Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production

Dimension: px
Commencer à balayer dès la page:

Download "Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production"

Transcription

1 Lot streaming et pegging pour l intégration de la planification et de l ordonnancement de production A. Robert 1,2, C. Le Pape 1, and F. Sourd 2 1 ILOG S.A., 9 rue de Verdun, Gentilly cedex 2 Laboratoire d Informatique de Paris 6, 8 rue du Capitaine Scott, Paris Résumé Dans l industrie de transformation, les décisions liées à la planification de la production d une part, et à l ordonnancement d autre part, sont déterminantes pour une exploitation efficace de la chaîne de production. En vue d une bonne intégration de ces deux problèmes, nous proposons un modèle de résolution séquentielle en trois phases. Un problème intermédiaire entre la planification et l ordonnancement est résolu. Il consiste à prendre des décisions sur la taille des lots (lot streaming) et les flux de matériaux (pegging) tout au long de la chaîne de production. Nous formulons ce problème par un programme linéaire en nombres entiers que nous résolvons par branch and bound et analysons ses performances par rapport à une résolution heuristique. Mots-Clefs. Lot streaming ; Planification de production ; Ordonnancement. 1 Introduction L optimisation du plan de production d une usine et de l ordonnancement détaillé des activités de production est devenue une problématique d importance dans le milieu de l industrie de transformation (industrie dite de process où des matières premières sont transformées en matériaux intermédiaires ou en produits finis, selon des recettes prédéterminées). Une résolution indépendante de ces deux problèmes entraîne des incohérences entre plan et ordonnancement, rendant, dans la pratique, les solutions mises en œuvre sous-optimales. En effet, la production doit satisfaire la demande, en évitant le stockage de matériaux et l anticipation des livraisons (entraînant des pénalités d avance), ainsi que la pénurie ou le retard de la distribution. Ces enjeux concernent à la fois la planification et l ordonnancement. L identification de ces problèmes a induit la nécessité de les formaliser et l émergence de systèmes MRP (Material Requirements Planning, [12] et [8] par exemple) témoigne des premières méthodes de résolution employées par les industriels. La planification de production ou lot sizing (définition et classification dans [18]) se situant à un niveau de forte granularité du temps prend des décisions à

2 2 Robert, Le Pape et Sourd moyen terme (quelques mois), avec des contraintes généralement agrégées. L ordonnancement, pour sa part, a une vue à court terme de la chaîne de production (quelques jours) et prend en compte des contraintes plus précises. Des modèles intégrés ont été formulés, J. Kallrath, dans [9], présente une synthèse des problèmes, modèles et techniques relatifs à cette problématique. Ces modèles se décomposent généralement en deux phases : la planification (souvent modélisée et résolue par la programmation linéaire) et l ordonnancement (utilisant la programmation par contraintes). Les deux problèmes sont résolus de manière coopérative pour atteindre effectivement une compatiblité et une bonne qualité des solutions. Il s agit en général d une résolution alternée de chacun des problèmes, la solution courante de l un étant utilisée pour poser le second [14] [21]. Ce type d architectures à modèles hybrides coopératifs est efficacement employé pour résoudre des problèmes de petite taille et dont le système de contraintes est réduit ([4], [5], [11], [23], [2], [13], [15],...). Malgré l existence de tels modèles, les logiciels commerciaux, manipulant des données réelles, utilisent le plus souvent des heuristiques, en particulier pour résoudre les problèmes de lot sizing (Lot for lot, Fixed lot size, Economical lot size, [7, Chapitre 9]). L approche présentée ici ne possède pas une telle structure coopérative complexe mais permet de traiter des problèmes plus variés. Le modèle à architecture séquentielle permet d atteindre de bonnes solutions tout en conservant un certain degré de compatibilité. Après avoir résolu un problème de planification à longues périodes ([20], [19], [10],...), les quantités de production planifiées sont découpées en lots ordonnançables (lot streaming), et simultanément, le flot des matériaux circulant entre les entités composant la chaîne opérationnelle de production (stocks, lots et demandes) est décidé (pegging). Le problème d ordonnancement peut alors être à son tour posé et résolu. Nous avons déjà présenté dans [16] un travail préliminaire concernant ce problème. Nous modifions ici notre modèle de manière à mieux prendre en compte certains aspects de la problématique générale, ce qui permet de résoudre un plus grand nombre d instances et d améliorer les résultats précédemment obtenus. Dans la Section 2, nous définissons le problème de lot streaming-pegging, et présentons son intégration dans la problématique globale de la gestion de production. Nous proposons en Section 3 une formulation mathématique de ce problème. Un jeu de données en cours d élaboration est décrit dans la Section 4 et la résolution du programme linéaire en nombres entiers par branch and bound est comparée à une procédure heuristique sur ce benchmark. Enfin, dans la Section 5, nous donnons des extensions possibles du modèle mathématique. 2 Architecture globale et définitions 2.1 Intégration du problème de lot streaming-pegging L architecture proposée se découpe en trois phases : la planification de la production, le lot streaming-pegging et l ordonnancement. Ces problèmes sont résolus séquentiellement, la solution de l un permettant de poser le problème de niveau inférieur. Nous nous intéressons ici à la seconde étape qui prend en

3 Lot Streaming et Pegging 3 entrée un plan de production calculé sur de longues périodes, et dont la solution entraîne l énoncé du problème d ordonnancement. Le plan consiste en la donnée, pour chaque période de temps, des informations suivantes : - les quantités d exécution de chacun des procédés de transformation, - les portions de demandes à satisfaire (une demande pouvant être planifiée sur plusieurs périodes). Le lot streaming consiste alors à former des lots de production ordonnançables respectant les quantités planifiées. Le pegging détermine le transfert des matériaux entre les stocks, les lots de production et les demandes (voir Fig. 1). Ces deux problèmes sont précisément définis dans la sous-section suivante. Période 1 stocks Période 2 Période 3 lot streaming + pegging quantité planifiée d exécution demandes lots de production arcs de pegging ordonnancement Fig. 1. Lot streaming-pegging : entre plan et ordonnancement 2.2 Lot streaming et pegging : définitions et intérêts Lot streaming. Comme nous l avons écrit ci-dessus, le lot streaming consiste à définir un ensemble de lots réalisant la production totale planifiée. Ce problème se pose en général dans les contextes de flow-shop [3] ou de job-shop [6], afin de diminuer le temps total d exécution. Diverses techniques de résolutions ont été étudiées ([22] ou [1], par exemple), mais l optimalité d une solution est étroitement liée au contexte dans lequel le lot streaming est réalisé.

4 4 Robert, Le Pape et Sourd Pegging. Ce problème n est pas clairement identifié dans la littérature. La terminologie provient de [7, Chapitre 3, Section 6] qui emploie ce terme pour décrire le transfert de matériaux entre les lots de production et les demandes. En étendant ce concept à toutes les entités de la chaîne de production, le problème de pegging revient à déterminer les flots de matériaux entre les stocks, les lots de production (qui sont consommateurs et producteurs) et les demandes. Nous identifions donc 5 types d arcs de pegging : - Les Stock2Lot : entre stocks et lots consommateurs. - Les Lot2Lot : entre lots producteurs et lots consommateurs. - Les Lot2Stock : entre lots producteurs et stocks. - Les Stock2Dem : entre stocks et demandes. - Les Lot2Dem : entre lots producteurs et demandes. Aspect combinatoire. Le pegging peut donc être conceptualisé comme un flot circulant entre les nœuds du graphe induit par les stocks, les lots et les demandes. En supposant que la production est déjà divisée en lots, les seules décisions de pegging ne sont pas triviales. En effet, un bon pegging doit tenir compte des contraintes temporelles et des échéances associées aux différents lots et demandes. Le lot streaming vient ajouter de la combinatoire au problème puisqu il décide de l existence et de la capacité de certains nœuds (création et taille des lots de production). Intérêts de l approche. Le lot streaming est une étape indispensable entre la planification et l ordonnancement puisqu en effet, il détermine les lots de production dont on infère les activités à ordonnancer. Le pegging, quant à lui, ne paraît pas nécessaire. Néanmoins, il présente des intérêts opérationnels nonnégligeables pour la résolution de l ordonnancement, qui utilise une méthode de programmation par contraintes : - il permet d introduire entre les lots des relations de précédences temporelles (du fait des rapports producteurs/consommateurs), celles-ci sont ajoutées au problème d ordonnancement, qui est ainsi renforcé ; - ces contraintes assurent que la production précède toujours la consommation, évitant ainsi l ajout d autres contraintes contrôlant les stocks, qui présentent une mauvaise propagation. 3 Modélisation mathématique du lot streaming-pegging Nous proposons une formulation de ce problème par un programme linéaire en nombres entiers P, qui est résolu par ILOG CPLEX 9.1. Cette technique de résolution opère de la façon suivante : pour chaque période associée au plan de production, un tel programme est formulé et résolu. Une étape de fusion des solutions est ensuite réalisée afin d obtenir une solution complète de pegging (et non-pas un ensemble de solutions indépendantes). Le modèle décrit se place donc au niveau d une seule période de temps. Cependant, afin de conserver la visibilité temporelle du plan de production, le problème posé pour la période

5 Lot Streaming et Pegging 5 courante (notée ˆT ) considère les demandes planifiées dans ˆT et dans les périodes suivantes. Comme nous l avons mentionné en introduction de cet article, un premier modèle, présenté dans [16], est ici étendu et modifié, améliorant ainsi les performances de résolution (voir Section 4.3 pour les résultats numériques). En particulier, nous redéfinissons la fonction objectif et ajoutons des contraintes. Cette nouvelle fonction objectif est tout d abord présentée, puis, dans un second temps, le programme lui-même est détaillé. Fonction objectif. Notre choix a été de considérer qu une bonne solution de lot streaming-pegging est une solution qui mène à une bonne solution d ordonnancement. En effet, aucune fonction objectif n a été définie, de manière générale, pour ce problème. Nous introduisons dans le programme mathématique de nouvelles variables qui permettent d établir une fonction d optimisation pertinente, relativement à celle de l ordonnancement, cette dernière minimisant les coûts de production et d avance-retard. Les pénalités liées à la production sont aisément prises en compte puisqu elles sont directement liées à l existence et à la taille de chaque lot. En revanche, les pénalités d avance-retard sont difficiles à estimer sans l introduction de nouvelles informations dans le modèle. Nous affectons donc à chaque lot créé une date de fin a priori. Ces décisions, prises en considérant le temps d exécution d un lot et les dates d échéances des demandes, ne peuvent être considérées comme réalisables du point de vue de l ordonnancement dont certaines contraintes sont ici approchées ou omises. Cependant, elles permettent de calculer un pseudo-délai interne (positif ou nul) entre deux lots liés par un arc Lot2Lot, qui modélise un temps de stockage, et un pseudo-délai externe (positif ou négatif) entre un lot et une demande liés par un arc Lot2Dem, qui modélise l avance-retard. Le tableau 1 contient les notations employées par la suite. 3.1 Contraintes Afin de limiter la longueur de cet article, nous ne présentons pas en détail les contraintes décrites dans [16] auquel le lecteur est invité à se référer pour plus d informations ; signalées par, nous les citons donc ici sans les commenter. En revanche, les contraintes qui ont été modifiées ou ajoutées sont présentées de manière détaillée. Consommation et production : Les contraintes (1) et (2) de conservation des matériaux sont décrites dans [16]. Par contre, les contraintes concernant la satisfaction des demandes ((3) et (4)) et le respect des niveaux d inventaire ((5) et (6)) ont été modifiées afin de prendre en compte l extension de la visibilité à l horizon complet. Ainsi les équations (3) concernent la satisfaction des demandes de la période courante ˆT, elles doivent donc être entièrement satisfaites (la notation q d désigne la quantité résiduelle de la demande, puisque celle-ci peut avoir été partiellement satisfaite dans une période précédente), tandis que

6 6 Robert, Le Pape et Sourd 1 indice ensemble concept désigné res Res ressource r Rec recette (procédé de transformation) j {1,..., N r} j e lot de la recette r m M matériau m C r/p r matériau consommé/produit par r d D demande d D T demande planifiée dans la période T N r désigne le nombre maximal de lots possibles pour r constante domaine concept désigné θr m R + proportion de consommation ou production de m par r q d R + quantité planifiée de matériau à délivrer pour d Ii,T m /If,T m R + quantité planifiée de m en stock au début/à la fin de T LS r /LS r R + taille minimale/maximale d un lot pour r Q r R + quantité d exécution de r pour la période courante ˆT τ proc f r /τr procv N/R + capacité fixe/variable requise pour un lot de r κ proc f r /κ procv r R + /R + coût fixe/variable d exécution d un lot de r t d N date d échéance de d T d - période où d est planifiée κ earli d R + coût unitaire variable d avance pour d κ tardi d R + coût unitaire variable de retard pour d κ store m R + coût unitaire variable de stockage pour m γt res R + capa. moyenne par unité de tps. de res dans la période T S T /E T N date de début/fin de la période T S/E N date de début/fin de l horizon global variable domaine concept désigné x rj {0, 1} 1 le j e lot de r est créé, 0 sinon q rj R + taille du j e lot de r XIrj/Q m m Irj {0, 1}/R + 1 un Stock2Lot entre le stock de m et le j e lot de r/qté associée X Id /Q Id {0, 1}/R + 1 un Stock2Dem entre le stock du mat. req. par d et d/qté associée X m rjr j /Qm rjr j {0, 1}/R+ un Lot2Lot entre le j e lot de r et le j e lot de r, pour m/qté associée X rjd /Q rjd {0, 1}/R + 1 un Lot2Dem entre le j e lot de r et d/qté associée XrjI/Q m m rji {0, 1}/R + 1 un Lot2Stock entre le j e lot de r et le stock de m/qté associée t rj R date de fin d exécution du j e lot de r p rj R capa. requise pour le j e lot de r (τ proc f r x rj + τr procv q rj) Z rjd R t rj un Lot2Dem entre le j e lot de r et d, 0 sinon ZP m rjr j R trj un Lot2Lot entre le je lot de r et le j e lot de r, 0 sinon ZC m rjr j R t r j un Lot2Lot entre le je lot de r et le j e lot de r, 0 sinon Tab. 1. Programme P : indices, ensembles, constantes, variables de décision

7 Lot Streaming et Pegging 7 les contraintes (4) induisent que la satisfaction des demandes des périodes futures ne dépasse pas leur quantité résiduelle. Par ailleurs, les équations (5) et (6) forcent le respect des niveaux d inventaire établis par le plan de production aux bornes de chaque période. r Rec, j = 1... N r, m C r, Q m Irj + N r r j Rec\ =1 Q m r j rj = θ m r q rj (1) r Rec, j = 1... N r, m P r, Q m rji + r j Rec\ =1 m C r N r m P r Q m rjr j + d D\ m requis par d d D ˆT, Q Id + r Rec\ m, req. par d, P r Q rjd = θ m r q rj (2) N r Q m rjd = q d (3) d D\D ˆT, r Rec\ m, req. par d, P r N r Q m rjd q d (4) + m M, I m i, ˆT N r Q m rji = I m f, ˆT N r Q m Irj r Rec\ d D ˆT \ m C r m req. par d N r r Rec\ d/ D ˆT r Rec\ m P r m, req. par d, P r Q Id Q m rjd (5) m M, T strictement après ˆT, d \ T d ne précède pas T r Rec\ m, req. par d, P r N r Q m rjd I m i,t(6)

8 8 Robert, Le Pape et Sourd Taille des lots : r Rec, j = 1... N r, q rj LS r x rj (7) q rj LS r x rj (8) Précédences temporelles (1) : Nous n imposons pas que l exécution des lots soit prévue dans la période courante, du fait d une modélisation optimiste de la capacité des ressources lors de la planification. Leurs dates de fin doivent simplement se trouver dans l horizon global du problème complet. r Rec, j = 1... N r t rj S (9) t rj E (10) Précédences temporelles (2) : Lorsque deux lots sont reliés par un arc de type Lot2Lot, il existe nécessairement une précédence temporelle entre leur exécution. Nous distinguons deux cas, du fait de l existence de deux modes d exécution possibles. Une production (ou consommation) discrète signifie que le matériau n est disponible qu à la fin de l exécution du lot (ou que la quantité de matériau nécessaire à l exécution du lot doit être intégralement disponible au début de son exécution). Une production (ou consommation) continue signifie au contraire que le matériau produit devient disponible dès le début de l exécution du lot (ou que l exécution du lot peut commencer dès que les premières unités du matériau nécessaire sont disponibles). En cas de production ou consommation discrète, le lot consommateur doit commencer après la fin du lot producteur (voir Fig. 2(a)). En cas de production et consommation continues, le lot consommateur doit commencer après le début et s achever après la fin du lot producteur (voir Fig. 2(b)). On note res r Res, la ressource utilisée par la recette r équation (11) (a) mode discret équation(12) (b) mode continu équation (13) Fig. 2. Production/consommation discrètes et continues r Rec, j = 1... N r, r Rec, j = 1... N r, m P r C r, si X m rjr j =1, cas discret : t rj t r j p r j γ res r ˆT + (E S) (1 Xrjr m j ) (11)

9 cas continu : t rj p rj γ resr ˆT t r j p r j γ res r ˆT Lot Streaming et Pegging 9 + (E S) (1 Xrjr m j ) (12) t rj t r j + (E S) (1 Xm rjr j ) (13) Approximation des contraintes de capacité des ressources : Afin de mesurer le temps de stockage (entre deux lots) et les délais d avance ou de retard (entre un lot et une demande), nous avons formulé des contraintes linéaires permettant d approximer les contraintes (non-linéaires) de disjonction de ressource présentes dans le problème d ordonnancement. En effet, la relaxation complète de ces contraintes aboutit à un modèle trop éloigné de la réalité, ce qui conduit à de mauvaises solutions. Nous calculons donc un intervalle de temps heuristique t rj, pour chaque lot j de chaque recette r modélisant le temps moyen s écoulant entre l exécution des lots j et j + 1. Cet intervalle prend en considération la capacité requise p r j de chaque lot en compétition et la capacité totale de la ressource conflictuelle (nous ne détaillons pas le calcul complexe de t rj ). L approximation des contraintes disjonctives est alors modélisée par les équations : r Rec, j = 1... N r 1, t rj+1 t rj + p rj+1 + t rj γ resr ˆT (14) Respect des décisions de planification : N r r Rec, Q r = q rj (15) Rupture de symétries : Deux types de symétries induites par la formulation mathématique sont rompues par l introduction de contraintes artificielles. Tout d abord un lot d indice donné ne peut être créé que si le lot d indice inférieur l est aussi (équation (16)). En outre, on impose que dans une solution réalisable, les dates de fin d exécution des lots soient triées par ordre croissant d indice (équation (17)). Liaison des variables (1) : r Rec, j = 1... N r 1, x rj+1 x rj (16) t rj+1 t rj (17) r Rec, j = 1... N r, r Rec, j = 1... N r, m P r C r, Q m rjr j min(θm r LS r, θr m LS r ) Xm rjr j (18) r Rec, j = 1... N r, m C r, Q m Irj min(i m i, ˆT, θm r LS r ) XIrj m (19)

10 10 Robert, Le Pape et Sourd d D\d requiert m, Q Id min(i m i, ˆT, q d) X Id (20) d D, r Rec\r produit m requis par d, j = 1... N r, Q rjd min( q d, θr m LS r ) X rjd (21) r Rec, j = 1... N r, m P r, Q m rji min(i m f, ˆT, θm r LS r ) XrjI m (22) Liaison des variables (2) : Ces trois ensembles de contraintes relient les variables artificielles Z rjd, ZPrjr m j et ZCm rjr j aux variables de décision t rj et t r j, d une part, X rjd et Xrjr m j, d autre part. Elles impliquent que si l arc associé à X rjd (respectivement Xrjr m j ) est créé, alors Z rjd (respectivement ZPrjr m j et ZCm rjr j ) prend la valeur de t rj (respectivement de t rj et t r j ). d D, r Rec\r produit m requis par d, j = 1... N r, Z rjd S X rjd Z rjd E X rjd Z rjd t rj E (1 X rjd ) Z rjd t rj S (1 X rjd ) (23a) (23b) (23c) (23d) r Rec, j = 1... N r, r Rec, j = 1... N r, m P r C r, ZP m rjr j S X rjr j (24a) ZPrjr m j E X rjr j (24b) ZPrjr m j t rj E (1 X rjr j ) (24c) ZPrjr m j t rj S (1 X rjr j ) (24d) r Rec, j = 1... N r, r Rec, j = 1... N r, m P r C r, ZC m rjr j S X rjr j (25a) ZCrjr m j E X rjr j (25b) ZCrjr m j t r j E (1 X rjr j ) (25c) ZCrjr m j t r j S (1 X rjr j ) (25d) 3.2 Fonction objectif On peut alors exprimer la fonction objectif définie en introduction de cette section, prenant en compte les coûts de production, de stockage, d avance et de retard :

11 Lot Streaming et Pegging 11 Min X XN r r Rec + X d D + X d D + X κ proc f r X r Rec\ m requis X par d, P r r Rec\ m requis XN r X par d, P r x rj + κ procv r q rj XN r XN r r Rec r Rec j =1 m P r C r (X rjd t d Z rjd ) + κ earli d min( q d, θ m r LS r) (Z rjd X rjd t d ) + κ tardi d min( q d, θ m r LS r) N r X X ZC m rjr j ZP m rjr j κ store m min(θ m r LS r, θ m r LS r ) Notons que les coûts d avance et de retard sont approchés. En effet, une modélisation exacte supposerait de multiplier les variables temporelles par les tailles de lot choisies, ce qui conduirant à un programme quadratique. 4 Benchmark et résultats expérimentaux 4.1 Evaluation : comparaison et jeu de données Indicateur d évaluation. Nous comparons l approche basée sur la programmation linéaire en nombres entiers présentée ci-dessus à une procédure de résolution heuristique H qui calcule une solution au problème de lot streaming-pegging de la façon suivante : - les lots de production sont déterminés pour l horizon complet du problème en maximisant la taille des lots, - le pegging est alors établi récursivement entre stocks, lots et demandes, par une procédure gloutonne basée sur un algorithme de tri. Comme la solution fournie par H ne peut être évaluée relativement à l objectif défini pour P (aucune date de fin n est attribuée aux lots de production), nous utilisons comme critère de comparaison la valeur de l ordonnancement final. Jeu de données. Nous testons ces deux procédures sur 92 instances issues d un benchmark en cours d élaboration permettant de tester les étapes de planification, lot streaming-pegging et ordonnancement. Une description détaillée en est faite dans [17] 3. Ces instances se répartissent en 4 classes, selon le type de chaîne 3 Document et instances disponibles auprès des auteurs.

12 12 Robert, Le Pape et Sourd de production considérée (mono ou multi niveau(x), mono ou multi ressource(s), variations de capacité des ressources au cours du temps). Dix chaînes de production sont décrites et les instances comptent jusqu à 14 recettes, 90 demandes et 30 ressources. Nous rappelons que la fonction d optimisation de l ordonnancement est une combinaison linéaire des coûts de production, d avance et de retard. 4.2 Résultats numériques Deux tableaux permettent d analyser les performances du MIP P vis-à-vis de l heuristique H. On note S P (respectivement S H ) la valeur de la solution d ordonnancement obtenue à partir du lot streaming-pegging déterminé par P (respectivement par H). Le tableau 2 présente les principaux résultats permettant d analyser globalement ces performances. Il montre que dans plus de 85% des cas, P mène à un ordonnancement de qualité supérieure ou égale à celui obtenu en utilisant H. Bien que la meilleure amélioration soit très bonne (42.1%), la plus mauvaise dégradation est aussi considérable (46.6%), ce qui révèle l existence d imperfections dans P. Néanmoins, d un point de vue général, ces résultats permettent de valider une telle approche. Précisons que parmi les 13 instances dégradées, seulement 3 présentent une dégradation supérieure à 5% et la dégradation moyenne est faible (7.8%), par opposition à l amélioration moyenne (13.4%). Nombre d instances S P < S H 47/92 (51.1%) % meilleure amélioration 42.1% S P = S H 32/92 (34.8%) % plus mauvaise dégradation 46.6% S P > S H 13/92 (14.1%) % déviation moyenne 6.0% % amélioration moyenne 13.4 % % dégradation moyenne 7.8 % Tab. 2. P VS H : résultats globaux sur 92 instances Le tableau 3 fournit des détails concernant les critères de l objectif de l ordonnancement. On note P P, R P et A P (respectivement P H, R H et A H ) les valeurs des coûts de production, de retard et d avance d un ordonnancement obtenu à partir du lot streaming-pegging déterminé par P (respectivement par H). Des pénalités d avance n étant définies que pour la moitié des instances, seules 46 d entre elles sont considérées pour l étude de ce critère. Tout d abord on constate que le coût de production ne peut être diminué par la méthode mathématique P. En effet, la politique heuristique minimisant le nombre de lots atteint la valeur optimale pour ce critère. Cependant, on constate que dans 55.3% des cas d amélioration globale de l ordonnancement, une aug-

13 Lot Streaming et Pegging 13 mentation des coûts de production est compensée par une réduction des coûts d avance-retard. En cas d égalité globale, l égalité pour chacun des trois critères est elle-aussi vérifiée, les solutions sont, dans ce cas, étroitement équivalentes. Dans le cas où P mène à une moins bonne solution pour l ordonnancment final que H, on remarque principalement que ce sont les coûts de production et de retard qui sont dégradés (11 instances sur 13), alors que l avance reste stable. Cela révèle que le modèle mathématique peut présenter, dans certains cas, une mauvaise approximation du retard. Production Retard Avance P P < P H : 0/47 (0%) R P < R H : 43/47 (91.5%) A P < A H : 19/24 (79.2%) S P < S H P P = P H : 21/47 (44.7%) R P = R H : 0/47 (0%) A P = A H : 1/24 (4.1%) P P > P H : 26/47 (55.3%) R P > R H : 4/47 (8.5%) A P > A H : 4/24 (16.7%) P P < P H : 0/32 (0%) R P < R H : 0/32 (0%) A P < A H : 0/16 (0%) S P = S H P P = P H : 32/32 (100%) R P = R H : 32/32 (100%) A P = A H : 16/16 (100%) P P > P H : 0/32 (0%) R P > R H : 0/32 (0%) A P > A H : 0/16 (0%) P P < P H : 0/13 (0%) R P < R H : 2/13 (15.4%) A P < A H : 4/6 (66.7%) S P > S H P P = P H : 2/13 (65.0%) R P = R H : 0/13 (0%) A P = A H : 0/6 (0%) P P > P H : 11/13 (35.0%) R P > R H : 11/13 (84.6%) A P > A H : 2/6 (33.3%) P P < P H : 0/92 (0%) R P < R H : 45/92 (48.9%) A P < A H : 23/46 (50.0%) Total P P = P H : 55/92 (59.8%) R P = R H : 32/92 (34.8%) A P = A H : 17/46 (37.0%) P P > P H : 37/92 (40.2%) R P > R H : 15/92 (16.3%) A P > A H : 6/46 (13.0%) Tab. 3. P et H : termes de la fonction objectif 4.3 Amélioration des résultats antérieurs Nous annoncions en introduction que les modifications apportées au modèle mathématique ont permis d obtenir de meilleurs résultats sur le jeu de données testé. Effectivement, 38 nouvelles instances ont pu être résolues et sur les 54 précédemment résolues, 8 ont pu être améliorées. 4.4 Cohérence entre plan et ordonnancement Nous avons signalé en section 3.1 qu il n était pas raisonnable d imposer qu un lot de production soit ordonnancé strictement dans la période de temps où la production relative à ce lot a été planifiée, du fait de l agrégation des contraintes de capacité faite au cours de la planification. Néanmoins, les contraintes de pegging et les dates d échéance définies sur les demandes ont tendance à faire tendre l ordonnancement final vers une solution cohérente avec le plan de production. Afin d évaluer l incohérence résultant de la relaxation des contraintes de périodes,

14 14 Robert, Le Pape et Sourd nous calculons un ratio d incompatibilité à partir de la solution d ordonnancement. Ce ratio est calculé comme la somme de la capacité utilisée par chaque lot de production à l extérieur de la période où il a été planifié rapportée à la capacité totale requise. Ainsi, un ratio faible exprime une bonne cohérence entre les solutions de planification et d ordonnancement. Nous ne calculons ce ratio que pour les instances sur lesquelles plusieurs périodes ont été définies lors de la planification. En effet, la taille de certaines instances ne nécessitant pas la décomposition du problème sur plusieurs périodes, la cohérence telle qu on l a définie sera, dans ces cas, toujours optimale (ratio nul). Le tableau 4 présente des statistiques sur le ratio d incompatibilité calculé sur les 24 instances pertinentes. Il révèle que la cohérence moyenne est relativement mauvaise, dans le cas de l heuristique comme dans celui du MIP. En effet, cela est dû au fait qu une translation dans le temps d un lot peut impliquer le décalage de tout un ensemble de lots reliés au premier. Par ailleurs on constate que les solutions au problème global obtenues par résolution de P présentent une meilleure cohérence (du point de vue de notre ratio) que lorsque qu on utilise la procédure heuristique. H P ratio moyen 29.07% 24.53% ratio minimal 17.26% 9.85% ratio maximal 47.64% 38.82% Tab. 4. Ratio d incompatibilité entre plans et ordonnancements 5 Conclusion et extensions Ce papier présente une approche nouvelle de l intégration de la planification de production et de l ordonnancement, dans le contexte de l industrie de transformation. L architecture se découpe en trois étapes résolvant en séquence trois problèmes : planification, lot streaming-pegging puis ordonnancement. Nous nous sommes intéressés à l étape intermédiaire qui consiste à dimensionner les lots de production en respectant le plan de production et à établir les flux de matériaux entre stocks, lots et demandes, le long de la chaîne de production. Nous proposons pour ce problème une formulation en programmation linéaire en nombres entiers. Les solutions obtenues après résolution de ce programme (par ILOG CPLEX 9.1) ont été comparées à une procédure heuristique sur un jeu de données élaboré pour évaluer les performances d algorithmes conçus pour ce type de problèmes. Les résultats numériques ont permis de valider ce nouveau problème ainsi que l approche mathématique proposée. Le modèle mathématique présenté peut être facilement enrichi de contraintes additionnelles pouvant répondre aux exigences des industriels. En effet, les va-

15 Lot Streaming et Pegging 15 riables définies permettent d exprimer des exigence relatives aux délais entre l exécution des lots (un matériau nécessitant parfois un temps de maturation ou au contraire, un délai au-delà duquel il devient inutilisable). Il est aussi possible de contraindre un lot à n être approvisionné qu à partir d un nombre fini de lots producteurs, et vice-versa. Cette flexibilité présente un grand intérêt dans la perspective d une utilisation industrielle de ce modèle. Références 1. Baker Kenneth R. and Jia D. : A comparative study of lot streaming procedures, OMEGA International Journal of Management Science, 21(5) : (1993) 2. Blömer Ferdinand and Günther Hans-Otto : LP-based heuristics for scheduling chemical batch processes, International Journal of Production Research 38(5) : (2000) 3. Chen Jiang and Steiner George : Approximation Methods for Discrete Lot Streaming in Flow Shop, Operations Research Letters, 21(3) : (1997) 4. Dauzère-Pérès Stéphane and Lasserre Jean Bernard : An Integrated Approach in Production Planning and Scheduling, Springer (1994) 5. Dauzère-Pérès Stéphane and Lasserre Jean Bernard : Integration of lotsizing and scheduling decisions in a job-shop, European Journal of Operational Research, 75(2) : (1994) 6. Dauzère-Pérès Stéphane and Lasserre Jean Bernard : Lot Streaming in Job-Shop Scheduling, Operations Research 45(4) : (1997) 7. Dickersbach Jörg Thomas : Supply Chain Management with APO, Springer (2004) 8. Hopp Wallace J. and Spearman Mark L. : Factory Physics, Mc Graw-Hill/Irwin (2000) 9. Kallrath Josef : Planning and scheduling in the process industry, OR Spectrum, 24 : (2002) 10. Karimi B., Fatemi Ghomi S.M. and Wilson J.M. : The Capacitated Lot Sizing Problem : a Review of Models and Algorithms, OMEGA International Journal of Management Science 31(5) : (2003) 11. Kimms A. : A Genetic algorithm for multi-level, multi-machine lot sizing and scheduling, Computers & Operations Research 26 : (1999) 12. Lunn Terry and Neff Susan A. : MRP, Integrating Material Requirements Planning and Modern Business, Irwin (1992) 13. Maravelias C.T. and Grossmann I.E. : An Hybrid MILP/CP Decomposition Approach for the Scheduling of Batch Plants, CPAIOR 03 (2003) 14. Maravelias C.T. and Grossmann I.E. : An Hybrid MILP/CP Decomposition Approach for the Continuous Time Scheduling of Multipurpose Batch Plants, Computers and Chemical Engineering, 28(10) : (2004) 15. Rajaram Kumar and Karmarkar Uday S. : Campaign Planning and Scheduling for Multiproduct Batch Operations with Applications to the Food-Processing Industry, Manufacturing & Service Operations Management 6(3) : (2004)

16 16 Robert, Le Pape et Sourd 16. Robert Anna, Le Pape Claude, Paulin Frédéric et Sourd Francis : Une Nouvelle approche de l Intégration de la Planification de Production et de l Ordonnancement, RJCIA 2005 (2005) 17. Robert Anna and Le Pape Claude : Benchmark for Integrated Mid-term Planning and Detailed Scheduling, Technical specifications document, ILOG S.A., France (2005) 18. Staggemeier A.T. and Clark A.R. : A Survey of Lot-Sizing and Scheduling Models, 23rd Symposium of the Brazilian Operational Research Society (SOBRAPO) (2001) 19. Sürie Christopher and Stadtler Hartmut : The Capacitated Lot Sizing Problem with Linked Lot Sizes, Management Science 49(9) : (2003) 20. Sürie Christopher : Campaign Planning in Time-indexed Model Formulations, International Journal of Production Research 43(1) :49-66 (2005) 21. Timpe Christian : Solving Planning and Scheduling Problems with Combined Integer and Constraint Programming, OR Spectrum, 24(4) : (2002) 22. Trietsch Dan and Baker Kenneth R. : Basic techniques for lot streaming, Operations Research, 41(6) : (1993) 23. Wolsey Laurence A. : Integer Programming for Production Planning and Scheduling, Chapter based on a Lecture at the Chorin Summer School, Germany (1999)

Annexe 6. Notions d ordonnancement.

Annexe 6. Notions d ordonnancement. Annexe 6. Notions d ordonnancement. APP3 Optimisation Combinatoire: problèmes sur-contraints et ordonnancement. Mines-Nantes, option GIPAD, 2011-2012. Sophie.Demassey@mines-nantes.fr Résumé Ce document

Plus en détail

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES

PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.

Plus en détail

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation

Sujets de stage. Sciences de la Fabrication et Logistique. Génie Industriel. Optimisation. Recherche opérationnelle. Simulation 2011 2012 Sujets de stage Génie Industriel Optimisation Recherche opérationnelle Simulation Sciences de la Fabrication et Logistique Table des matières Problème de planification de production avec des

Plus en détail

Cours de Master Recherche

Cours de Master Recherche Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction

Plus en détail

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments

Info0804. Cours 6. Optimisation combinatoire : Applications et compléments Recherche Opérationnelle Optimisation combinatoire : Applications et compléments Pierre Delisle Université de Reims Champagne-Ardenne Département de Mathématiques et Informatique 17 février 2014 Plan de

Plus en détail

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP)

Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Rapport du Jury du Concours 2010 Épreuve Pratique d Algorithmique et de Programmation (EPAP) Loris Marchal, Guillaume Melquion, Frédéric Tronel 21 juin 2011 Remarques générales à propos de l épreuve Organisation

Plus en détail

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif unidimensionnel en variables binaires Julien Jorge julien.jorge@univ-nantes.fr Laboratoire d Informatique de Nantes Atlantique,

Plus en détail

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT)

OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) OPTIMISATION DE LA MAINTENANCE DES EQUIPEMENTS DE MANUTENTION DU TERMINAL A CONTENEURS DE BEJAIA (BMT) LAGGOUNE Radouane 1 et HADDAD Cherifa 2 1,2: Dépt. de G. Mécanique, université de Bejaia, Targa-Ouzemour

Plus en détail

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires

Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Algorithme de recherche locale pour la résolution d un problème réel de tournées d inventaires Thierry Benoist Frédéric Gardi Antoine Jeanjean Bouygues e-lab, Paris { tbenoist, fgardi, ajeanjean }@bouygues.com

Plus en détail

Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Optimisation des tournées de ramassage scolaire de la commune de Seneffe Optimisation des tournées de ramassage scolaire de la commune de Seneffe Laurie Hollaert Séminaire GRT 7 novembre Laurie Hollaert Optimisation des tournées de ramassage scolaire de la commune de Seneffe

Plus en détail

Sujet 6: MRP/ERP v. optimisation: modélisation et algorithmes

Sujet 6: MRP/ERP v. optimisation: modélisation et algorithmes Sujet 6: MRP/ERP v. optimisation: modélisation et algorithmes MSE3312: Planification de production et gestion des opérations Andrew J. Miller Dernière mise au jour: December 6, 2010 Dans ce sujet... 1

Plus en détail

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle

Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) IFT702 Planification en intelligence artificielle Francis BISSON (06 794 819) Kenny CÔTÉ (06 836 427) Pierre-Luc ROGER (06 801 883) PLANIFICATION DE TÂCHES DANS MS PROJECT IFT702 Planification en intelligence artificielle Présenté à M. Froduald KABANZA

Plus en détail

Un propagateur basé sur les positions pour le problème d Open-Shop.

Un propagateur basé sur les positions pour le problème d Open-Shop. Actes JFPC 2007 Un propagateur basé sur les positions pour le problème d Open-Shop. Jean-Noël Monette Yves Deville Pierre Dupont Département d Ingénierie Informatique Université catholique de Louvain {jmonette,yde,pdupont}@info.ucl.ac.be

Plus en détail

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters

A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters A GRASPxELS approach for the Job Shop with generic time-lags and new statistical determination of the parameters Présenté par : Equipe de travail : Laboratoire : Maxime CHASSAING Philippe LACOMME, Nikolay

Plus en détail

Norme comptable internationale 33 Résultat par action

Norme comptable internationale 33 Résultat par action Norme comptable internationale 33 Résultat par action Objectif 1 L objectif de la présente norme est de prescrire les principes de détermination et de présentation du résultat par action de manière à améliorer

Plus en détail

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003

Problèmes d ordonnancement dans les systèmes de production. Journée Automatique et Optimisation Université de Paris 12 20 Mars 2003 Problèmes d ordonnancement dans les systèmes de production Michel Gourgand Université Blaise Pascal Clermont Ferrand LIMOS CNRS UMR 6158 1 Le LIMOS Laboratoire d Informatique, de Modélisation et d Optimisation

Plus en détail

PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS PRODUITS A DIFFERENTS SITES

PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS PRODUITS A DIFFERENTS SITES 0ème Conférence Francophone de Modélisation, Optimisation et Simulation- MOSIM 5 au 7 novembre 0 - Nancy France «de l économie linéaire à l économie circulaire» PLANIFICATION DES LIVRAISON JOINTES DE DIFFERENTS

Plus en détail

MAITRISE DE LA CHAINE LOGISTIQUE GLOBALE (SUPPLY CHAIN MANAGEMENT) Dimensionnement et pilotage des flux de produits

MAITRISE DE LA CHAINE LOGISTIQUE GLOBALE (SUPPLY CHAIN MANAGEMENT) Dimensionnement et pilotage des flux de produits MAITRISE DE LA CHAINE LOGISTIQUE GLOBALE (SUPPLY CHAIN MANAGEMENT) Dimensionnement et pilotage des flux de produits Préambule La performance flux, quel que soit le vocable sous lequel on la désigne ( Juste

Plus en détail

Génie logiciel. Concepts fondamentaux. Bruno MERMET, Université du Havre 1

Génie logiciel. Concepts fondamentaux. Bruno MERMET, Université du Havre 1 Génie logiciel Concepts fondamentaux Bruno MERMET, Université du Havre 1 Nécessité du Génie Logiciel Bruno MERMET, Université du Havre 2 Développement d un logiciel Caractéristiques souhaitées : Adéquation

Plus en détail

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE

ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE ALGORITHME GENETIQUE ET MODELE DE SIMULATION POUR L'ORDONNANCEMENT D'UN ATELIER DISCONTINU DE CHIMIE P. Baudet, C. Azzaro-Pantel, S. Domenech et L. Pibouleau Laboratoire de Génie Chimique - URA 192 du

Plus en détail

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires

Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Nouvelles propositions pour la résolution exacte du problème de sac à dos bi-objectif unidimensionnel en variables binaires Julien Jorge, Xavier Gandibleux Laboratoire d Informatique de Nantes Atlantique

Plus en détail

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks

Recherche locale pour un problème d optimisation de tournées de véhicules avec gestion des stocks 8 e Conférence Internationale de MOdélisation et SIMulation - MOSIM 10-10 au 12 mai 2010 - Hammamet - Tunisie «Évaluation et optimisation des systèmes innovants de production de biens et de services» Recherche

Plus en détail

Détermination de la taille des lots : cas d une production cyclique et d une demande dynamique

Détermination de la taille des lots : cas d une production cyclique et d une demande dynamique Détermination de la taille des lots : cas d une production cyclique et d une demande dynamique Projet effectué en collaboration avec Domtar, Windsor Équipe de projet : Hanen Bouchriha, post-doctorat en

Plus en détail

16 Fondements du pilotage

16 Fondements du pilotage $YDQWSURSRV Le pilotage des systèmes de production est un sujet qui revêt une importance grandissante, au fur et à mesure que l automatisation de ceux-ci d une part, la multiplication des contraintes de

Plus en détail

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1

Exemples de problèmes et d applications. INF6953 Exemples de problèmes 1 Exemples de problèmes et d applications INF6953 Exemples de problèmes Sommaire Quelques domaines d application Quelques problèmes réels Allocation de fréquences dans les réseaux radio-mobiles Affectation

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

GESTION DE PROJETS Coûts délais. 05/09/2007 V2.0 Gestion de Projets T. Fricheteau 1

GESTION DE PROJETS Coûts délais. 05/09/2007 V2.0 Gestion de Projets T. Fricheteau 1 GESTION DE PROJETS Coûts délais 05/09/2007 V2.0 Gestion de Projets T. Fricheteau 1 GESTION DE PROJETS Plan du cours: - Définitions, - Maîtrise des coûts et délais, - Gestion de l équipe projet, - Comité

Plus en détail

Conception de réseaux de télécommunications : optimisation et expérimentations

Conception de réseaux de télécommunications : optimisation et expérimentations Conception de réseaux de télécommunications : optimisation et expérimentations Jean-François Lalande Directeurs de thèse: Jean-Claude Bermond - Michel Syska Université de Nice-Sophia Antipolis Mascotte,

Plus en détail

L ordonnancement des opérations d une machine multitâche : Un problème central dans l industrie de la chaussure

L ordonnancement des opérations d une machine multitâche : Un problème central dans l industrie de la chaussure L ordonnancement des opérations d une machine multitâche : Un problème central dans l industrie de la chaussure Fayez F. Boctor et Jacques Renaud Août 2005 Document de travail DT-2005-JR-3 Centre de recherche

Plus en détail

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING

INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING INSERTION TECHNIQUES FOR JOB SHOP SCHEDULING ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR ES SCIENCES PAR Tamas KIS Informaticien mathématicien diplômé de l'université

Plus en détail

Monia Amami Franck Brulhart Raymond Gambini Pierre-Xavier Meschi

Monia Amami Franck Brulhart Raymond Gambini Pierre-Xavier Meschi Version 4.7 Simulation d Entreprise «Artemis» Monia Amami Franck Brulhart Raymond Gambini Pierre-Xavier Meschi p. 1 1. Objectifs et Contexte Général L objectif de la simulation d entreprise «Artemis» est

Plus en détail

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements

Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements «Évaluation et optimisation des systèmes innovants de production de biens et de services» Résolution du RCPSP avec production et consommation de ressources : modèles PLNE basés sur les événements Oumar

Plus en détail

0DWKpPDWLTXHVGHO DUJHQW. édité par Mr. G.Moumoulidis (OTE)

0DWKpPDWLTXHVGHO DUJHQW. édité par Mr. G.Moumoulidis (OTE) 3/$,78'RF) 0DWKpPDWTXHVGHO DUJHQW HW OHVpWXGHVWHFKQTXHVpFRQRPTXHV édité par Mr. G.Moumoulidis (OTE) 8,2,7(5$7,2$/('(67(/(&2008,&$7,26,7(5$7,2$/7(/(&2008,&$7,28,2 8,2,7(5$&,2$/'(7(/(&208,&$&,2(6 - - 0DWKpPDWTXHVGHO

Plus en détail

Métriques de performance pour les algorithmes et programmes parallèles

Métriques de performance pour les algorithmes et programmes parallèles Métriques de performance pour les algorithmes et programmes parallèles 11 18 nov. 2002 Cette section est basée tout d abord sur la référence suivante (manuel suggéré mais non obligatoire) : R. Miller and

Plus en détail

Présentation livre Simulation for Supply Chain Management. Chapitre 1 - Supply Chain simulation: An Overview

Présentation livre Simulation for Supply Chain Management. Chapitre 1 - Supply Chain simulation: An Overview Présentation livre Simulation for Supply Chain Management Chapitre 1 - Supply Chain simulation: An Overview G. Bel, C. Thierry et A. Thomas 1 Plan Gestion de chaînes logistiques et simulation Points de

Plus en détail

Programmation Linéaire - Cours 1

Programmation Linéaire - Cours 1 Programmation Linéaire - Cours 1 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Ouvrages de référence V. Chvátal - Linear Programming, W.H.Freeman, New York, 1983.

Plus en détail

Vérification Formelle des Aspects de Cohérence d un Workflow net

Vérification Formelle des Aspects de Cohérence d un Workflow net Vérification Formelle des Aspects de Cohérence d un Workflow net Abdallah Missaoui Ecole Nationale d Ingénieurs de Tunis BP. 37 Le Belvédère, 1002 Tunis, Tunisia abdallah.missaoui@enit.rnu.tn Zohra Sbaï

Plus en détail

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique

PLAN DE COURS. GPA750 Ordonnancement des systèmes de production aéronautique Département de génie de la production automatisée Programme de baccalauréat Professeur Pontien Mbaraga, Ph.D. Session/année Automne 2004 Groupe(s) 01 PLAN DE COURS GPA750 Ordonnancement des systèmes de

Plus en détail

Operation Execution System (OES) Plateforme Stratégique Pour la performance Industrielle. Copyright 2006 Apriso Corporation 1

Operation Execution System (OES) Plateforme Stratégique Pour la performance Industrielle. Copyright 2006 Apriso Corporation 1 Operation Execution System (OES) Plateforme Stratégique Pour la performance Industrielle 1 Anciens Processus vs. Nouveaux Processus Ancien Nouveau InitiativesStratégiques 80% REBUT vs. 20% VALEUR 80% VALEUR

Plus en détail

Développement itératif, évolutif et agile

Développement itératif, évolutif et agile Document Développement itératif, évolutif et agile Auteur Nicoleta SERGI Version 1.0 Date de sortie 23/11/2007 1. Processus Unifié Développement itératif, évolutif et agile Contrairement au cycle de vie

Plus en détail

Présentation. Pour. Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris

Présentation. Pour. Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris Présentation Pour Gilles ALAIS, Country Manager Barloworld Supply Chain Software France 20 Rue des Petits Hôtels, 75010 Paris Email: galais@barloworldscs.com Tel : + 33 1 73 03 04 10 / + 33 6 08 01 52

Plus en détail

Solution A La Gestion Des Objets Java Pour Des Systèmes Embarqués

Solution A La Gestion Des Objets Java Pour Des Systèmes Embarqués International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 7, Issue 5 (June 2013), PP.99-103 Solution A La Gestion Des Objets Java Pour Des

Plus en détail

Les indices à surplus constant

Les indices à surplus constant Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté

Plus en détail

Contrainte de flot pour RCPSP avec temps de transfert

Contrainte de flot pour RCPSP avec temps de transfert Contrainte de flot et x-rcpsc T 1 Contrainte de flot pour RCPSP avec temps de transfert PS temp, s ij Cmax BENOIST Thierry BOUYGUES/e-Lab DIAMANTINI Maurice ENSTA/LMA Contrainte de flot et x-rcpsc T Présentation

Plus en détail

Pour une entreprise plus performante

Pour une entreprise plus performante Pour une entreprise plus performante Smart Technology Services Raison Sociale - Smart Technology Services llc Pôle d activités - Service et conseil dans la technologie de l information Pôle d activités

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

FORMAT FORMA ION SUR LA ION SUR LA GESTION DE PROJET & MS PROJECT

FORMAT FORMA ION SUR LA ION SUR LA GESTION DE PROJET & MS PROJECT FORMATION SUR LA GESTION DE PROJET & MS PROJECT Présentation rapide Jamal Achiq Consultant - Formateur sur le management de projet, MS Project, et EPM Certifications: Management de projet : «PRINCE2, Praticien»

Plus en détail

CONSEIL NATIONAL DE LA COMPTABILITÉ. 1.4 - Remplacement d instruments

CONSEIL NATIONAL DE LA COMPTABILITÉ. 1.4 - Remplacement d instruments CONSEIL NATIONAL DE LA COMPTABILITÉ Réponse aux questions pratiques liées à l application du règlement CRC n 2002-09 relatif à la comptabilisation des instruments financiers à terme par les entreprises

Plus en détail

Théorèmes de Point Fixe et Applications 1

Théorèmes de Point Fixe et Applications 1 Théorèmes de Point Fixe et Applications 1 Victor Ginsburgh Université Libre de Bruxelles et CORE, Louvain-la-Neuve Janvier 1999 Published in C. Jessua, C. Labrousse et D. Vitry, eds., Dictionnaire des

Plus en détail

WHITEPAPER. Quatre indices pour identifier une intégration ERP inefficace

WHITEPAPER. Quatre indices pour identifier une intégration ERP inefficace Quatre indices pour identifier une intégration ERP inefficace 1 Table of Contents 3 Manque de centralisation 4 Manque de données en temps réel 6 Implémentations fastidieuses et manquant de souplesse 7

Plus en détail

Communiqué de presse. APRISO dévoile la première suite MES de «Global Manufacturing»

Communiqué de presse. APRISO dévoile la première suite MES de «Global Manufacturing» APRISO dévoile la première suite MES de «Global Manufacturing» La nouvelle version de FlexNet intègre l expérience étendue et la forte expertise d Apriso en matière de synchronisation des productions multisites.

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Système Qualité Pharmaceutique (ICH Q10)

Système Qualité Pharmaceutique (ICH Q10) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 Système Qualité Pharmaceutique (ICH Q10) Le document ICH Q10 sur le

Plus en détail

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative

Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Ordonnancement en temps réel d un jobshop par métaheuristique hybride : étude comparative Y. Houbad, M. Souier, A. Hassam, Z.Sari Laboratoire d automatique Tlemcen Faculté de technologie, Université Abou

Plus en détail

Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue

Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue Classement multicritère de stratégies d'ordonnancement dans le cadre d'une industrie semi-continue O. Roux 1, V. Dhaevers 1, D. Duvivier 1, N. Meskens 1 et A. Artiba 2 1. Facultés Universitaires Catholiques

Plus en détail

Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2

Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2 Implantation d atelier 1 ère partie Franck Fontanili Centre de Génie Industriel EMAC/IFIE_GIPSI_M2 Plan de la présentation Processus général d implantation Estimation des surfaces nécessaires Pareto des

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

L INTEGRATION DES PROCESSUS DE LOGISTIQUE COMMERCIALE

L INTEGRATION DES PROCESSUS DE LOGISTIQUE COMMERCIALE Vérane Humez 1/6 L INTEGRATION DES PROCESSUS DE LOGISTIQUE COMMERCIALE AU SERVICE DE LA SATISFACTION CLIENT Vérane HUMEZ* 1 Directeur(s) de thèse: Lionel DUPONT* et Matthieu LAURAS* Laboratoire d'accueil:

Plus en détail

DOSSIER SOLUTION CA Service Assurance Mai 2010. assurez la qualité et la disponibilité des services fournis à vos clients

DOSSIER SOLUTION CA Service Assurance Mai 2010. assurez la qualité et la disponibilité des services fournis à vos clients DOSSIER SOLUTION CA Service Assurance Mai 2010 assurez la qualité et la disponibilité des services fournis à vos clients est un portefeuille de solutions de gestion matures et intégrées, qui contribue

Plus en détail

Mathématiques appliquées à l informatique

Mathématiques appliquées à l informatique Mathématiques appliquées à l informatique Jean-Etienne Poirrier 15 décembre 2005 Table des matières 1 Matrices 3 1.1 Définition......................................... 3 1.2 Les différents types de matrices.............................

Plus en détail

SKF DANS LE MONDE. 2007-11-20 SKF Slide 2 SKF [Communication] SKF (Communicat

SKF DANS LE MONDE. 2007-11-20 SKF Slide 2 SKF [Communication] SKF (Communicat SKF DANS LE MONDE 2007-11-20 SKF Slide 2 SKF [Communication] SKF (Communicat Implantation dans le monde Sites de fabrication Unités de ventes SKF est un groupe international avec des sociétés de vente

Plus en détail

ECOLE SUPERIEURE DE COMMERCE D ALGER

ECOLE SUPERIEURE DE COMMERCE D ALGER MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE ECOLE SUPERIEURE DE COMMERCE D ALGER PROGRAMME DE LICENCE EN SCIENCES COMMERCIALES ET FINANCIERES OPTION : FINANCE ( applicable à partir

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Asprova. Systèmes de planification de production. info@doqs.ch. Systèmes d ordonancement pour une production LEAN

Asprova. Systèmes de planification de production. info@doqs.ch. Systèmes d ordonancement pour une production LEAN Asprova Systèmes de planification de production Vous recherchez un système APS et vous êtes submergés par un grand nombre de fournisseurs? Ceci est une instruction pour vous aidez dans votre choix! Approche

Plus en détail

Comment Utiliser son ERP pour Soutenir le Déploiement du Lean?

Comment Utiliser son ERP pour Soutenir le Déploiement du Lean? Comment Utiliser son ERP pour Soutenir le Déploiement du Lean? Philippe COURTY, CFPIM Dirigeant de CJP-Conseils www.cjp-conseils.com 1 Comment Utiliser son ERP pour Soutenir le Déploiement du Lean? Les

Plus en détail

Travail d Étude et de Recherche. Aide à l optimisation de rendez-vous de type business speed-dating

Travail d Étude et de Recherche. Aide à l optimisation de rendez-vous de type business speed-dating Travail d Étude et de Recherche Aide à l optimisation de rendez-vous de type business speed-dating Alexandre Medi Andreea Radulescu Johan Voland Université de Nantes 10 mai 2011 1 Remerciements En préambule

Plus en détail

LE SUPPLY CHAIN MANAGEMENT

LE SUPPLY CHAIN MANAGEMENT LE SUPPLY CHAIN MANAGEMENT DEFINITION DE LA LOGISTIQUE La logistique est une fonction «dont la finalité est la satisfaction des besoins exprimés ou latents, aux meilleures conditions économiques pour l'entreprise

Plus en détail

L apport des logiciels d optimisation des stocks multi-échelons

L apport des logiciels d optimisation des stocks multi-échelons omment passer à la vitesse supérieure dans le calcul des stocks de sécurité et aller plus loin que les ERP et APS traditionnels? est ce que nous explique Tanguy aillet de J&M Management onsulting en nous

Plus en détail

CEG4566/CSI4541 Conception de systèmes temps réel

CEG4566/CSI4541 Conception de systèmes temps réel CEG4566/CSI4541 Conception de systèmes temps réel Chapitre 6 Vivacité, sécurité (Safety), fiabilité et tolérance aux fautes dans les systèmes en temps réel 6.1 Introduction générale aux notions de sécurité

Plus en détail

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com

Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Cours de Méthodes Déterministes en Finance (ENPC) Benoît Humez Société Générale Recherche Quantitative benoit.humez@sgcib.com Points abordés Méthodes numériques employées en finance Approximations de prix

Plus en détail

Minimisation de la somme des retards dans un jobshop flexible

Minimisation de la somme des retards dans un jobshop flexible Minimisation de la somme des retards dans un jobshop flexible Nozha ZRIBI, Imed KACEM, Abdelkader EL KAMEL, Pierre BORNE LAGIS Ecole Centrale de Lille, BP 48, 5965 Villeneuve d Ascq Cedex, France ISTIT

Plus en détail

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com

5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Application des réseaux de neurones au plan de répartition des risques 5255 Av. Decelles, suite 2030 Montréal (Québec) H3T 2B1 T: 514.592.9301 F: 514.340.6850 info@apstat.com www.apstat.com Copyright c

Plus en détail

Ordonnancement robuste et décision dans l'incertain

Ordonnancement robuste et décision dans l'incertain Ordonnancement robuste et décision dans l'incertain 4 ème Conférence Annuelle d Ingénierie Système «Efficacité des entreprises et satisfaction des clients» Centre de Congrès Pierre Baudis,TOULOUSE, 2-4

Plus en détail

Séparation et Evaluation pour le problème d ordonnancement avec blocage.

Séparation et Evaluation pour le problème d ordonnancement avec blocage. Séparation et Evaluation pour le problème d ordonnancement avec blocage. Abdelhakim Ait Zai 1, Abdelkader Bentahar 1, Hamza Bennoui 1, Mourad Boudhar 2 et Yazid Mati 3 1 Faculté d Electronique et d Informatique,

Plus en détail

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production

Etude d un cas industriel : Optimisation de la modélisation de paramètre de production Revue des Sciences et de la Technologie RST- Volume 4 N 1 /janvier 2013 Etude d un cas industriel : Optimisation de la modélisation de paramètre de production A.F. Bernate Lara 1, F. Entzmann 2, F. Yalaoui

Plus en détail

LES OUTILS DU TRAVAIL COLLABORATIF

LES OUTILS DU TRAVAIL COLLABORATIF LES OUTILS DU TRAVAIL COLLABORATIF Lorraine L expression «travail collaboratif» peut se définir comme «l utilisation de ressources informatiques dans le contexte d un projet réalisé par les membres d un

Plus en détail

4.2 Unités d enseignement du M1

4.2 Unités d enseignement du M1 88 CHAPITRE 4. DESCRIPTION DES UNITÉS D ENSEIGNEMENT 4.2 Unités d enseignement du M1 Tous les cours sont de 6 ECTS. Modélisation, optimisation et complexité des algorithmes (code RCP106) Objectif : Présenter

Plus en détail

Correction de l épreuve intermédiaire de mai 2009.

Correction de l épreuve intermédiaire de mai 2009. Licence de Gestion. 3ème Année Année universitaire 8-9 Optimisation Appliquée C. Léonard Correction de l épreuve intermédiaire de mai 9. Exercice 1 Avec les notations du cours démontrer que la solution

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k]

La valeur présente (ou actuelle) d une annuité, si elle est constante, est donc aussi calculable par cette fonction : VA = A [(1-1/(1+k) T )/k] Evaluation de la rentabilité d un projet d investissement La décision d investir dans un quelconque projet se base principalement sur l évaluation de son intérêt économique et par conséquent, du calcul

Plus en détail

Nom de l application

Nom de l application Ministère de l Enseignement Supérieur et de la Recherche Scientifique Direction Générale des Etudes Technologiques Institut Supérieur des Etudes Technologiques de Gafsa Département Technologies de l Informatique

Plus en détail

Contrôlez et améliorez vos performances Solutions Software GEA. engineering for a better world. GEA Food Solutions

Contrôlez et améliorez vos performances Solutions Software GEA. engineering for a better world. GEA Food Solutions Contrôlez et améliorez vos performances Solutions Software GEA engineering for a better world GEA Food Solutions Mesurer, ça compte! Plus vous en savez sur les mesures de vos paramètres de process, plus

Plus en détail

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.

Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes. Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de

Plus en détail

L OPTIMISATION ÉCONOMIQUE DU VOLUME DU LOT DE FABRICATION DANS LE MANAGEMENT DE LA PRODUCTION EN SÉRIE

L OPTIMISATION ÉCONOMIQUE DU VOLUME DU LOT DE FABRICATION DANS LE MANAGEMENT DE LA PRODUCTION EN SÉRIE L OPTIMISATION ÉCONOMIQUE DU VOLUME DU LOT DE FABRICATION DANS LE MANAGEMENT DE LA PRODUCTION EN SÉRIE Gradinaru Dorule L Université de Pite ti, La Faculté de Sciences Économiques, 0752458187, gradinaru_dorulet@yahoo.com

Plus en détail

Management de la chaîne logistique. Professeur Mohamed Reghioui

Management de la chaîne logistique. Professeur Mohamed Reghioui Management de la chaîne logistique Professeur Mohamed Reghioui M.Reghioui - 2012 1 Informations générales sur le module Intervenants: Mohamed Reghioui(m.reghioui@gmail.com) Informations générales Répartition

Plus en détail

Projet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS

Projet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS Proet de mémoire pour l obtention du titre de Docteur en Systèmes Informatiques et Automatiques de l Ecole Doctorale EDSYS Université Toulouse 3 Paul Sabatier Présenté par : Mohamed Esseghir LALAMI Titre

Plus en détail

Approche hybride de reconstruction de facettes planes 3D

Approche hybride de reconstruction de facettes planes 3D Cari 2004 7/10/04 14:50 Page 67 Approche hybride de reconstruction de facettes planes 3D Ezzeddine ZAGROUBA F. S.T, Dept. Informatique. Lab. d Informatique, Parallélisme et Productique. Campus Universitaire.

Plus en détail

LA COMPTABILITE DE COUVERTURE EN IFRS DEMYSTIFIEE **** IMA France 5 février 2008 Xavier Paper et Patrick Grinspan. Paper Audit & Conseil 1

LA COMPTABILITE DE COUVERTURE EN IFRS DEMYSTIFIEE **** IMA France 5 février 2008 Xavier Paper et Patrick Grinspan. Paper Audit & Conseil 1 LA COMPTABILITE DE COUVERTURE EN IFRS DEMYSTIFIEE **** IMA France 5 février 2008 Xavier Paper et Patrick Grinspan Paper Audit & Conseil 1 Sommaire 1. Définition de la relation de couverture 2. Le swap

Plus en détail

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01)

(51) Int Cl.: H04L 29/06 (2006.01) G06F 21/55 (2013.01) (19) TEPZZ 8 8 4_A_T (11) EP 2 838 241 A1 (12) DEMANDE DE BREVET EUROPEEN (43) Date de publication: 18.02.1 Bulletin 1/08 (1) Int Cl.: H04L 29/06 (06.01) G06F 21/ (13.01) (21) Numéro de dépôt: 141781.4

Plus en détail

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes

Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Loris MARCHAL Laboratoire de l Informatique du Parallélisme Équipe Graal Communications collectives et ordonnancement en régime permanent pour plates-formes hétérogènes Thèse réalisée sous la direction

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX

BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de l Industrie et du Développement Durable ENSEIGNEMENTS TECHNOLOGIQUES TRANSVERSAUX Coefficient 8 Durée 4 heures Aucun document autorisé Calculatrice

Plus en détail

Big Data et Graphes : Quelques pistes de recherche

Big Data et Graphes : Quelques pistes de recherche Big Data et Graphes : Quelques pistes de recherche Hamamache Kheddouci http://liris.cnrs.fr/hamamache.kheddouci Laboratoire d'informatique en Image et Systèmes d'information LIRIS UMR 5205 CNRS/INSA de

Plus en détail

Performances Chez GMC, performances et exécution passent inéluctablement par le travail d équipe. Notre mission : unir nos forces pour vous aider à

Performances Chez GMC, performances et exécution passent inéluctablement par le travail d équipe. Notre mission : unir nos forces pour vous aider à Performances Chez GMC, performances et exécution passent inéluctablement par le travail d équipe. Notre mission : unir nos forces pour vous aider à atteindre vos objectifs. Centrale d automatisation GMC

Plus en détail

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop

Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Utilisation du backtrack intelligent dans un branch-and-bound Application au problème d Open-Shop Narendra Jussien et Christelle Guéret École des Mines de Nantes 4 rue Alfred Kastler BP 20722 F-44300 Nantes

Plus en détail

Norme internationale d information financière 2 Paiement fondé sur des actions

Norme internationale d information financière 2 Paiement fondé sur des actions Norme internationale d information financière 2 Paiement fondé sur des actions Norme internationale d information financière 2 Paiement fondé sur des actions OBJECTIF 1 L objectif de la présente Norme

Plus en détail

Accompagner la transformation vers l excellence opérationnelle. Olivier Gatti olivier.gatti@adis-innovation.com

Accompagner la transformation vers l excellence opérationnelle. Olivier Gatti olivier.gatti@adis-innovation.com Accompagner la transformation vers l excellence opérationnelle. Olivier Gatti olivier.gatti@adis-innovation.com ADIS Innovation Partner 18 ans d activité opérationnelle dans le secteur du semi-conducteur

Plus en détail

Plan du cours. Vocabulaire. Définitions d un projet. Les cinq phases de la Gestion de Projets. 1- Conception

Plan du cours. Vocabulaire. Définitions d un projet. Les cinq phases de la Gestion de Projets. 1- Conception Plan du cours Vocabulaire Définitions d un projet Les cinq phases de la Gestion de Projets 1- Conception Planification du Projet Ingénierie du projet Ordonnancement des activités Estimation des durées

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

Le Guide Pratique des Processus Métiers

Le Guide Pratique des Processus Métiers Guides Pratiques Objecteering Le Guide Pratique des Processus Métiers Auteur : Version : 1.0 Copyright : Softeam Equipe Conseil Softeam Supervisée par Philippe Desfray Softeam 21 avenue Victor Hugo 75016

Plus en détail

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels

Plus en détail