Séquence 3. Expressions algébriques Équations et inéquations. Sommaire

Dimension: px
Commencer à balayer dès la page:

Download "Séquence 3. Expressions algébriques Équations et inéquations. Sommaire"

Transcription

1 Séquence 3 Expressions algébriques Équations et inéquations Sommaire 1. Prérequis. Expressions algébriques 3. Équations : résolution graphique et algébrique 4. Inéquations : résolution graphique et algébrique 5. Algorithmique 6. Synthèse de la séquence 7. Exercices d approfondissement Séquence 3 MA0 1

2 1 Prérequis A Expressions algébriques ; somme et produit Une expression algébrique est composée de nombres, de lettres, de parenthèses, Exemples d opérations et de fonctions qui les relient. Par exemple, ( x + 5x 4)( xy + 9) est une expression algébrique. Si les expressions algébriques nous sont maintenant familières, il a fallu attendre le XVI e siècle et le mathématicien français François Viète ( ) pour avoir l idée de remplacer des inconnues ou des paramètres par des lettres. Il est important dans les expressions algébriques de savoir distinguer les sommes des produits. Une expression algébrique est une somme si la dernière opération avant d obtenir le résultat est une addition et une expression algébrique est un produit si cette dernière opération est une multiplication. A= a+ b, B = x +, C = x + 1, D = ( n+ 1) ( n + 1) + n, E = 5x 4 45x sont des exemples de somme. F = ab, G = 3x, H = x( x + ), I = ( x + )( x ), J = ( a+ b+ c)( a b c) sont des exemples de produit. B À propos des solutions d une équation ou d une inéquation Équations Définition 1 Une solution d une équation est une valeur de l inconnue x pour laquelle l égalité est vraie. Par exemple, 3 est solution de l équation x 3 3= x + x car 3 3 3= 3 + 3( = 4). Définition Résoudre une équation, c est trouver l ensemble de ses solutions. Nous n avons pas résolu l équation 3 x 3= x + x car nous ne savons pas si cette équation admet d autres solutions. Séquence 3 MA0 3

3 Exemple Équation du premier degré Vous avez appris en troisième à résoudre des équations du premier degré. Revoyons en un exemple. Résoudre l équation 3x 5 = 7x + 4 On peut rajouter 5 aux deux membres de l équation soit : 3x 5+ 5= 7x soit 3x = 7x + 9 Ensuite, on peut retrancher 7x aux deux membres de l équation, soit : 3x 7x = 7x + 9 7x soit 4x = 9 et en multipliant les deux membres par 1 (ce qui revient au même que diviser 4 par 4 ), il vient x = 9 4. On écrit alors habituellement que l ensemble des solutions de cette équation est 9 sous la forme : = 4 { 9 4 }. Inéquations Soit l inéquation x 6x 4. Remplaçons x par 6 ; on obtient , ce qui est faux. On dit que le nombre réel 6 n est pas solution de l inéquation x 6x 4. Remplaçons maintenant x par 5 ; on obtient , ce qui est vrai. On dit que le nombre réel 5 est solution de l inéquation x 6x 4. 1 On verrait de même que 0 n est pas solution, ni mais que et 3 sont solutions. Définition 1 Une solution d une inéquation est une valeur de l inconnue x pour laquelle l inégalité est vraie. Définition Résoudre une inéquation, c est déterminer l ensemble de ses solutions, c est-àdire toutes les valeurs de l inconnue x pour laquelle l inégalité est vraie. Exemple Nous n avons pas résolu l inéquation x 6x 4 car nous nen avons pas déterminé toutes les solutions. Inéquation du premier degré Vous avez appris en troisième à résoudre une inéquation du premier degré. Revoyons en un exemple. Résoudre dans R l inéquation 3x 5 x. On sait que l on peut rajouter 5 aux deux membres de l inéquation soit : 3x 5+ 5 x + 5 soit 3x x + 3 On peut ensuite retrancher x aux deux membres de l inéquation soit : 3x x x + 3 x soit x 3. 4 Séquence 3 MA0

4 On peut ensuite multiplier chaque membre de l inéquation par 1 (ce qui revient au même que diviser par ) car le réel 1 est strictement positif. Il vient x 3. 3 L ensemble des solutions de cette inéquation est donc l intervalle[, + [, ce que 3 l on peut encore noter : = [ ; + [. On peut multiplier les deux membres d une inéquation par un nombre strictement négatif à condition de changer le sens de l inégalité. Par exemple, l inéquation x 1 est équivalente à : 1 1 ( x ) 1 soit x 1. Séquence 3 MA0 5

5 Expressions algébriques A Activités Activité 1 Différentes expressions pour une aire x D x H G x C Soit un carré ABCD de côté 5. On dessine aux quatre coins des carrés de côté x et on s intéresse à l aire coloriée Ax ( ) formée de la réunion de ces quatre carrés et du carré intérieur EFGH. Montrer par un raisonnement géométrique que Ax ( ) peut s écrire sous l une des formes suivantes : Ax ( ) = 4x + ( 5 x) ou Ax ( ) = 5 4 x ( 5 x ). x A E F Montrer que l on aussi : Ax ( ) = 8x 0x+ 5. En utilisant la forme la plus adaptée, calculer A( 5, ) et A( 3). B a) Montrer que Ax ( ) = 8 5 x, b) En déduire que l aire minimale est obtenue pour x = 5 4 et donner cette aire minimale. a) Montrer que Ax ( ) = ( x 1)( 4x 8) b) Déterminer les valeurs de x tels que Ax ( ) = 17. Activité Forme développée et factorisée Soit f( x) = ( x ) 3( x ) pour tout nombre réel x. Montrer que, pour tout nombre réel x, f( x) = x 7x Montrer que, pour tout nombre réel x, f( x) = ( x )( x 5). On dispose maintenant de trois formes pour f( x): Forme initiale Forme développée Forme factorisée f( x) = ( x ) 3( x ) f( x)= x 7x + 10 f( x) = ( x )( x 5) 6 Séquence 3 MA0

6 Répondre à chacune des questions suivantes, sans calculatrice, en veillant à choisir judicieusement à chaque fois la forme de f( x) que vous utiliserez : a) Calculer f ( 0) et f ( ). b) Calculer f ( ) et f ( 5). c) Résoudre l équation f( x) = 0. d) Résoudre l équation f( x) = 10. B Cours Transformation d une expression algébrique Une expression algébrique peut s écrire de plusieurs façons et il faut savoir la transformer afin d utiliser la forme la plus adaptée au travail à effectuer. Réduire une somme, c est écrire cette somme sous la forme la plus condensée possible en regroupant les termes de même nature. Exemple 3 Soit Ax ( )= 4x + 6x 5+ x x 3x+ 4 3 Ax ( ) est une somme qui se réduit sous la forme : Ax ( )= x + 3x 1+ x, que l on ordonne sous la forme : 3 Ax ( ) = x + x + 3x 1. Développer signifie transformer une expression algébrique en une somme. Exemple Bx ( ) = ( x 5)( x 3) 3( x ) Bx ( ) est : Bx ( )= x 3x 10x x + 6 qui après réduction donne : Bx ( ) = x 16x+ 1. Factoriser signifie transformer une expression algébrique en un produit. Exemple Cx ( ) = x + 4x= xx ( + 4) Le produit xx ( + 4 ) est la forme factorisée de x + 4x. Séquence 3 MA0 7

7 Réduire au même dénominateur avec des x. Exemple 1 Exemple Soit la fonction f définie sur l intervalle ]0 ;+ [ par f ( 3) = + = + = f( x) = +. x f ( 7) = + = + = Pour ajouter deux fractions, nous les avons mises au même dénominateur. Si l expression comporte des x au dénominateur, nous allons utiliser une technique similaire. 1 x x f( x) = + = =. x x x x Avec cette nouvelle expression def( x), on retrouve bien que : 3 1 f ( 3) = = 3 et f ( ) = + = 7 7. Soit la fonction g définie pour x différent de 0 et de 1 par gx ( ) = 1 x + x g( 4) = + = = = et, nous avons réduit ces fractions au même dénominateur Nous allons utiliser une technique similaire pour ajouter 1 x et x ( x ) x x gx ( ) = + = 1 x x x ( x ) + ( x ) x = 1 x x x( x ) + xx ( ) = xx ( 1). Avec cette nouvelle expression, on retrouve bien que g( 4) =. 4 ( 4 1) = 1 a) k(a+b)=ka+kb L écriture ka + kb est le développement de ka ( + b). ka ( + b) est l écriture factorisée de ka + kb. Si le passage à l écriture développée est mécanique et présente peu de difficultés, le passage à l écriture factorisée nécessite de reconnaître un facteur commun et s avère moins immédiate. 8 Séquence 3 MA0

8 Exemple 1 Exemple Exemple 3 1 4x = x = 4( 3 x). On applique la formule ka ( + b) = ka+ kb avec k = 4, a= 3 et b = x. 43 ( x ) est l écriture factorisée de 1 4x. 3x + x. Les deux termes de la somme sont 3x et x et ils ont un facteur commun qui est x. 3x + x = 3x x + x = x( 3x + ). x( 3x + ) est l écriture factorisée de 3x + x. a+ ab. Les deux termes de la somme sont a et ab et ils ont un facteur commun qui est a. a On peur alors écrire a+ ab = a 1+ a b = a( 1+ b). Dans le cas particulier où un des termes se confond avec le facteur commun, il faut considérer qu il est multiplié par 1 avant de le mettre en facteur. C est ce qui est fait dans l exemple 3. b) Les identités remarquables Développons d abord les expressions suivantes : ( a+ b) = ( a+ b)( a+ b) = a + ab+ ba+ b = a + ab+ b. ( a b) = ( a b)( a b) = a ab ba+ b = a ab+ b. ( a b)( a+ b) = a + ab ba b = a b. Ces trois identités remarquables doivent être apprises par cœur. Résumons les ci dessous. Forme développée (somme) a + ab+ b = ( a+ b) a ab+ b = (a b) Forme factorisée (produit). a b = ( a b)( a+ b) Exemples x + 1x + 36 = ( x + 6). On applique la formule ( a+ b) = a + ab+ b avec a= x et b = 6. x 4x + 4= ( x ). On applique la formule ( a b) = a ab+ b avec a= x et b =. x 9= ( x 3)( x + 3). On applique la formule a b = ( a b)( a+ b) avec a= x et b = 3. Séquence 3 MA0 9

9 Exercices résolus Exercice 1 Développer les expressions suivantes : ( ) = ( ) = + ( ) = ( + ) ( )( ) A= 3 x + ; B x x 1 ; C 1 3 x ; D x 3 ; E = x + 3 x ; ( )( ) ( )( + ) = ( )( + ) F = x 1 x 1 ; G = x x ; H 3 x x. Réponse : A= 3x + 6 B = x x C = 1+ 3x 6 d où C = 3x 5. Attention, la multiplication est prioritaire sur l addition ; D = x + 6x + 9. Ici on utilise la formule a+ b ( ) avec a x et b = = 3. E = x( x )+ 3( x )= x x + 3x 6 et ainsi E = x + x 6. F = x x x + 1 F = x 3x + 1. On peut remarquer que dans le cas de E, E on a fait le développement en deux étapes et que pour F on a agit de manière plus directe. G = x ( ) en appliquant la formule a b avec a= x et b =. D où G = x. L expression H est une somme dont le deuxième terme est un produit. Commençons donc par développer ce produit : ( ) + x ( x )= x = x 4 en appliquant la formule a b avec a= x et b =. On en déduit que H = 3 ( x 4) (il ne faut pas oublier la parenthèse) et donc que H = 3 x + 4, H = 7 x. Exercice Factoriser les expressions suivantes : ( ) + + = ( ) ( + ) 3 3 A= 4x 7x ; B = x + x ; C = x + 1 x 1; D x 8x +16 ; E = x 5 ; F = 3x + x 1. Réponse : Recherchons un facteur commun : A= 4xx 7x. Il est clair que x est un ( ) facteur commun donc A= 4x 7 x. 10 Séquence 3 MA0

10 ( ) De la même manière : B = xx + 1x d où B = x + 1 x. Dans l expression C, on voit d abord une somme de 3 termes dont on ne sait que faire. Mais on peut aussi écrire C = x + 1 x 1 où on a alors une somme ( ) + ( + ) de deux termes contenant un facteur commun : C = ( x + 1 )( x + 1 )+ 1 ( x + 1 )=( x + 1 ) ( x + 1 )+ 1 et ainsi ( )( + ) C = x + 1 x. Pour D = x 8x + 16 il n y a pas de facteur commun apparent mais on reconnaît le développement de a b ( ) D = x 4. ( ) avec a x et b E est de la forme a b avec a= x et b = 5. ( )( + ) Ainsi E = x 5 x 5. = = 4 et donc C est la même chose pour F : cette fois a= 3x + et b = x + 1. F = ( 3x + ) ( x + 1) ( 3x + )+ ( x + 1 ). Supprimons les parenthèses à l intérieur des crochets : On a donc F = 3x + x 1 3x + + x + 1 et donc ( )( + ) F = x + 1 4x 3. Exercice 3 Connaissant 0 calculer mentalement 1 de deux manières différentes : avec ( ) avec 1 0 Réponse : nous savons que 0 = ( ) est bien égal à 1 mais aussi à = donc 1 = = ( 1 0) ( 1+ 0)= 41 donc 1 = et ainsi 1 = 441. Exercice 4 Comment calculer mentalement le carré d un nombre entier qui se termine par 5? Réponse : Observons d abord qu un nombre se terminant par 5 est égal à 10n n + 5 où n est son nombre de dizaines. Par exemple, 75 = car 7 est le chiffre des dizaines. Séquence 3 MA0 11

11 Calculons ( 10n + 5) ; ( 10n+ 5) = ( 10n) + 10n 5 + 5d où ( 10n+ 5) = 100n + 100n+ 5. Les deux premiers termes de cette somme ont un facteur commun : 100n. n Ainsi 100n + 100n= 100n( n+ 1) et ( 10n+ 5) = 100n( n+ 1)+ 5. Appliquons ceci à 75 : n ( ) = +. (n+1 est le nombre entier qui suit n). n Le calcul donne : 7 8= 56 et multiplier ce nombre par 100 revient à adjoindre 00 et ajouter 5 à ce nombre revient à remplacer 00 par 5. Conclusion : 75 = Autre exemple : pour 105 on prend le nombre des dizaines : 10, on le multiplie par son suivant qui est 11 ce qui donne 110 et on accole 5 à ce résultat. Donc 105 = (Il est conseillé de s entraîner avec 5, 35,...) Exercice 5 Montrer que, pour tout nombre réel x de ], + [, 4x x = + x. Réponse : Pour montrer une égalité, on n est pas obligé de partir du côté gauche de l égalité. Il est ici préférable de partir du côté droit de l égalité, car on peut 7 réduire l expression 4 + au même dénominateur. x Pour tout nombre réel x de ],+ [, 7 4( x ) 7 4x x = + = =. x x x x x C Synthèse développer expression algébrique somme factoriser ex pression algébrique produit Deux méthodes pour factoriser : Facteur commun et la formule k(a+b)=ka+kb Les identités remarquables : (a + b) = a + ab + b (a b) = a ab + b (a + b)(a b) = a b. 1 Séquence 3 MA0

12 D Exercice 1 Exercices d apprentissage Dans un jardin carré de côté x (en m), on réalise un parterre carré en laissant sur deux des côtés une bordure de largeur 1,5m. Parmi les expressions suivantes, indiquer celle(s) qui donnent l aire de la bordure : a) ( x + 15, ) x b) 3x c) 3x, 5 d) x ( x 15, ) e) xx ( 15, ) Exercice Pour quelle valeur de x l aire du parterre est elle égale à 16 m? Les longueurs sont exprimées en cm. On désire imprimer une carte carrée de côté x avec x compris entre 5 cm et 10 cm. On souhaite cependant laisser une marge de cm en haut et en bas de la carte et de 1 cm à gauche et à droite. x 1 On appelle f( x), l aire en cm de la surface imprimable. En calculant cette aire de deux façons différentes, montrer que f( x)= x 6x + 8 et f( x) = ( x )( x 4). Montrer que f( x) = ( x 3) 1. Déterminer les dimensions de la feuille telles que l aire de la surface imprimable soit égale à 8 cm puis à 15 cm. x Exercice 3 Exercice 4 Soit la fonction f définie sur R par f( x)= x 8x + 7 Montrer que : f( x) = ( x 4) 9. En déduire une forme factorisée def( x). Utiliser la forme la plus adaptée de f( x) pour répondre aux questions suivantes a) Calculer f ( 3). b) Résoudre l équation f( x) = 0. c) Calculer f ( 4) et montrer que, pour tout nombre réel x, f( x) 9. En déduire que f admet un minimum sur R. x 4 Soit g la fonction définie sur R par : gx ( ) =. x + 4 Montrer que gx ( ) peut s écrire sous les formes suivantes : 8 x gx ( ) = 1 = 1. x + 4 x + 4 Séquence 3 MA0 13

13 Utiliser l une ou l autre de ces formes pour répondre aux questions suivantes : a) Résoudre gx ( ) = 0. b) Montrer que, pour tout réel x, gx ( ) < 1. c) Montrer que, pour tout réel x, gx ( ) 1. Exercice 5 Exercice 6 Exercice 7 Exercice 8 Exercice 9 Exercice 10 Soit f la fonction définie sur ]1 ;+ [ par f( x) = 1. x 1 Montrer que f( x) peut aussi s écrire : x 3 f( x)= x 1 ou f x x x ( ) = + 3. x 1 En utilisant la forme la plus adaptée : a) Résoudre l équation f( x) = 0. b) Montrer que f( x)< pour tout réel x de ]1 ;+ [. c) Montrer que f( x)< x +3 pour tout réel x de ]1 ;+ [. Développer, réduire et ordonner les expressions suivantes : A= 6x 3( x + 1) ; B = 3x( x 4) ; C = ( x 7) ( 3 5x) ; 1 D = ( x ) ( x + ) E = x x ; = x ; F ; G = ( x 3 1) 3x 3+ ( 3 x)( x 3 1). ( ) ( )( ) = ( + )( ( 4) ( 3 5 ) ( + 4) ; = 9( 3) + ( 4 + 3) ; A= 3x 7 3x 7 x 1 ; B x 3 5x 1 x 3) ; C = x + x x D x x x x E = ( x) x F = G x 4 = 1 ; ; ( 3 ) 3; H = 9x + 1x + 4. Réduire au même dénominateur les expressions : A = 1 + x 1 5 ;B = x + 3 4x 1 ; C = +. 3 x 3 x 4 3 Développer et réduire : A= ( x 1)( x + x + x + x + 1). En déduire un moyen simple pour calculer la somme : S = x, y, z ( x + y + z ) = x + y + z + xy + yz + xz. On considère trois nombres A, B et C non nuls dont la somme des inverses est nulle. Démontrer que : a) AB + BC + CA =0. b)le carré de la somme de ces trois nombres est égal à la somme de leurs carrés. 14 Séquence 3 MA0

14 3 A Équations : résolution graphique et algébrique Activités Activité 1 A D J Se ramener à une équation du premier degré E B C I Γ ABCD est un carré de côté 4 cm et I est le milieu de [BC]. J est un point quelconque du segment [AB]. On pose AJ = x (en cm). est le cercle de centre J qui passe par A. Γ est le cercle de diamètre [BC]. L objet de l activité est de déterminer s il existe un point J tel que et Γ soient tangents en un point E. Exprimer JI² en fonction de x puis vérifier que et Γ sont tangents lorsque : ( x + ) = ( 4 x) +. Résoudre cette équation En déduire la position du point J sur [AB] pour que et Γ soient tangents. Activité Résolution graphique et algébrique d une équation On a dessiné ci-dessous la courbe (C) représentative de la fonction f définie sur R par f( x) = x. Dessiner dans le même repère sur le graphique suivant la courbe représentative d de la fonction affine g définie par gx ( ) = x+ 3. Quel lien peut-on faire entre les points d intersection de (C) et de d et l équation x = x + 3? Quelles semblent être, par lecture graphique, les abscisses de ces deux points. Vérifier que x x 3= ( x 1)( x + 3). Séquence 3 MA0 15

15 En déduire la résolution algébrique de l équation x = x + 3. y x B Cours Utilisation d une calculatrice Pour résoudre graphiquement une équation du typef( x)= k, où k désigne un nombre réel, (ouf( x) = g( x) ), il peut être intéressant de savoir représenter sur sa calculatrice la courbe d équation y = f( x) (et celle d équation y = g( x)) et de savoir obtenir un tableau de valeurs de la fonction f. Nous donnons ici les principales manipulations qu il faut connaître sur l exemple de la fonction f définie sur l intervalle [ 8 ;6] par f( x)= x + 4x 8 sur une TI8stats.fr et sur une casio5+ qui sont les deux modèles les plus fréquemment utilisés au lycée actuellement. L utilisation d une autre TI ou casio est très voisine de celles-ci. Nous nous appuierons sur des travaux réalisés par l IREM de Lyon, figurant sur internet, et que vous pouvez consulter pour des compléments d informations. 16 Séquence 3 MA0

16 A. Utilisation d une TI8stats.fr Définir une fonction Touche f (x) Introduire la fonction par exemple en Y1. Pour la variable X, utiliser la touche x, t, θ, n. Valider avec la touche entrer. Tracer la courbe représentative Touche graphe L écran ci-contre n est qu un exemple, il est possible que celui affiché sur votre calculatrice soit différent. Pour obtenir cet affichage : touche zoom 6:ZStandard Régler la fenêtre d affichage Touche fenêtre. Régler les paramètres comme sur l écran cicontre. Touches et pour passer d une ligne à l autre. Puis touche graphe. Régler les paramètres du tableau de valeurs Instruction déf table (touches nde fenêtre ). Régler les paramètres comme sur l écran cicontre. DébTable : valeur initiale (1 re valeur du tableau). PasTable : pas du tableau (écart entre deux valeurs successives). Séquence 3 MA0 17

17 Afficher le tableau de valeurs Instruction table (touches nde graphe ). Si l écran n affiche pas toutes les valeurs souhaitées, on peut se déplacer dans la table à l aide des flèches. Parcourir une courbe Touche trace. Touches ÿ et pour se déplacer sur la courbe. L expression de la fonction ainsi que les coordonnées du point où est situé le curseur sont affichées. Calculer une image Instruction quitter (touches nde mode ) pour revenir à l écran de calcul. Touche var option V VAR-Y= à l aide de la flèche ÿ. Puis option 1 1:Fonction et valider avec entrer. Choisir la fonction désirée (pour notre exemple 1:Y1 ). Puis compléter comme sur l écran ci-contre pour, par exemple, obtenir l image de Séquence 3 MA0

18 Ajouter une fonction Touche f (x) Introduire la nouvelle fonction par exemple en Y Puis graphe ou table. Choisir les représentations graphiques à tracer Touche f (x) Avec les touches de déplacement placer le curseur sur le signe = de la fonction que vous ne souhaitez plus afficher. Ce signe doit alors clignoter. Touche entrer pour modifier le statut de la fonction sélectionnée. Le signe doit alors être = et non plus. Pour réafficher une fonction, procéder de la même façon. Le signe doit alors être de nouveau = = au lieu de =. Ensuite graphe ou table. Seules les fonctions sélectionnées sont affichées. (Pour l exemple Y1 a été désélectionnée). Effacer une fonction Touche f (x) Sélectionner la fonction à effacer, par exemple Y1. Puis touche annul. Séquence 3 MA0 19

19 Régler la fenêtre d affichage La fenêtre d affichage est la partie du plan délimitée par les valeurs Xmin, Xmax, Ymin et Ymax. La distance entre les graduations est définie par Xgrad pour l axe horizontal et par Ygrad pour l axe vertical. Xrés définit la résolution de l affichage (de 1 à 8). Problèmes possibles Problème rencontré ERR : SYNTAXE 1 :Quitter :Voir ERR : VAL FENETRE 1 :Quitter Comment y remédier L expression de la fonction est mal saisie. Par exemple : -X ² doit être saisi en utilisant (-) et non pas. fenêtre La fenêtre graphique est mal définie. (Par exemple on a saisit des valeurs telles que : Xmin Xmax) Une série statistique est représentée il faut la désactiver : Effacer tous les graphiques statistique : nde f (x). (graph stats)4 4 :graphoff. ou Effacer le graphique problématique : f (x). sélectionner le graphique activé et appuyer sur entrer. ERR : DIM INVALIDE 1 :QUIT Une série statistique est saisie mais de façon incorrecte. nde f (x). (graph stats) 4 4 :graphoff. 0 Séquence 3 MA0

20 B. Utilisation d une casio graph5+ Définir une fonction Icône Introduire la fonction par exemple en Y1. Valider avec la touche EXE. Utiliser la touche X,T pour la variable X. Tracer la courbe représentative Instruction DRAW (touche F4 ). L écran ci-contre n est qu un exemple, il est possible que celui affiché sur votre calculatrice soit différent. Régler la fenêtre d affichage Instruction V-Window (touches SHIFT F3 ). Régler les paramètres comme sur l écran ci-contre. Touches et pour changer de ligne. Touche EXE puis instruction DRAW. Régler les paramètres du tableau de valeurs Icône puis instruction RANG (touche F3 ). Régler les paramètres comme sur l écran ci-contre. Strt : valeur initiale (1 ère valeur du tableau). End : valeur finale (dernière valeur du tableau). Ptch : pas du tableau (écart entre deux valeurs successives). Touche EXIT pour revenir à l écran précédent. Afficher le tableau de valeurs Instruction TABL (touche F4 ). Si l écran n affiche pas toutes les valeurs souhaitées, on peut se déplacer dans la table à l aide des flèches. Séquence 3 MA0 1

21 Parcourir une courbe Retour au graphique : touche MENU icône puis instruction DRAW. Instruction TRACE (touches SHIFT F1 ). Un point apparait sur la courbe et ses coordonnées sont affichées. Touches ÿ et pour déplacer ce point. Calculer une image Mode calcul : touche MENU et icône. Touche VARS et instruction GRPH. pour cela : Touche (à droite de F4 ) puis F. Mettre la valeur dont on veut l image dans la mémoire X, par exemple pour l image de 3 : Touches 3 X,θ,T puis. correspond à la touche de mise en mémoire. Instruction Y (Touche F1 ) suivie du numéro de la fonction à utiliser (pour notre exemple Y1). Valider avec EXE. Ajouter une fonction Mode graphique : touche MENU et icône. Introduire la nouvelle fonction par exemple en Y Puis DRAW. Le tableau de valeur est lui aussi mis à jour : Touche MENU et icône Puis TABL. Utiliser les flèches ÿ et pour se déplacer. Séquence 3 MA0

22 Choisir les fonctions affichées Mode graphique : touche MENU et icône. Avec les flèches, sélectionner la fonction que vous ne souhaitez plus afficher. Instruction SEL (touche F1 ) pour valider votre choix. Le signe = doit alors être = et non plus =. Instruction DRAW pour tracer les courbes choisies. Pour réafficher une fonction, procéder de la même façon. Le signe = doit de nouveau être = au lieu de =. On peut faire la même chose dans le mode table : touche MENU et icône. Sélectionner les fonctions à afficher puis TABL. Effacer une fonction Sélectionner la fonction à effacer, par exemple Y1. Puis instruction DEL (touche F ), et enfin choisir YES (touche F1 ) Régler la fenêtre d affichage La fenêtre d affichage est la partie du plan délimitée par les valeurs Xmin, Xmax, Ymin et Ymax. La distance entre les graduations est définie par Xsacle pour l axe horizontal et par Yscale pour l axe vertical. Problèmes possibles Problème rencontré Syn ERROR Ma ERROR Comment y remédier L expression de la fonction est mal saisie. Par exemple erreur de variable. Appuyer sur AC/On Vérifier la fenêtre d affichage. Séquence 3 MA0 3

23 Résolution graphique d une équation Vous pourrez être amené à résoudre graphiquement des équations du type f( x)= k où k est un nombre réel ou du type f( x) = g( x). Les fonctions f et g sont représentées par les courbes C et C. Exemple f (x) = k Résoudre l équation f( x) = 3. y 4 Exemple y f (x) = g(x) 3 y = 3 C 1 1 C 0 0,6 1, x x 0, ,5 1 Les solutions sont 0,5 et 3,5. Cas général On cherche les points de C d ordonnée k (ce travail peut être facilité par le tracé de la droite d équation y = k ). Les abscisses de ces points sont les solutions de l équation f( x) = k. C Les solutions sont approximativement 0,6 et,. Cas général On repère les poins communs à C et C. Les solutions sont les abscisses des points communs. Résolution algébrique Définition Deux équations sont dites équivalentes quand elles ont les mêmes solutions. Résoudre l une revient donc à résoudre l autre. Exemple 3x + 6= 0 est équivalent à x =. L expression est équivalente est synonyme de l expression «si et seulement si». 4 Séquence 3 MA0

24 Notation Vous pourrez rencontrer le symbole pour remplacer l expression est équivalent. On écrira par exemple : 3x 6= 0 x =. Ne pas confondre le symbole avec celui de l égalité = Vous devez toujours pouvoir remplacer le symbole par l expression «si et seulement si». Propriété 1 : Équations équivalentes On transforme une équation en une équation équivalente : en développant ou factorisant certains termes ; en ajoutant ou retranchant un même terme à chaque membre en multipliant ou divisant chaque membre par un même nombre non nul. Pour résoudre une équation qui ne se ramène pas par développement à une équation du 1 er degré, on la transforme en une équation équivalente dont un membre et nul et on applique les propriétés suivantes : Propriété : Règle du produit nul Un produit est nul si et seulement si l un des facteurs est nul. A B = 0 équivaut à A=0 ou B=0. Propriété 3 : Règle du quotient nul Un quotient est nul si et seulement si son numérateur est nul et son dénominateur est non nul. A = 0 équivaut à A = 0et B 0. B Exercices résolus Exercice 1 Résoudre les équations suivantes : 3 7x ( 1 x)= ( x + 1). ( ) =. ( x + )( x )+( x + ) x + x 1 4x 1 1 1( 3 7)= 0. ( ) = ( ). x + 3 x 4 Séquence 3 MA0 5

25 Réponse : Réduisons chacun des membres : 3 7x 1+ x = x +, d où 6x + = x +. On retranche x + à chaque membre : 8x = 0. Il ne reste qu à diviser par 8 et on obtient x = 0. S = {} 0. Mettons en facteur dans le membre de droite et retranchons ce terme aux deux membres : ( x 1) ( x 1)= 0. Nous pouvons mettre x 1 ( x 1) ( x 3)= 0. ( ) =, soit ( ) en facteur : ( x 1) x 1 0 Nous savons qu un produit est nul si et seulement si l un des facteurs est nul : x 1= 0 ou x 3 = 0. Donc S = 1 3,. ( ) en facteur : Nous pouvons mettre x + 1 ( x + 1) ( x 1+ 3x + 7)= 0. c est-à-dire ( x + 1) ( 4x + 6)= 0. On obtient x + 1= 0 ou 4x + 6= 0. Donc S = 1 3,. Exercice Exercice 3 Déterminer 5 nombres entiers consécutifs dont la somme est 405. Réponse : Le plus simple est de noter x le nombre du milieu ; les deux précédents sont alors x et x 1 et les deux suivants x + 1et x +. Le nombre x doit alors vérifier ( x )+ ( x 1)+ x + ( x + 1)+ ( x + )= 405, 5x = 405 d où x = 81. Les 5 nombres cherchés sont donc 79, 80, 81, 8, 83. Il est aisé de vérifier que ces 5 nombres répondent bien au problème. Un arbre de 9 m de haut dont le pied est en A s est cassé en B. La cime est tombée en C à 3,5 m de A. Calculer la distance AB. Réponse : Le triangle ABC est rectangle en A ; on peut donc appliquer la propriété de Pythagore : BC = AB + AC. Nous savons que AC = 35, ; notons x la distance AB, il en résulte que BC = 9 x. On peut alors écrire B ( 9 x) = x + 3, 5. Pour résoudre cette équation, on développe le premier membre : 81 18x + x = x + 1, 5. On retranche le deuxième au premier, ce qui donne : 68, 75 68, 75 18x = 0 d où x = soit L arbre s est donc cassé à environ 3,8 m du sol. A C 6 Séquence 3 MA0

26 Exercice 4 Résoudre les équations suivantes x 5 x + 1 = 0 x 1 0 x + 1 =. = 3. x x + 5 Réponse : Un quotient est nul si et seulement si son numérateur est nul et son dénominateur est non nul. x 5 x + 1 = 0 équivaut à x 5= 0 et x soit : x = 5 et x 1 soit : x =5. On a donc = {5}. x 1 0 x + 1 = équivaut à : x 1= 0 et x x 1= 0 équivaut à x 1 = 0 soit ( x + 1)( x 1) = 0. ( x + 1)( x 1) = 0 x + 1= 0 ou x 1= 0 soit : x = 1 ou x = 1. Par suite x 1 = 0 équivaut à x = 1 ou x = 1et x 1. x + 1 L équation n a donc qu une solution : = {1}. 3 x = x + 5 équivaut à 3 5 = 0. x x + Mettons l expression 3 au même dénominateur. x x ( x + 5) 3 x x 10 = = + x x + 5 xx ( + 5) ( x + 5) x xx ( + 5). x + 10 = 0 équivaut à x + 10 = 0 et xx ( + 5) 0. xx ( + 5) soit x = 10 et x 0 et x 5. On en déduit ={10}. Remarque La négation de la proposition logique x = 0 ou x = 5 est : x 0 et x 5. Plus généralement, considérons deux propositions P et Q. La négation de «P est vraie ou Q est vraie» et «P est faux et Q est faux». Par exemple, la négation de la proposition : «L interrupteur A est ouvert ou l interrupteur B est ouvert» est «L interrupteur A est fermé et l interrupteur B est fermé» Séquence 3 MA0 7

27 Exercice 5 Donner à l aide de votre calculatrice sur l intervalle [ 3 ; 3] le nombre de solutions de l équation xx ( 1 ) = x. Résoudre algébriquement sur l intervalle [ 3 ; 3] l équation xx ( 1 ) = x. Réponse : Soit f( x) = x( x 1) et gx ( ) = x. Graphiquement, on constate que les courbes représentatives des fonctions f et g sur ont deux points communs. Sur [ 3; 3], on lit donc graphiquement que l équation xx ( 1) = xadmet deux solutions (qui semblent être voisines 0 et ). L équation xx ( 1 ) = x est équival ente à xx ( 1) x= 0 soit après factorisation par x, x soit xx ( ) = 0. xx ( 1 1) = 0 Cette dernière équation équivaut à x = 0 ou x =. On a donc = {0 ;}. Ce serait une erreur de simplifier par x dans l expression x ( x 1 ) = x pour obtenir x 1 = 1 soit x =. Les équations xx ( 1 ) = x et x 1 = 1 ne sont pas équivalentes car elles n ont pas le même ensemble de solutions. C Synthèse Résolution graphique d équations y Équation f( x ) = k 4 Soit f une fonction de courbe représentative C. 3 y = k Les solutions de l équation f( x)= k sont les abscisses des points d intersection de C et de la droite d équation y = k. 1 a C 3 b x 8 Séquence 3 MA0

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage

Algorithmes (2) Premiers programmes sur calculatrice. Programmation sur calculatrice TI. codage Objectifs : lgorithmes () Premiers programmes sur calculatrice - passer de la notion d algorithme à la notion de programme - aborder la notion de langage de programmation - s initier à la programmation

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 8 juillet 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un

Plus en détail

Cours d algorithmique pour la classe de 2nde

Cours d algorithmique pour la classe de 2nde Cours d algorithmique pour la classe de 2nde F.Gaudon 10 août 2009 Table des matières 1 Avant la programmation 2 1.1 Qu est ce qu un algorithme?................................. 2 1.2 Qu est ce qu un langage

Plus en détail

CHAPITRE 2 CALCULS ALGEBRIQUES

CHAPITRE 2 CALCULS ALGEBRIQUES Classe de Troisième CHAPITRE CALCULS ALGEBRIQUES UTILISER DES LETTRES... 34 EXPRESSIONS EQUIVALENTES... 36 VOCABULAIRE DU CALCUL LITTERAL... 37 REDUCTIONS D'ECRITURES... 39 DEVELOPPER UN PRODUIT... 40

Plus en détail

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays.

Tous droits de traduction, de reproduction et d adaptation réservés pour tous pays. Maquette de couverture : Graphir Maquette intérieure : Frédéric Jély Mise en page : CMB Graphic Dessins techniques : Gilles Poing Hachette Livre 008, 43, quai de Grenelle, 790 Paris Cedex ISBN : 978--0-8-

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48

CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES. S, L, M, GnivA NA 11.038.48 1 CYCLE D ORIENTATION DE L ENSEIGNEMENT SECONDAIRE MATHÉMATIQUES 9E S, L, M, GnivA NA DÉPARTEMENT DE L INSTRUCTION PUBLIQUE GENÈVE 1995 11.038.48 TABLE DES MATIÈRES 3 Table des matières 1 Les ensembles

Plus en détail

Fonctions affines. Table des matières

Fonctions affines. Table des matières Fonctions affines Table des matières 1 fonction linéaire, fonction constante, fonction affine 3 1.1 activités.............................................. 3 1.1.1 activité 1 : fonction linéaire et variation

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.

Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée. ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle

Plus en détail

Utilisation de la calculatrice Fiche 1. Prise en main de la calculatrice

Utilisation de la calculatrice Fiche 1. Prise en main de la calculatrice Utilisation de la calculatrice Fiche 1 Prise en main de la calculatrice Première étape : Maîtriser l affichage des nombres : Avec la TI Entrer dans les réglages par la touche MODE L écran suivant apparaît

Plus en détail

2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION

2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION 2 de AP1 : utilisation de la calculatrice en mode «Programme» CORRECTION Algorithmes et programmes : Un algorithme est un ensemble d'instructions structuré de manière à atteindre un but. Ces instructions

Plus en détail

Division de Polynômes

Division de Polynômes LGL Cours de Mathématiques 00 Division de Polynômes A INTRODUCTION Motivations: * Résoudre des équations d un degré supérieur à * Représenter des fonctions algébriques en se basant et sur des fonctions

Plus en détail

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007

Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer

Plus en détail

TRIGONOMETRIE Algorithme : mesure principale

TRIGONOMETRIE Algorithme : mesure principale TRIGONOMETRIE Algorithme : mesure principale Déterminer la mesure principale d un angle orienté de mesure! 115" Problèmatique : Appelons θ la mesure principale, θ et! 115" sont deux mesures du même angle,

Plus en détail

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»

CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Cours de mathématiques pour la classe de Seconde

Cours de mathématiques pour la classe de Seconde Cours de mathématiques pour la classe de Seconde Vincent Dujardin - Florent Girod Année scolaire 04 / 05. Externat Notre Dame - Grenoble Table des matières 0 Ensembles de nombres et intervalles de R 3

Plus en détail

Suite géométrique et résolution graphique d une inéquation

Suite géométrique et résolution graphique d une inéquation - - 1 - - - - 1 - -24/12/2010J - - 1 - - Suite géométrique et résolution graphique d une inéquation ENONCE : Une entreprise achète un véhicule neuf au prix de V 0 = 20 000. Elle considère que le véhicule

Plus en détail

Programmes du collège

Programmes du collège Bulletin officiel spécial n 6 du 28 août 2008 Programmes du collège Programmes de l enseignement de mathématiques Ministère de l Éducation nationale Classe de quatrième Note : les points du programme (connaissances,

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Il faut connecter le câble fourni avec la calculatrice, sur la prise USB de son ordinateur et sur

Il faut connecter le câble fourni avec la calculatrice, sur la prise USB de son ordinateur et sur 1) Pour travailler avec une calculatrice virtuelle sur l ordinateur Il faut télécharger et installer le logiciel TIEmu3 à l adresse suivante : http://lpg.ticalc.org/prj_tiemu/win32.html (le fichier tiemu-3.01-win32-setup)

Plus en détail

Calcul littéral 3 ème 2 nde Projet 2 : Delphine Carlier et Michel Bachimont

Calcul littéral 3 ème 2 nde Projet 2 : Delphine Carlier et Michel Bachimont Calcul littéral 3 ème 2 nde Projet 2 : Delphine Carlier et Michel Bachimont Motivations : Difficultés pour les élèves à réinvestir le calcul littéral dans les problèmes (développement, factorisation, identités

Plus en détail

GEOGEBRA : Les indispensables

GEOGEBRA : Les indispensables Préambule GeoGebra est un logiciel de géométrie dynamique dans le plan qui permet de créer des figures dans lesquelles il sera possible de déplacer des objets afin de vérifier si certaines conjectures

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Sujet de mathématiques du brevet des collèges

Sujet de mathématiques du brevet des collèges Sujet de mathématiques du brevet des collèges POLYNÉSIE Septembre 014 Durée : h00 Calculatrice autorisée Indication portant sur l ensemble du sujet. Toutes les réponses doivent être justifiées, sauf si

Plus en détail

Découverte de la TI-Nspire CAS

Découverte de la TI-Nspire CAS Découverte de la TI-Nspire CAS Ce document est surtout destiné aux nouveaux utilisateurs. Il permet de commencer à découvrir certaines des nombreuses possibilités de l unité nomade TI-Nspire CAS. 1. Avant

Plus en détail

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS

Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Découverte de la calculatrice TI-nspire CX / TI-nspire CX CAS Ce document a été réalisé avec la version 3.02 de la calculatrice TI-Nspire CX CAS. Il peut être traité en une ou plusieurs séances (la procédure

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice)

Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Test de Mathématiques Fiche professeur 1 er partie (sans calculatrice) Exercice 1 : Activité mentale Temps estimé : 4 min Dicter chaque calcul deux fois, ou l écrire au tableau et l effacer après 10 secondes.

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge

Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : Rappels collège/seconde Partie STAV 1/3 Partie STAV 2/3 Partie STAV

Plus en détail

ARITHMETIQUE EXERCICES CORRIGES

ARITHMETIQUE EXERCICES CORRIGES Exercice n 1. ARITHMETIQUE EXERCICES CORRIGES 5 1) Donner l écriture de a) A = 1 b) A = 1001 c) A = 1 ) Ecrire la suite des 10 premiers nombres entiers en base deux. En base quatre ) En base douze, on

Plus en détail

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS

Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4

0.2.3 Polynômes... 4. 0.2.1 Monômes... 4 0.2.2 Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Notes de cours de Mathématiques en première ES/L

Notes de cours de Mathématiques en première ES/L Notes de cours de Mathématiques en première ES/L O. Lader 1 Table des matières 1 Pourcentages, taux d évolution (4S) 3 1.1 Évolution........................................... 3 2 Fonctions du second degré

Plus en détail

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques.

Lycée Alexis de Tocqueville. BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé. Série S.T.M.G. Février 2015 Épreuve de mathématiques. Lycée Alexis de Tocqueville BACCALAUREAT TECHNOLOGIQUE Blanc Corrigé Série S.T.M.G. Février 2015 Épreuve de mathématiques Durée 3 heures Le candidat traitera obligatoirement les quatre exercices ******

Plus en détail

Collège Jean-Baptiste Clément

Collège Jean-Baptiste Clément Collège Jean-Baptiste Clément 5-7, rue Albert Chardavoine 93440 DUGNY réalisés par M. LENZEN. Également disponibles en consultation sur son site internet http://www.capes-de-maths.com/ 01.43.11.11.40 01.48.37.46.59

Plus en détail

Initiation à la CASIO Graph 25 (+)

Initiation à la CASIO Graph 25 (+) Initiation à la CASIO Graph 25 (+) Présentation Quelques caractéristiques : La calculatrice CASIO Graph 25 est une machine scientifique hiérarchisée. Ceci signifie que, contrairement aux modèles dits «4

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE INFERIEUR Introduction. page 2 Classe de septième.. page 3 Classe de sixième page 7-1 - INTRODUCTION D une manière générale on

Plus en détail

Priorités de calcul :

Priorités de calcul : EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Calcul des paramètres statistiques TI-82stats.fr? Déterminer les paramètres de la série statistique : Valeurs 0 2 3 5 8 Effectifs 16 12 28 32 21? Accès au mode statistique Touche

Plus en détail

4. Créer des compteurs, des curseurs ou des bandes déroulantes : a) Création des objets. b) Affectation à une cellule et réglage du pas.

4. Créer des compteurs, des curseurs ou des bandes déroulantes : a) Création des objets. b) Affectation à une cellule et réglage du pas. Logiciel Excel version Office 2007. Voici une liste non exhaustive de fonctions de ce logiciel en relation avec le stage. Au sommaire : 1. Créer des boutons de raccourci dans une barre d outils: a) Sélection

Plus en détail

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé.

MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE. Durée de l épreuve : 2 h 00. L usage de la calculatrice est autorisé. COMPOSITION SECONDE MARS 2014 MATHEMATIQUES LYCEE STANISLAS-NICE Durée de l épreuve : 2 h 00 L usage de la calculatrice est autorisé. Toutes les réponses devront être justifiées. Exercice 1 Soit la fonction

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne

Arithmétique. Préambule. 1. Division euclidienne et pgcd. Exo7. 1.1. Divisibilité et division euclidienne Exo7 Arithmétique Vidéo partie 1. Division euclidienne et pgcd Vidéo partie 2. Théorème de Bézout Vidéo partie 3. Nombres premiers Vidéo partie 4. Congruences Exercices Arithmétique dans Z Préambule Une

Plus en détail

VI- Des transistors aux portes logiques. Conception de circuits

VI- Des transistors aux portes logiques. Conception de circuits 1 VI- Des transistors aux portes logiques. Conception de circuits Nous savons que l ordinateur traite uniquement des instructions écrites en binaire avec des 0 et des 1. Nous savons aussi qu il est formé

Plus en détail

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200 Suite arithmétique ENONCE : Une société de téléphonie mobile propose un nouveau forfait à partir du mois de janvier 2009. En janvier 2009, elle a enregistré 2000 abonnements souscrits pour ce forfait.

Plus en détail

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ

F7n COUP DE BOURSE, NOMBRE DÉRIVÉ Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30

Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE. 2ème trimestre 2010. Durée de l épreuve : 1 h 30 Première L COMPOSITION DE MATHEMATIQUES - INFORMATIQUE 2ème trimestre 2010 Durée de l épreuve : 1 h 30 Le candidat doit traiter les 3 exercices La qualité de la rédaction, la clarté et la précision des

Plus en détail

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2

Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2 éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière PRO 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde PRO partie première PRO partie terminale PRO Sommaire

Plus en détail

Brevet Blanc de Mathématiques ** Corrigé **

Brevet Blanc de Mathématiques ** Corrigé ** Brevet Blanc de Mathématiques ** Corrigé ** Collège Goscinny de Valdoie Le soin et la qualité de la rédaction comptent pour 4 points. L usage de la calculatrice est autorisé. Sujet et corrigé écrits avec

Plus en détail

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points

La maison Ecole d ' Baccalauréat blanc Classe de terminale ES. Exercice 1 - sur 4 points La maison Ecole d ' Baccalauréat blanc Classe de terminale ES Année scolaire 00-004 Copyright c 004 J.- M. Boucart GNU Free Documentation Licence On veillera à détailler et à rédiger clairement les raisonnements,

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Représentation d un entier en base b

Représentation d un entier en base b Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir

Plus en détail

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.

PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo. PRATIQUE DE LA GÉOMÉTRIE AU LYCÉE ET AU COLLÈGE AVEC UNE CALCULATRICE GRAPHIQUE INCLUANT CABRI JUNIOR Jean-Jacques DAHAN jjdahan@wanadoo.fr I.A.M. de Grenoble et I.R.E.M. de Toulouse 1. UN ACCÈS RAPIDE

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Les suites numériques

Les suites numériques Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20

Fonctions affines. 2 Signe d une fonction affine 18 2.1 activité... 19 2.2 corrigé activité... 20 Fonctions affines Table des matières 1 généralités : (images, formule, variations, tableau de valeurs, courbe, équations, inéquations) 2 1.1 activité............................................... 3 1.2

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende

Que faire en algorithmique en classe de seconde? ElHassan FADILI Lycée Salvador Allende Que faire en algorithmique en classe de seconde? BEGIN Que dit le programme? Algorithmique (objectifs pour le lycée) La démarche algorithmique est, depuis les origines, une composante essentielle de l

Plus en détail

Prise en main d un tableur Open Office

Prise en main d un tableur Open Office Prise en main d un tableur Open Office 1 Présentation de l écran de travail Barre des menus Barre d outil Standard Barre de mise en forme Zone d édition des formules zone active Adresse de la zone active

Plus en détail

Algorithmique. Mode d application

Algorithmique. Mode d application I - Généralités Algorithmique T ale S Définition: Un algorithme est une suite finie d instructions permettant la résolution systématique d un problème donné. Un algorithme peut-être utilisé pour décrire

Plus en détail

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0?

1. Montrer que, si on choisit le nombre 10, le résultat obtenu est 260. 3. Quels nombres peut-on choisir pour que le résultat obtenu soit 0? Exercice 1 : ACTIVITÉS NUMÉRIQUES. Métropole Juin 2008 On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3. b) Ajouter le carré du nombre choisi. c) Multiplier par

Plus en détail

Problème : Session 2008 (fonctions affines) Partie I : Partie II :

Problème : Session 2008 (fonctions affines) Partie I : Partie II : Problème : Session 2008 (fonctions affines) Dans ce problème, on étudie deux méthodes permettant de déterminer si le poids d'une personne est adapté à sa taille. Partie I : Dans le graphique ci-dessous

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

COURS DE MATHEMATIQUES TERMINALE STG

COURS DE MATHEMATIQUES TERMINALE STG COURS DE MATHEMATIQUES TERMINALE STG Chapitre 1. TAUX D EVOLUTION... 5 1. TAUX D EVOLUTION ET COEFFICIENTS MULTIPLICATEURS... 5 a. Taux d évolution... 5 b. Coefficient multiplicateur... 5 c. Calcul d une

Plus en détail

Journée Enseignement des Mathématiques en Limousin

Journée Enseignement des Mathématiques en Limousin Journée Enseignement des Mathématiques en Limousin Algorithmique et Calculatrice Jeudi 9 décembre 2010 Samuel ADABIA, I.R.E.M. de Limoges Objectifs : I.R.E.M. de LIMOGES Facultés des Sciences A - Présenter

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

Lois de probabilités avec la calculatrice graphique Graph 35+ USB pour le lycée

Lois de probabilités avec la calculatrice graphique Graph 35+ USB pour le lycée Lois de probabilités avec la calculatrice graphique Graph 35+ USB pour le lycée Par Benoît Truchetet www.casio-education.fr Ce guide est dédié à Madame Meyniel ancien chef d établissement, mes collègues

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

en utilisant un point-virgule.

en utilisant un point-virgule. 6 Chapitre Chapitre 6. Géométrie analytique Ce chapitre présente les possibilités de votre calculatrice dans le domaine de la géométrie analytique, tout particulièrement pour les problèmes liés aux espaces

Plus en détail

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x

3 Chasse aux bulles. A = 2x(x 3) = B = (5x 2) 4x = C = (x 1)(4 x) = D = (x 2)(3x 1) = 4 Distributivité A = 11 4. A = 22x² 55 2 x Développer et réduire 3 Chasse aux bulles 1 Vrai ou faux? x 2 3x 2x 2 4 7x Justifie tes réponses. x 2 est toujours égal à 2x. Faux, par exemple, si x = 3, alors x² = 9, mais 2x = 6 (5x) 2 est toujours

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Activités numériques

Activités numériques Sujet et correction Stéphane PASQUET, 25 juillet 2008 2008 Activités numériques Exercice On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre pas 3. b) Ajouter le carré

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

Mathématiques. Enseignement 2010-2012. Clément BOULONNE. Les Maths en Stage. http://cboumaths.wordpress.com. Licence Creative Commons BY: $

Mathématiques. Enseignement 2010-2012. Clément BOULONNE. Les Maths en Stage. http://cboumaths.wordpress.com. Licence Creative Commons BY: $ Enseignement [chapter] Mathématiques [chapter] Clément BOULONNE Les Maths en Stage 2010-2012 http://cboumaths.wordpress.com Licence Creative Commons BY: $ \ C les maths en stage clément BOULONNE S O

Plus en détail

Lycée. Juin 2015. Retrouvez dans ce numéro toute l actualité CASIO, des exercices résolus avec nos calculatrices, et bien plus encore!

Lycée. Juin 2015. Retrouvez dans ce numéro toute l actualité CASIO, des exercices résolus avec nos calculatrices, et bien plus encore! OFFRE SPÉCIALE Juin 2015 Lycée NOUVEAUTÉ 2015 NOUVEAUTÉ 2015 NOUVEAUTÉ 2015 Retrouvez dans ce numéro toute l actualité CASIO, des exercices résolus avec nos calculatrices, et bien plus encore! Chers professeurs,

Plus en détail

Découverte de l unité nomade TI-n spire / TI-n spire CAS

Découverte de l unité nomade TI-n spire / TI-n spire CAS Découverte de l unité nomade TI-n spire / TI-n spire CAS Mémento Nom de la touche x Cliquer sur le bouton central Bouton de navigation (Nav Pad) d Touche d échappement e Touche de tabulation c Touche d

Plus en détail