECTION DIPLÔME NATIONAL DU BREVET

CORRECTION DIPLÔME NATIONAL DU BREVET CORRECTION DIPLÔME NATIONAL DU BREVET SESSION 04 Exercice : ( points) Voici un octogone régulier ABCDEFGH. ) Représenter un agrandissement de cet octogone en l inscrivant dans un cercle de rayon cm. Aucune

Plus en détail

Vos réponses sont à reporter sur votre copie sans justifications. Réduire 6 4 ( x 2 ) 2x 4 14 4x 2 4x 15 4 ( 8 16 ) = 17 47 88

Vos réponses sont à reporter sur votre copie sans justifications. Réduire 6 4 ( x 2 ) 2x 4 14 4x 2 4x 15 4 ( 8 16 ) = 17 47 88 Exercice 1 : Pour chaque question une seule réponse est correcte. Vos réponses sont à reporter sur votre copie sans justifications. Réponse A Réponse B Réponse C Réduire 6 4 ( x 2 ) 2x 4 14 4x 2 4x 15

Plus en détail

Question 1 : Nous allons proposer une résolution de l'exercice par deux méthodes :

Question 1 : Nous allons proposer une résolution de l'exercice par deux méthodes : Introduction : Le problème présente plusieurs résolutions possibles et amène les élèves à prendre l'initiative de résoudre cet exercice avec la méthode de leur choix. Le but est d'optimiser une fonction.

Plus en détail

ChN8 FONCTIONS AFFINES progression. séance 0 test d'entrée

ChN8 FONCTIONS AFFINES progression. séance 0 test d'entrée ChN8 FONCTIONS AFFINES progression séance 0 test d'entrée séance 1 exercice complémentaire 1 activité 1 (intro fonctions affines) cours : I. Définition séance 2 exercice complémentaire 2 fiche ex. 1 ex

Plus en détail

BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures

BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures Numéro d'anonymat :. BREVET BLANC n 2 Avril 2012 Épreuve de Mathématiques Durée: 2 heures L utilisation des calculatrices est autorisée. Le sujet est constitué de trois parties indépendantes: Activité

Plus en détail

Fonctions linéaires et affines

Fonctions linéaires et affines Fonctions linéaires et affines I. Fonctions linéaires 1/ Activités Première étape Revoyons d'abord, sur un exemple, en quoi consiste la proportionnalité. On considère pour cela un triangle équilatéral

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges ASIE Juin 2014 Durée : 2h00 Calculatrice autorisée Exercice 1 On laisse tomber une balle d une hauteur de 1 mètre. 3 points A chaque rebond elle rebondit des

Plus en détail

Correction du brevet blanc. Partie 1 : Activités numériques (12 points)

Correction du brevet blanc. Partie 1 : Activités numériques (12 points) Correction du brevet blanc Eercice 1 (5 points) 3 Quelle est l'epression 1 5 développée de (5 3)? ( )( ) L'équation + 5 0 a pour solutions : Quelle est la valeur eacte de : 0+ 80? Quelle est la forme factorisée

Plus en détail

Question Réponse A Réponse B Réponse C Votre choix : Quelle est la forme factorisée de ( x 1) 9? ( x 2)( x 4) n m

Question Réponse A Réponse B Réponse C Votre choix : Quelle est la forme factorisée de ( x 1) 9? ( x 2)( x 4) n m Mathématiques TROISIEMES Brevet Blanc, Mai 01 Durée h Calculatrice autorisée. Total sur 40 points dont 4 points réservés à la rédaction. Vous pouvez traiter les exercices dans le désordre. Les exercices

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges AMÉRIQUE DU SUD Décembre 2015 Durée : 2h00 Calculatrice autorisée La qualité de la rédaction, l orthographe et la rédaction comptent pour. Indication portant

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0)

Fonction affine. Remarque : une fonction linéaire est une fonction affine particulière (p=0) Fonction affine I Définition Étant donné deux nombres m et p, on définit une fonction affine f lorsque, à tout nombre x, on associe le nombre f(x) = mx+p. On note f : x mx+p cette fonction. Remarque :

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges MÉTROPOLE - NTILLES - GUYNE Juin 2014 Durée : 2h00 Calculatrice autorisée Indication portant sur l ensemble du sujet Toutes les réponses doivent être justifiées,

Plus en détail

BREVET BLANC 2 CORRECTION + BAREME MATHEMATIQUES. Mathématiques à Bailleul

BREVET BLANC 2 CORRECTION + BAREME MATHEMATIQUES. Mathématiques à Bailleul BREVET BLANC 2 CORRECTION + BAREME MATHEMATIQUES DUREE DE L'EPREUVE : 2h00 Le candidat répondra sur une copie. Le candidat traitera les exercices dans l'ordre souhaité. L'usage de la calculatrice est autorisé.

Plus en détail

;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées.

;2 est-il situé sur la courbe Cf? Justifier par un calcul. Exercice 1 (8 points) Les étapes intermédiaires des calculs sont exigées. 3 èmes 1 à 9 Lundi 18 novembre 2013 DS de mathématiques n 2 1h50 calculatrice autorisée Consignes : - Coller l énoncé, plié en 4, sur la 1 ère page de la copie. - Souligner les résultats à la règle ; séparer

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

Repérage et configurations du plan

Repérage et configurations du plan I Repères et coordonnées a) Repères Définition : (O ;I,J) est un repère du plan. Il est constitué d un triplet de points non alignés. O est appelé origine du repère La droite graduée (O ;I) est l axe des

Plus en détail

Métropole juin 2009 Brevet Corrigés Page 1 sur 7

Métropole juin 2009 Brevet Corrigés Page 1 sur 7 Métropole juin 2009 Brevet Corrigés Page 1 sur 7 Exercice 1 : sur 2 points 1. (1 pt) A = 8 + 3 4 1 + 2 1, A = 8 + 12 1 + 3 A = 20 4 A = 4 4 1 A = Activité numérique 2. (1 pt) En l absence de parenthèses,

Plus en détail

L e s m a t h é m a t i q u e s a u c o l l è g e Page 1. BREVET BLANC 21 avril 2013. Exercice 1 :

L e s m a t h é m a t i q u e s a u c o l l è g e Page 1. BREVET BLANC 21 avril 2013. Exercice 1 : Exercice 1 : 8 questions indépendantes Les huit questions suivantes sont indépendantes. 1. Écrire la fraction sous forme irréductible en détaillant tous les calculs. 1 ière étape : On cherche le P.G.C.D.

Plus en détail

Deuxième épreuve d admission. Exemples de sujets

Deuxième épreuve d admission. Exemples de sujets Deuxième épreuve d admission. Exemples de sujets Thème : probabilités 1) On lance deux dés équilibrés à 6 faces et on note la somme des deux faces obtenues. 1.a) Donner un univers associé cette expérience.

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00

Brevet blanc de mathématiques Mars 2014 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE. Durée de l épreuve : 2 h 00 BREVET BLANC MARS 2014 MATHEMATIQUES COLLEGE STANISLAS-NICE Durée de l épreuve : 2 h 00 Ce sujet comporte 5 pages numérotées de 1/5 à 5/5. Dès que ce sujet vous est remis, assurez-vous qu il est complet.

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

Collège Blanche de Castille

Collège Blanche de Castille ème A - B - C Brevet blanc 2 de MATHÉMATIQUES Date : 15/04/2014 Durée : 2h Collège Blanche de Castille Coefficient : Note sur : 40 Présentation : /4 Consignes : La présentation, l orthographe et la rédaction

Plus en détail

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières

Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières Chapitre 4 Fonctions affines et équations du 1 er degré. TABLE DES MATIÈRES page -1 Chapitre 5 Fonctions affines et équations du 1 er degré. Table des matières I Exercices I-1 1................................................

Plus en détail

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18

Sans formation B E P B A C B T S Autre formation Effectif 12 16 84 58 10. Sans formation B E P B A C B T S Autre formation Effectif 18 45 468 351 18 Première partie : Effectifs et fréquences Dans deux entreprises d'un groupe industriel a été mené une enquête sur le niveau de formation des employés. On a obtenu les résultats suivants : Entreprise 1

Plus en détail

Couper en deux, encore et encore : la dichotomie

Couper en deux, encore et encore : la dichotomie Couper en deux, encore et encore : la dichotomie I : Jeu du nombre inconnu Un élève volontaire choisit un nombre entier compris entre 0 et 56. Un autre élève cherche à deviner ce nombre, en adoptant la

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S

C H A P I T R E 2 C A L C U L S A L G E B R I Q U E S Classe de Troisième C H A P I T R E C A L C U L S A L G E B R I Q U E S UTILISER DES LETTRES...4 EXPRESSIONS ÉQUIVALENTES...6 VOCABULAIRE DU CALCUL LITTÉRAL...7 RÉDUCTIONS D'ÉCRITURES...9 DÉVELOPPER UN

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES. Série S ÉPREUVE DU JEUDI 19 JUIN 2014. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2014 MATHÉMATIQUES Série S ÉPREUVE DU JEUDI 19 JUIN 2014 Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont

Plus en détail

BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures

BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures Numéro d'anonymat :.... BREVET BLANC n 1 Janvier 2014 Épreuve de Mathématiques Durée: 2 heures L utilisation des calculatrices est autorisée. CE SUJET SERVIRA DE CHEMISE DANS LAQUELLE LE CANDIDAT RENDRA

Plus en détail

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses

D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses LES ABEILLES D après une idée originale dans «Les maths au quotidien» M.Colonval et A.Roumadni éd. Ellipses 1. Présentation de la trame : Recherche et synthèse d infos Notion d optimisation Intérêt et

Plus en détail

Pythagore : situations supplémentaires

Pythagore : situations supplémentaires Pythagore : situations supplémentaires 1. Un poteau d une longueur de 18 mètres est enfoncé verticalement dans le sol à une profondeur de 2 m. Pour le stabiliser, on l arrime avec quatre cordes (attachées

Plus en détail

Notion de fonction. Eric Bouissou ; 2011

Notion de fonction. Eric Bouissou ; 2011 Notion de fonction Eric Bouissou ; 2011 1 ère activité Un sportif effectue un test d'effort : pendant 25 minutes, il fournit un effort soutenu il cesse ensuite tout effort et se repose durant le reste

Plus en détail

3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars.

3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars. 3 ème Programme de révisions pour le brevet blanc travail à effectuer pendant les vacances d hiver, à votre rythme, pour être prêt fin mars. Trigonométrie : n 11 p : 201 ; n 45 p : 205 ; n 48 p : 205 ;

Plus en détail