IFT3355: Infographie Sujet 6: shading 7 (illumination globale 4)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "IFT3355: Infographie Sujet 6: shading 7 (illumination globale 4)"

Transcription

1 IFT3355: Infographie Sujet 6: shading 7 (illumination globale 4) Derek Nowrouzezahrai Département d informatique et de recherche opérationelle Université de Montréal

2 Ambient Occlusion expériment numérique Comme notre ancien exemple en 1D, on peut étudier la convergence de nos différents estimateurs en fonction du nombre d échantillons On va considérer deux exemples: un point ou V x, ω un point ou V x, ω 1, ω = 1, ω, et Pour chaqu un de ces exemples nous allons tracer la convergence pour chaqu un de nos estimateurs:

3 Ambient Occlusion expériment 1: V x, ω 1 Pour cet premier expériment on peut simplement tracer la valeur d ambient occlusion pour un point dans notre scène

4 Ambient Occlusion expériment 1: V x, ω 1 Pour cet premier expériment on peut simplement tracer la valeur d ambient occlusion pour un point dans notre scène

5 Ambient Occlusion expériment 2: V x, ω = 1 Pour cet premier expériment on peut simplement tracer la valeur d ambient occlusion pour un point dans une scène simplifiée

6 Ambient Occlusion expériment 2: V x, ω = 1 Pour cet premier expériment on peut simplement tracer la valeur d ambient occlusion pour un point dans une scène simplifiée

7 Ambient Occlusion expériment 2: V x, ω = 1 Ça correspond à quoi visuellement? N = 1 N = 1 N = 1!

8 Survol: reflection occlusion + les environnements lumineuses On continue avec l équation d illumination directe L o x, ω o = L in x, ω V x, ω f r (x, ω, ω o )dω Ω en appliquant plusieurs différents suppositions Souvenez qu avec l ambient occlusion on a supposé que L in x, ω = 1 la seule source d illumination est uniforme f r x, ω, ω o = max n x ω,0 π matériaux exclusivement diffus (avec k d = 1) Les prochaines deux applications démonteront comment: 1. simuler des objets non-lambertienne (ex: différent f r ) 2. traiter des sources de lumières plus complexes (ex: L in non-uniforme)

9 De côté: définition formelle de f r (x, ω, ω o ) f r est le bidirectional reflectance distribution function (BRDF), une fonction qui modèle les propriétés de réflectance d une matérielle (où de plusieurs matériaux combinées) À chaque point x le BRDF f r est une fonction de 4 dimensions: Deux pour les directions de lumière incident, et Deux pour les directions de lumière sortant Les propriétés mathématiques les plus importantes des BRDFs sont: 1. réciprocité: f r x, ω in, ω out = f r (x, ω out, ω in ) 2. conservation d énergie: f r x, ω in, ω o Ω in dω in 1, ω o 3. positivité: f r x, ω in, ω out 0, ω in et ω out Plusieurs équation analytiques pour f r existes pour des différentes types de réflexions: diffus, spéculaire (miroir, Phong, etc.), etc. On peut aussi utiliser des données tabulées capturées à partir du monde réel: float f_r[theta_i][phi_i][theta_o][phi_o][couleurs]

10 f r (x, ω, ω o ) Lambertienne Peut-être vous avez remarqué le facteur de 1 dans notre π formulation du BRDF Lambertienne Nous avons opportunément ignoré ce facteur de normalisation jusqu'à présent mais maintenant nous pouvons le dériver! Le modèle Lambertienne conserve l énergie parfaitement ( f r x, ω in, ω o Ω in dω in = 1) Chaque BRDF doit être normalisé et, si on ne savait pas déjà le facteur de normalisation pour le modèle Lambertienne, on le dérivera en résolvant pour C ci-dessous C max n x ω in, 0 dω in = 1 Ω in

11 f r (x, ω, ω o ) Phong Souvenez le modèle de réflexion Phong x R f r x, ω in, ω o max R ω, 0 n On peut similairement déterminer le facteur de normalisation pour ce modèle en résolvant C f r x, ω in, ω Ω in o dω in = 1 pour C C = n+1 2π et f r x, ω in, ω o = n+1 max R ω,0 2π n

12 Exemple 2: Reflection Occlusion Reflection occlusion est un effet de shading dérivé du formulation d illumination directe après l application de certains suppositions Comme l ambient occlusion on suppose une seule source d illumination uniforme Mais, au lieu de supposer des matériaux exclusivement diffus, reflection occlusion suppose que tous les matériaux respectes le modèle de refléxion de Phong L ro x, ω o = Ω (n + 1) max R ω, 0 n 2π V x, ω dω On va dériver des estimateurs Monte Carlo pour calculer cet intégrale

13 Importance sampling pour reflection occlusion Comme toujours on commence avec l expression de l estimateur générale pour notre problème: L ro x, ω o 1 N i (n + 1) max R ω i, 0 n 2π pdf(ω i ) V x, ω i On peut revoir les questions typiques pour l estimation Monte Carlo: comment choisir le pdf et distribuer les échantillons selon notre pdf

14 Reflection Occlusion Estimateur intélligent (pdf = distribution hémisphérique + cosinus autour de R levé à n) Alors, on va choisir pdf ω i = (n + 1) max R ω i, 0 n 2π et générer les échantillons ω i = (θ i, φ i ) selon cette distribution: L ro x, ω o 1 N i V x, ω i

15 Résultats: reflection occlusion pdf uniforme sur la sphère (naïve) n = 10; N = 1 n = 10; N = 10 2 n = 10 2 ; N = 1 n = 10 2 ; N = 10 2 pdf distribué selon le cosinus levé à la rugosité n = 10; N = 1 n = 10; N = 10 2 n = 10 2 ; N = 1 n = 10 2 ; N = 10 2

IFT3730: Infographie 3D. Illumination locale. Pierre Poulin, Derek Nowrouzezahrai Hiver 2013 DIRO, Université de Montréal

IFT3730: Infographie 3D. Illumination locale. Pierre Poulin, Derek Nowrouzezahrai Hiver 2013 DIRO, Université de Montréal IFT3730: Infographie 3D Illumination locale Pierre Poulin, Derek Nowrouzezahrai Hiver 2013 DIRO, Université de Montréal Illumination (1) Jusqu à présent, nous nous sommes principalement intéressés aux

Plus en détail

MIROIRS SPHÉRIQUES ET LENTILLES

MIROIRS SPHÉRIQUES ET LENTILLES EXPÉRIENCE 5 MIROIRS SPHÉRIQUES ET LENTILLES I. Introduction et objectifs Les miroirs et les lentilles sont des objets utilisés quotidiennement. Le miroir le plus répandu (et le plus simple) est le miroir

Plus en détail

La lumière est une onde électromagnétique transversale visible par l être humain.

La lumière est une onde électromagnétique transversale visible par l être humain. 3 LES ONDES LUMINEUSES La lumière est une onde électromagnétique transversale visible par l être humain. Caractéristiques : les ondes lumineuses se propagent en ligne droite; lorsqu elles rencontrent un

Plus en détail

Document 1 : modélisation d un appareil photographique

Document 1 : modélisation d un appareil photographique PCSI1-Lycée Michelet 2014-2015 APPROCHE DOCUMENTAIRE : appareil photo numérique Extrait du programme : en comparant des images produites par un appareil photographique numérique, discuter l influence de

Plus en détail

obs.1 Lentilles activité

obs.1 Lentilles activité obs.1 Lentilles activité (Lentille mince convergente) 1) première partie : étude qualitative Dans cette manipulation, on va utiliser un banc d optique. On va positionner la lentille de distance focale

Plus en détail

Détecteurs et descripteurs

Détecteurs et descripteurs Détecteurs et descripteurs GIF-4105/7105 Photographie Algorithmique Jean-François Lalonde Merci à D. Hoiem et A. Efros pour les slides Comment aligner deux images? Déterminer une transformation globale

Plus en détail

CALDERA GRAPHICS. Comment

CALDERA GRAPHICS. Comment CALDERA GRAPHICS Comment Effectuer une mise en lés avec Tiling+ Caldera Graphics 2009 Caldera Graphics et tous les produits Caldera Graphics mentionnés dans cette publication sont des marques déposées

Plus en détail

DEVOIR SURVEILLE N 1

DEVOIR SURVEILLE N 1 Année 2011/2012 - PCSI-2 DS 01 : Optique 1 DEVOIR SURVEILLE N 1 Samedi 24 Septembre 2011 Durée 3h00 Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de la rédaction.

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

Rappel mathématique Germain Belzile

Rappel mathématique Germain Belzile Rappel mathématique Germain Belzile Note : à chaque fois qu il est question de taux dans ce texte, il sera exprimé en décimales et non pas en pourcentage. Par exemple, 2 % sera exprimé comme 0,02. 1) Les

Plus en détail

1. Pas de désordre dans mon Chutier. 1.1. Pas de désordre grâce à la reconnaissance par couleur

1. Pas de désordre dans mon Chutier. 1.1. Pas de désordre grâce à la reconnaissance par couleur Pas de désordre dans mon Chutier 1. Pas de désordre dans mon Chutier Présentons ce livre avec ordre et méthode. Un bon film commence par un chutier clair et précis. Vous vous souvenez, c est notre bibliothèque

Plus en détail

TP3 : Illumination Locale.

TP3 : Illumination Locale. Synthèse d Image Polytech Grenoble, RICM4, 2013-2014 TP3 : Illumination Locale. Motivations La simulation de l éclairage est omniprésente dans les environnements virtuels. En fonction du contexte d utilisation

Plus en détail

Mathématiques mise à niveau - 521

Mathématiques mise à niveau - 521 Mathématiques mise à niveau - 521 Ces trois modules de mathématiques 521 ont été conçus pour préparer le PR1 de l activité SES option Informatique (EV7). Cette formation est néanmoins ouverte aux agents

Plus en détail

La science des fusées 1

La science des fusées 1 Mth1101 - TD - Application 9 : optimisation avec contraintes, multiplicateurs de Lagrange La science des fusées 1 Introduction Une fusée comporte plusieurs étages composés d un moteur et de son carburant.

Plus en détail

Classes et templates C++

Classes et templates C++ Classes et templates C++ Ce TP propose une application des classes, des templates et du polymorphisme au travers du design de classes permettant de gérer des courbes de Bézier. Contents 1 Bézier unidimensionnelle

Plus en détail

NOM: GROUPE: Laboratoire L OPTIQUE

NOM: GROUPE: Laboratoire L OPTIQUE PARTIE 1: LA LUMIÈRE A DES COULEURS : NOM: GROUPE: Laboratoire L OPTIQUE Observer les différentes couleurs qui composent la lumière blanche. (OU THÉORIE): Pour votre théorie, définissez une onde électromagnétique,

Plus en détail

Aujourd hui. Synthèse d Images. De la réalité à l ordinateur. De la réalité à l ordinateur. Triangle Mesh: Possibilités: Cours plus tard

Aujourd hui. Synthèse d Images. De la réalité à l ordinateur. De la réalité à l ordinateur. Triangle Mesh: Possibilités: Cours plus tard Aujourd hui Comment créer un modèle sur l ordi? Synthèse d Images Elmar Eisemann Elmar.Eisemann@inrialpes.fr Basé sur les cours de E. Boyer, H. Briceno, N. Holzschuch Qu est-ce l éclairage? Comment simuler

Plus en détail

Compter à Babylone. L écriture des nombres

Compter à Babylone. L écriture des nombres Compter à Babylone d après l article de Christine Proust «Le calcul sexagésimal en Mésopotamie : enseignement dans les écoles de scribes» disponible sur http://www.dma.ens.fr/culturemath/ Les mathématiciens

Plus en détail

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix.

CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE. Les candidats traiteront l'un des trois sujets au choix. ECOLE NATIONALE SUPERIEURE DE STATISTIQUE ET D'ECONOMIE APPLIQUEE ABIDJAN 1 AVRIL 21 CONCOURS D'ELEVE INGENIEUR STATISTICIEN ECONOMISTE OPTIONS MATHEMATIQUES ET ECONOMIE EPREUVE D'ORDRE GENERAL DUREE :

Plus en détail

METIERS DE L ELECTROTECHNIQUE

METIERS DE L ELECTROTECHNIQUE METIERS DE L ELECTROTECHNIQUE Baccalauréat Professionnel Electrotechnique Energie Equipements Communicants MESURES SUR DES APPLICATIONS PROFESSIONNELLES S01 CIRCUITS PARCOURUS PAR DU COURANT CONTINU GENERATEUR/RECEPTEUR

Plus en détail

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction Au programme Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal

Plus en détail

Vision par ordinateur: Formation d image et Photographie

Vision par ordinateur: Formation d image et Photographie Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal Hiver 2007

Plus en détail

Vitesse et distance d arrêt

Vitesse et distance d arrêt Vitesse et distance d arrêt Mathématiques 3e Compétences du Répertoire des connaissances et des comportements des usagers de l espace routier Connaître les risques liés aux conditions météo (freinage,

Plus en détail

La spectrophotométrie

La spectrophotométrie Chapitre 2 Document de cours La spectrophotométrie 1 Comment interpréter la couleur d une solution? 1.1 Décomposition de la lumière blanche En 1666, Isaac Newton réalise une expérience cruciale sur la

Plus en détail

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente

Lentilles I. 2-2 Détermination de la distance focale d une lentille mince convergente Lentilles I - UT DE L MNIPULTIN La manipulation consiste à déterminer, par différentes méthodes, la distance focale f d'une lentille mince convergente (on admettra que la lentille est utilisée dans les

Plus en détail

Calcul Stochastique et Applications Financières

Calcul Stochastique et Applications Financières 0 Calcul Stochastique et Applications Financières Aurélia Istratii Luis Macavilca Taylan Kunal M I.E.F. SOMMAIRE I. MODELE DE COX-ROSS-RUBINSTEIN II. III. INTRODUCTION AUX METHODES DE MONTE CARLO EQUATION

Plus en détail

Formation d images Exemples de l œil et de l appareil photographique

Formation d images Exemples de l œil et de l appareil photographique bserver «Couleurs et images» Activité n 3 (expérimentale) ormation d images Exemples de l œil et de l appareil photographique Connaissances Compétences - Accommodation du cristallin - onctionnement comparé

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

INFORMATIQUE GRAPHIQUE

INFORMATIQUE GRAPHIQUE INFORMATIQUE GRAPHIQUE Christian Jacquemin (Université Paris 11 et LIMSI-CNRS) COURBES PARAMÉTRIQUES : PRINCIPES Les courbes paramétriques vues comme des trajectoires http://perso.limsi.fr/jacquemi/ Courbes

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A MAT702 A - SOLUTIONS DU TEST #2 - VERSION A. (5 points) Étant donné A 3 et B. 0 Pour chacune des opérations matricielles ci-dessous, calculez la matrice résultante si elle existe. Si l opération n est

Plus en détail

:: Créez des textures métalliques ::

:: Créez des textures métalliques :: :: Créez des textures métalliques :: Exercices extraits du livre "3D Studio Max 2.5 FX" de Jon A. Bell aux éditions SYBEX Studio Pro. (Ne cherchez plus, ce livre est épuisé...) Première partie: Création

Plus en détail

Animation d un robot

Animation d un robot nimation d un robot IFT3355 : Infographie - TP #1 Jérémie Dumas Baptiste De La Robertie 3 février 2010 Université de Montréal Table des matières Introduction au problème 2 1 Transformations 2 1.1 Passage

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

Examen 2 labview 2009-2010

Examen 2 labview 2009-2010 Examen labview 009-010 Nicolas POUSSET Tous documents autorisés Conception 1 : Programme permettant d effectuer des simulations Monte Carlo 1 - Introduction La méthode Monte Carlo est une technique de

Plus en détail

Principes de Finance

Principes de Finance Principes de Finance 13. Théorie des options II Daniel Andrei Semestre de printemps 2011 Principes de Finance 13. Théorie des options II Printemps 2011 1 / 34 Plan I Stratégie de réplication dynamique

Plus en détail

Feuille n 2 : Contrôle du flux de commandes

Feuille n 2 : Contrôle du flux de commandes Logiciels Scientifiques (Statistiques) Licence 2 Mathématiques Générales Feuille n 2 : Contrôle du flux de commandes Exercice 1. Vente de voiture Mathieu décide de s acheter une voiture neuve qui coûte

Plus en détail

O 2 Formation d images par un système optique.

O 2 Formation d images par un système optique. par un système optique. PCS 2015 2016 Définitions Système optique : un système optique est formé par une succession de milieux homogènes, transparents et isotropes (MHT) séparés par des dioptres (et /

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis

Notion de modèle - Processus d analyse Application à la méthode des Eléments finis Notion de modèle - Processus d analyse Application à la méthode des Eléments finis La présentation est animée, avancez à votre vitesse par un simple clic Chapitres 1 et 6 du polycopié de cours. Bonne lecture

Plus en détail

Fiche de révisions - Algorithmique

Fiche de révisions - Algorithmique Fiche de révisions - Algorithmique Rédigé par : Jimmy Paquereau 1. Généralités Algorithme : un algorithme est la description d une procédure à suivre afin de résoudre un problème donné. Il n est pas nécessairement

Plus en détail

TP Cours Focométrie des lentilles minces divergentes

TP Cours Focométrie des lentilles minces divergentes Noms des étudiants composant le binôme : TP Cours ocométrie des lentilles minces divergentes Estimer la distance focale image d une lentille divergente est moins aisé que de déterminer celle d une lentille

Plus en détail

TP 8 : ONDELETTES 2D, COMPRESSION ET DÉBRUITAGE D IMAGE

TP 8 : ONDELETTES 2D, COMPRESSION ET DÉBRUITAGE D IMAGE Traitement de l information et vision artificielle Ecole des Ponts ParisTech, 2 ème année Guillaume Obozinski guillaume.obozinski@imagine.enpc.fr TP 8 : ONDELETTES 2D, COMPRESSION ET DÉBRUITAGE D IMAGE

Plus en détail

La hauteur du Soleil et la durée d une journée

La hauteur du Soleil et la durée d une journée La hauteur du Soleil et la durée d une journée On dit que le Soleil se lève à l Est pour se coucher à l Ouest ou encore que le Soleil est au zénith à midi. Cela n est pas vrai ou plus exactement pas toujours

Plus en détail

G.P. DNS Septembre 2008. Optique géométrique de base I. Miroirs sphériques

G.P. DNS Septembre 2008. Optique géométrique de base I. Miroirs sphériques DNS Sujet Optique géométrique de base... 1 I.Miroirs sphériques...1 A.Position de l image et grandissement transversal... 1 B.Le télescope de Cassegrain...2 II.Lentilles minces... 3 A.Position de l image

Plus en détail

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation

Laboratoire d optique. TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur. 1 But de l expérience. 2 Matériel et instrumentation Photométrie d un rétroprojecteur Doc. OPT-TP-02A (14.0) Date : 13 octobre 2014 TRAVAIL PRATIQUE No. 2A: Photométrie d un rétroprojecteur 1 But de l expérience Le but de ce TP est de : 1. comprendre le

Plus en détail

Avant Garde Plus Cisco Partner Demand Center. Comment stimuler les opportunités et dynamiser le business de votre entreprise?

Avant Garde Plus Cisco Partner Demand Center. Comment stimuler les opportunités et dynamiser le business de votre entreprise? Avant Garde Plus Cisco Partner Demand Center Comment stimuler les opportunités et dynamiser le business de votre entreprise? Guichet unique et complet du co-marketing avancé Le Partner Demand Center de

Plus en détail

Banc d optique, source lumineuse, écran, lentille convergente sur trépied 2.

Banc d optique, source lumineuse, écran, lentille convergente sur trépied 2. PHYSQ 130: Lentilles 1 LENTILLES MINCES 1 But L utilisation des lentilles minces est multiples en physique moder-ne et en génie. Les lentilles sont utilisées pour former des images dans plusieurs instruments

Plus en détail

L efficacité de PowerPoint dans les cours de grammaire

L efficacité de PowerPoint dans les cours de grammaire Rencontres Pédagogiques du Kansaï 2007 Thème 2 L efficacité de PowerPoint dans les cours de grammaire Seïtaro YAMAKAWA Université d Economie d Osaka bpr5000?saturn.dti.ne.jp De nos jours, dans beaucoup

Plus en détail

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.

Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

CARACTERISTIQUES THERMIQUES DES FENETRES ET DES FACADES-RIDEAUX

CARACTERISTIQUES THERMIQUES DES FENETRES ET DES FACADES-RIDEAUX CARACTERISTIQUES THERMIQUES DES FENETRES ET DES FACADES-RIDEAUX Les fenêtres sont caractérisées par trois caractéristiques de base : U w : le coefficient de transmission thermique traduisant la capacité

Plus en détail

Plan de cours. Approfondir les connaissances de l étudiante ou de l étudiant en infographie;

Plan de cours. Approfondir les connaissances de l étudiante ou de l étudiant en infographie; Faculté des sciences Centre de formation en technologies de l information Plan de cours Diplôme de développement du jeu vidéo (2 ième cycle) Cours : INF 776 Synthèse d images et animation 3D Trimestre

Plus en détail

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes

ANNUITES. Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. -annuités non constantes ANNUITES I Notions d annuités a.définition Les annuités définissent une suite de versements identiques ou non effectués à intervalles de temps égaux. Le processus de versements dépend du montant de l annuité,

Plus en détail

Guide pour une utilisation correcte d un système de vision industriel

Guide pour une utilisation correcte d un système de vision industriel Guide pour une utilisation correcte d un système de vision industriel Comment optimiser les performances d un système de vision industriel avancées Utilisation de l éclairage 1. Éclairage pour le traitement

Plus en détail

Votre campagne digitale a manqué sa cible. Et maintenant?

Votre campagne digitale a manqué sa cible. Et maintenant? Votre campagne digitale a manqué sa cible. Et maintenant? Toucher le public désiré, voilà un pari ambitieux, en particulier dans un paysage médiatique mouvant. Comment améliorer vos performances digitales

Plus en détail

TP Méthodes Numériques

TP Méthodes Numériques ENSIMAG 1ère année, 2007-2008 TP Méthodes Numériques Objectifs Les objectifs de ce TP sont : de revenir sur les méthodes de résolution des équations différentielles vues en cours de MN ; d utiliser un

Plus en détail

Guide Pratique Pour Réaliser votre Selfie

Guide Pratique Pour Réaliser votre Selfie Guide Pratique Pour Réaliser votre Selfie Par William Lacroix 1 ère Edition du 28/03/15, Version: 2 du 04/04/15 Source du présent guide : http://www.stickselfie.fr/guide-selfie.pdf Licence de ce document

Plus en détail

ELECTROMAGNETISM EXEMPLES

ELECTROMAGNETISM EXEMPLES EXEMPLES 1. Représentation globale du champ électrique 2. Graphiques et export CSV sous Microsoft Excel 3. Configuration de Helmholtz 4. Condensateur plan 5. Limaille de fer autour d une bobine 6. Trajectoire

Plus en détail

COURS: MODÉLISATION AVANCÉE DU COMPORTEMENT DES MATÉRIAUX ET ASSEMBLAGES NUMÉRO : GMC-6002 PROFESSEUR : J.C. CUILLIÈRE TRAVAIL PRATIQUE

COURS: MODÉLISATION AVANCÉE DU COMPORTEMENT DES MATÉRIAUX ET ASSEMBLAGES NUMÉRO : GMC-6002 PROFESSEUR : J.C. CUILLIÈRE TRAVAIL PRATIQUE UNIVERSITÉ DU QUÉBEC À TROIS-RIVIÈRES ÉCOLE D INGÉNIERIE DE TROIS-RIVIÈRES DÉPARTEMENT DE GÉNIE MÉCANIQUE COURS: MODÉLISATION AVANCÉE DU COMPORTEMENT DES MATÉRIAUX ET ASSEMBLAGES NUMÉRO : GMC-600 PROESSEUR

Plus en détail

Chapitre 1 Introduction

Chapitre 1 Introduction Chapitre 1 Introduction La réalité augmentée assistée par ordinateur est un domaine émergeant, qui progresse rapidement. Son principe est de mélanger le monde réel et le monde virtuel. De nombreuses applications

Plus en détail

Signal et propagation

Signal et propagation SP1 Signal et propagation Exercice 1 Communication à distance Identifier des types de signaux et les grandeurs physiques correspondantes Déterminer comment changer la nature d un signal On considère deux

Plus en détail

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005

ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE. Professeur Matière Session. A. Ziegler Principes de Finance Automne 2005 ECOLE DES HAUTES ETUDES COMMERCIALES DE L UNIVERSITE DE LAUSANNE Professeur Matière Session A. Ziegler Principes de Finance Automne 2005 Date: Lundi 12 septembre 2005 Nom et prénom:... Note:... Q1 :...

Plus en détail

MATHÉMATIQUES FINANCIÈRES I

MATHÉMATIQUES FINANCIÈRES I MATHÉMATIQUES FINANCIÈRES I Deuxième cours Rappel: Intérêt Rappel: Intérêt Fonction de capitalisation 1 Rappel: Intérêt Fonction de capitalisation Fonction d accumulation Rappel: Intérêt Fonction de capitalisation

Plus en détail

Imagerie 3D et mathématiques

Imagerie 3D et mathématiques Imagerie 3D et mathématiques Jacques-Olivier Lachaud Laboratoire de Mathématiques CNRS / Université de Savoie Fête de la Science, 13/10/2013 Galerie Eurêka Image et perception Synthèse d image 3D Imagerie

Plus en détail

UNE LENTILLE MINCE CONVERGENTE

UNE LENTILLE MINCE CONVERGENTE TS Spécialité-ptique 1-formation d une image T.P-cours de Physique n 1 : IMGE RMEE PR UNE LENTILLE MINCE CNVERGENTE Partie : Produire des Il faudra être capable de : images et observer Positionner sur

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

A propos du calcul des rentabilités des actions et des rentabilités moyennes

A propos du calcul des rentabilités des actions et des rentabilités moyennes A propos du calcul des rentabilités des actions et des rentabilités moyennes On peut calculer les rentabilités de différentes façons, sous différentes hypothèses. Cette note n a d autre prétention que

Plus en détail

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr

Licence IOVIS 2011/2012. Optique géométrique. Lucile Veissier lucile.veissier@spectro.jussieu.fr Licence IOVIS 2011/2012 Optique géométrique Lucile Veissier lucile.veissier@spectro.jussieu.fr Table des matières 1 Systèmes centrés 2 1.1 Vergence................................ 2 1.2 Eléments cardinaux..........................

Plus en détail

pour la Réalité Augmentée

pour la Réalité Augmentée Analyse d Image 3D pour la Réalité Augmentée Jean-Marc Vezien vezien@limsi.fr Master Recherche RV&A Janvier 2011 La 3D comment? Les capteurs et les techniques pour l acquisition de la 3D Capteurs actifs

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Localisation s y s - 8 4 4 m o d u l e 7. Méthodes passives. Plan du module. Méthodes passives. Objectifs d un système de vision numérique

Localisation s y s - 8 4 4 m o d u l e 7. Méthodes passives. Plan du module. Méthodes passives. Objectifs d un système de vision numérique Objectifs d un système de vision numérique Localisation s y s - 8 4 4 m o d u l e 7 Identifier Localiser Méthodes passives Plan du module Stéréoscopie Gradient d éclairement Méthodes actives Temps de vol

Plus en détail

Introduction à la simulation de Monte Carlo

Introduction à la simulation de Monte Carlo Introduction à la simulation de 6-601-09 Simulation Geneviève Gauthier HEC Montréal e 1 d une I Soit X 1, X,..., X n des variables aléatoires indépendantes et identiquement distribuées. Elles sont obtenues

Plus en détail

Table des matières LES FONCTIONS POLYNOMIALES

Table des matières LES FONCTIONS POLYNOMIALES Table des matières LES FONCTIONS POLYNOMIALES 1 Différents types de fonctions polynomiales Étude des différentes fonctions polynomiales.1 Les fonctions constantes.1.1 La fonction constante de base.1. La

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

NAS 251 Introduction au mode RAID

NAS 251 Introduction au mode RAID NAS 251 Introduction au mode RAID Configurer un volume de stockage avec RAID C O L L E G E A S U S T O R OBJECTIFS DU COURS À la fin de ce cours, vous devriez : 1. Avoir une connaissance de base du RAID

Plus en détail

Une fonction f d un ensemble E vers un ensemble F est une correspondance qui associe à chaque élément de E au plus un élément de F

Une fonction f d un ensemble E vers un ensemble F est une correspondance qui associe à chaque élément de E au plus un élément de F Fonction = Une fonction f d un ensemble E vers un ensemble F est une correspondance qui associe à chaque élément de E au plus un élément de F Domaine = Ensemble de départ Codomaine = Ensemble d arrivée

Plus en détail

Comment créer une maquette de notre projet??

Comment créer une maquette de notre projet?? Comment créer une maquette de notre projet?? Objectif Participer à la réalisation de la maquette d un objet technique. Transférer les donnée d un plan sur une maquette Relever les dimensions sur l objet

Plus en détail

Les phases de la Lune Description de la face visible de la Lune dans le ciel

Les phases de la Lune Description de la face visible de la Lune dans le ciel Les phases de la Lune Description de la face visible de la Lune dans le ciel Nicolas Rambaux Nicolas.Rambaux@imcce.fr (Crédit : Antonio Cidadao) 1 Résumé Ce document décrit le mouvement de la Lune autour

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

Livret du Stagiaire en Informatique

Livret du Stagiaire en Informatique Université François-Rabelais de Tours Campus de Blois UFR Sciences et Techniques Département Informatique Livret du Stagiaire en Informatique Licence 3ème année Master 2ème année Année 2006-2007 Responsable

Plus en détail

La Rivière Situations Connexes. Arc de cercle. Voir. Courbe. Voir. Sur la sphère. Voir. Retour au Menu La Rivière

La Rivière Situations Connexes. Arc de cercle. Voir. Courbe. Voir. Sur la sphère. Voir. Retour au Menu La Rivière Arc de cercle Voir Courbe Voir Sur la sphère Voir Retour au Menu La Rivière Rivière en arc de cercle La rivière est un arc de cercle : Retour au Menu des Rivière en arc de cercle Expérience : Expérimenter

Plus en détail

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012

le Rôle de l Information M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 6 le Rôle de l Information - M1 - Arnold Chassagnon, Université de Tours, PSE - Automne 2012 Plan du cours 1. Probabilités subjectives 2. Arrivée symétrique de l information 3. Information asymétrique

Plus en détail

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V

Surface sphérique : Miroir, dioptre et lentille. Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Surface sphérique : Miroir, dioptre et lentille Pr Hamid TOUMA Département de Physique Faculté des Sciences de Rabat Université Mohamed V Définition : Les miroirs sphériques Un miroir sphérique est une

Plus en détail

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs

Les quatre opérations sur les nombres entiers Statistiques et probabilités I. Code Unités Devoirs Code Unités Devoirs 1 re secondaire 2 e secondaire Les quatre opérations sur les nombres entiers Statistiques et probabilités I MAT-1005-2 2 3 MAT-2008-2 2 3 (+, -, x, ) dans l ensemble des entiers Z. Ce premier cours portant

Plus en détail

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7

Evolution d un scénario dans l expérience e-colab. EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Evolution d un scénario dans l expérience e-colab EMF, Dakar avril 2009 Gilles Aldon, Eductice, INRP Dominique Raymond-Baroux, IREM Paris 7 Cadre général Groupe e-colab au sein de l INRP Collaboration

Plus en détail

Chapitre 17 Le modèle de Black et Scholes

Chapitre 17 Le modèle de Black et Scholes Chapitre 17 Le modèle de Black et Scholes Introduction Au début des 70 s, Black, Scholes et Merton ont opéré une avancée majeure en matière d évaluation d options Ces contributions et leurs développements

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

2. Le biologiste désire observer la cellule sans fatigue, c'est à dire sans accommoder.

2. Le biologiste désire observer la cellule sans fatigue, c'est à dire sans accommoder. P a g e 1 TS Spécialité Physique Exercice résolu Enoncé Depuis une vingtaine dannées la microscopie confocale a connu un développement considérable. Ces microscopes équipent maintenant un grand nombre

Plus en détail

XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES

XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES page XII- XII. ASSOCIATIONS DE LENTILLES SPHERIQUES MINCES Le but de ce chapitre est de rencontrer quelques-unes des nombreuses associations de lentilles sphériques minces tout en manipulant les connaissances

Plus en détail

Les Conditions aux limites

Les Conditions aux limites Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Exercice n 1 : Les taches solaires

Exercice n 1 : Les taches solaires Vendredi 14 octobre Contrôle de physique TS spé Sauf indication contraire, tout résultat doit être justifié. Calculatrice autorisée Exercice n 1 : Les taches solaires On se propose d étudier une lunette

Plus en détail

Analyse d images introduction

Analyse d images introduction L3, option Image Analyse d images introduction http ://perception.inrialpes.fr/people/boyer/teaching/l3/ Elise Arnaud - Edmond Boyer Université Joseph Fourier / INRIA Rhône-Alpes elise.arnaud@inrialpes.fr

Plus en détail

Mathématiques Financières

Mathématiques Financières Mathématiques Financières 3 ème partie Marchés financiers en temps discret & instruments financiers dérivés Université de Picardie Jules Verne Amiens Par Jean-Paul FELIX Cours du vendredi 19 février 2010-1

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail