Sujet d'examen corrigé
|
|
|
- Emmanuel Soucy
- il y a 9 ans
- Total affichages :
Transcription
1 Sujet d'examen corrigé D. Chessel LICENCE BO - UE BMS - 02/2001 (2 HEURES) Une feuille de réponse est jointe a l'énoncé. Répondre aux questions strictement dans la place impartie et justifier vos réponses par un argument qui vous paraît approprié. Une réponse non justifiée n est pas prise en compte. Les réponses sont en italique. Question 1. Quel est le résultat du dernier tirage du loto en mars 2000? Question qui avait été annoncée en cours! Question 2. Dans une grande population, on a déterminé le sexe de 100 individus et trouvé 40 males et 60 femelles. La valeur 0.5 appartient-elle à l'intervalle de confiance de la fréquence des mâles au seuil de 90%? NON. On doit faire un test contre l'hypothèse p = 0.5. La variable nombre de mâles dans l'échantillon suit une loi binomiale de paramètres 100 et 0.5, donc approximativement une loi normale de moyenne 50 et de variance 25. Avec la probabilité de 0.9 elle est comprise entre et L'observation 40 est dans la zone de rejet du test et 0.5 n'appartient pas à l'intervalle de confiance. Je veux tester par un test de Wilcoxon l hypothèse nulle «Les deux échantillons sont extraits de la même population» contre l hypothèse alternative «La moyenne de l échantillon 1 est différente de celle de l échantillon 2». Je dispose de 4 observations pour chacun des échantillons. Je ne dispose pas de la table de la distribution de Wilcoxon. Question 3. Vrai ou Faux? Quel que soit le résultat expérimental le test ne sera pas significatif au seuil de 5%. C'est vrai. Si l'échantillon 1 contient les rangs , la probabilité pour que la somme des rangs soit inférieure ou égale à l'observation vaut = = = Le test bilatéral associé aura donc un seuil supérieur à 5%. Biostatistique / Fiche exo2.doc / Page 1
2 Le problème est posé par Nathalie Mugnier dans son rapport de statistique "Les naissances au Québec" qui indique ce site : > naiss age n95 n96 n97 n98 n Cette statistique donne l'âge de la mère à la naissance des enfants nés de 1995 à 1999 au Québec. > n95_rep(naiss$age,naiss$n95) > n96_rep(naiss$age,naiss$n96) > n97_rep(naiss$age,naiss$n97) > n98_rep(naiss$age,naiss$n98) > n99_rep(naiss$age,naiss$n99) > mean(n95) [1] > mean(n99) [1] > length(n95) [1] > length(n99) [1] > sum(naiss$n95) [1] ***** > t.test(n95,n99) Biostatistique / Fiche exo2.doc / Page 2
3 Welch Two Sample t-test data: n95 and n99 t = , df = , p-value = 7.335e-11 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: sample estimates: mean of x mean of y Question 4. Quel est la valeur cachée par les caractères *****? La fonction rep donne une statistique de valeurs, la somme des nombres de répétitions. Question 5. Quelle information est-elle apportée par le test? On compare les deux échantillons de la variable âge de la mère à la naissance pour les deux années considérées. Il est certain que cet âge a augmenté en moyenne de 0.17 année. > w_rep(0,5) > w[1]_mean(n95) > w[2]_mean(n96) > w[3]_mean(n97) > w[4]_mean(n98) > w[5]_mean(n99) > z_apply(naiss[,2:6],2,sum) Question 6. Quelles sont les commandes qui ont donné ces figures? > plot(1:5,w) > plot(1:5,z) Question 7. Quelles sont les commandes qui donnent cette figure? Biostatistique / Fiche exo2.doc / Page 3
4 > par(mfrow=c(1,2)) > plot(1:5,w) > plot(1:5,z) Question 8. Que pensez-vous de l'assertion "il y a moins de deux chances sur 100 de trouver 5 valeurs rangées dans l'ordre"? Elle est justifiée dans l'espace de probabilités des 5! permutations de 5 valeurs. Il y a 1 chance sur 120 de les trouver dans l'ordre croissant et 1 chance sur 120 de les trouver dans l'ordre décriossant, donc moins de 2 chances sur 100 de les trouver rangées dans l'ordre. Question 9. Qu'avez vous appris des indications qui précèdent? Au Québec, de 1995 à 1999, le nombre des naissances décroit régulièrement et l'âge de la mère croit régulièrement. Le problème est posé par Pierre Pichard dans son rapport de statistique "Analyse statistique des temps d'attente des éruptions du volcan Aso" Les années d'éruption du volcan Aso (Japon), entre 1250 et 1950 sont : > aso Biostatistique / Fiche exo2.doc / Page 4
5 [1] [16] [31] [46] [61] [76] Source : Wickman, F.E. (1966) Respose-period patterns of volcanoes. Arkiv för Mineralogi och Geologi : Bd. 4, Häfte 4, > delai_diff(aso) > hist(delai,proba=t) > lines (0:60,dexp(0:60,1/mean(delai)))) Error: syntax error > lines (0:60),dexp(0:60,1/mean(delai))) Error: syntax error > lines (0:60),dexp(0:60,1/mean(delai)) Error: syntax error Question 10. Quel est la commande correcte pour obtenir la figure suivante? lines (0:60,dexp(0:60,1/mean(delai))) Question 11. Quel paramètre a t'il été modifié pour obtenir la figure suivante? Le nombre de class (nclass) Biostatistique / Fiche exo2.doc / Page 5
6 > ks.test(delai, "pexp",1/mean(delai)) One-sample Kolmogorov-Smirnov test data: delai D = , p-value = alternative hypothesis: two.sided Question 12. Quelle est votre conclusion? On a fait un test d'ajustement sur la fonction de répartition d'une loi exponentielle avec estimation au maximum de vraisemblance du paramètre. L'ajustement graphique sur la densité est bon mais le test rejette l'hypothèse nulle au risque de 2 pour mille. On ne peut pas accepter l'hypothèse. > qqplot(delai,rexp(1000, 1/mean(delai))) > abline(0,1) Question 13. Pourquoi n'obtient-on pas toujours le même résultat? Parce qu'on utilise rexp qui donne un échantillon aléatoire simple d'une densité exponentielle de paramètre donné. Deux exécutions successives ne donnent pas le même résultat. > f1_function() {return(max(rexp(100,1/mean(delai))))} Question 14. Que fait cette fonction? Biostatistique / Fiche exo2.doc / Page 6
7 Elle renvoie la plus grande valeur d'un échantillon aléatoire simple d'une loi exponentielle de paramètre donné (estimation à partir de l'échantillon observé). > w_rep(0,1000) > for (i in 1:1000) w[i]_f1() > hist(w) > max(delai) [1] 56 > sum(w>max(delai)) [1] 120 Question 15. Le temps de repos du volcan entre 1709 et 1765 vous semble t'il incompatible avec l'hypothèse d'un processus aléatoire? Non, on a fait 1000 tirages de la même loi et obtenu la distribution d'échantillonnage approchée (méthode de Monte-Carlo) de la plus grande valeur. L'observation est dépassée dans 12 % des cas, ce qui n'est pas extraordinaire. > plot((aso-1250)/700,(1:84)/84) > abline(0,1) > ks.test(aso,"punif",1250,1950) One-sample Kolmogorov-Smirnov test data: aso D = , p-value = alternative hypothesis: two.sided Biostatistique / Fiche exo2.doc / Page 7
8 Question 16. L'intensité de l'activité du volcan vous semble t'elle avoir évoluer pendant la période de l'étude? Non. On a fait un test d'ajustement sur la variable date avec une loi uniforme sur l'intervalle de l'étude. Le test mesure comment la fonction de répartition empirique s'éloigne de la fonction de répartition théorique. Dans 8 % des cas, sous l'hypothèse nulle on a un écart au moins aussi grand et je considère que le test n'est pas significatif. > hist(aso,nclass=70,plot=f) $breaks [1] [16] [31] [46] [61] $counts [1] [39] > p10_c(0,hist(aso,nclass=70,plot=f)$counts) > p10 [1] [39] Question 17. Pourquoi rajouter un 0 devant? Le logiciel a défini 69 classes en éliminant la borne On doit donc rajouter l'intervalle 1250/1260 dendant lequel il y a eu 0 irruption. On aura ainsi le nombre des éruuptions par classes de 10 ans. > table(p10) p > sum(p10) [1] 84 > mean(p10) [1] 1.2 Biostatistique / Fiche exo2.doc / Page 8
9 > var(p10) [1] > 84*dpois(0:4,mean(p10)) [1] > 84-sum(84*dpois(0:4,mean(p10))) [1] > obs_c(26,21,13,6,4) > [1] > the_c(25.3,30.36,18.22,7.286,2.837) > obs [1] > the [1] > sum( ((obs-the)^2)/the) [1] > pchisq(5.104,3) [1] Question 18. Commenter ce qui précède. On a compté puis tabulé le nombre d'éruptions par classes de 10 ans. Le test est le Khi2 d'ajustement à une loi de Poisson. Le Khi2 observé est dépassé dans 16% sous l'hypothèse nulle qui ne peut être rejetée. On n'a pas de raison de rejeter l'hypothèse d'une loi de Poisson. > f2_function() {return(var(rexp(100,1/mean(delai))))} > for (i in 1:1000) w[i]_f2() > hist(w) > sum(w>94.8) [1] 100 Question 19. La variance du temps d'attente de la prochaine irruption du volcan vous semble t'elle incompatible avec l'hypothèse d'un processus aléatoire? Non, on a refait un test de Monte-Carlo sur la variance de l'échantillon qui est dépassé dans 10 % des simulations. On ne peut rejeter l'hypothèse nulle. > plot(diff(aso),type="b") > plot(diff(aso,lag=2),type="b") > plot(diff(aso,lag=3),type="b") > plot(diff(aso,lag=4),type="b") > plot(diff(aso,lag=5),type="b") Biostatistique / Fiche exo2.doc / Page 9
10 > plot(diff(asosim,lag=5),type="b") Question 20. Donner une phrase pour commenter l'état actuel de l'analyse. Aucun des tests effectués n'indique un écart franc au modèle aléatoire à l'exception d'un seul. La question est de savoir en quoi on s'écarte du modèle de l'hypothèse avec la fonction de répartition du temps d'attente. Ni l'intervalle maximum ni la variance ne sont en cause. Les dénombrements sont poissoniens. L'intensité est constante. Le temps d'attente aux évènements suivants au pas 2,3, semble suggérer une structure interne au processus avec quatre phases. Pierre Pichard s'est posé une question difficile. Biostatistique / Fiche exo2.doc / Page 10
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
Introduction à la statistique non paramétrique
Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non
Chapitre 6 Test de comparaison de pourcentages χ². José LABARERE
UE4 : Biostatistiques Chapitre 6 Test de comparaison de pourcentages χ² José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Nature des variables
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Statistiques. Rappels de cours et travaux dirigés. Master 1 Biologie et technologie du végétal. Année 2010-2011
Master 1 Biologie et technologie du végétal Année 010-011 Statistiques Rappels de cours et travaux dirigés (Seul ce document sera autorisé en examen) auteur : Jean-Marc Labatte [email protected]
Tests de comparaison de moyennes. Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique»
Tests de comparaison de moyennes Dr Sahar BAYAT MASTER 1 année 2009-2010 UE «Introduction à la biostatistique» Test de Z ou de l écart réduit Le test de Z : comparer des paramètres en testant leurs différences
Analyse de la variance Comparaison de plusieurs moyennes
Analyse de la variance Comparaison de plusieurs moyennes Biostatistique Pr. Nicolas MEYER Laboratoire de Biostatistique et Informatique Médicale Fac. de Médecine de Strasbourg Mars 2011 Plan 1 Introduction
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9
Analyse de variance à deux facteurs (plan inter-sujets à deux facteurs) TP9 L analyse de variance à un facteur permet de vérifier, moyennant certaines hypothèses, si un facteur (un critère de classification,
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Biostatistiques : Petits effectifs
Biostatistiques : Petits effectifs Master Recherche Biologie et Santé P. Devos DRCI CHRU de Lille EA2694 [email protected] Plan Données Générales : Définition des statistiques Principe de l
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Cours 1. I- Généralités sur R II- Les fonctions de R et autres objets III-Les vecteurs
Cours 1 I- Généralités sur R II- Les fonctions de R et autres objets III-Les vecteurs IV-Les facteurs I-1 Généralités sur R R (1995, AT&T Bell Laboratories) est un logiciel d analyse statistique et graphique,
UFR de Sciences Economiques Année 2008-2009 TESTS PARAMÉTRIQUES
Université Paris 13 Cours de Statistiques et Econométrie I UFR de Sciences Economiques Année 2008-2009 Licence de Sciences Economiques L3 Premier semestre TESTS PARAMÉTRIQUES Remarque: les exercices 2,
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Fait opinion. Département EEO CUEEP-USTL
Fait opinion Département EEO CUEEP-USTL Avril 2007 Table des Matières ChapitreI. Exercices d'observation... 4 A. Exercice d'observation n 1...4 A.1. Réponses attendues...5 B. Exercice d'observation n 2...5
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Didacticiel - Études de cas. Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat.
1 Objectif Description de quelques fonctions du logiciel PSPP, comparaison des résultats avec ceux de Tanagra, R et OpenStat. Tout le monde l aura compris, je passe énormément de temps à analyser les logiciels
Probabilité et Statistique pour le DEA de Biosciences. Avner Bar-Hen
Probabilité et Statistique pour le DEA de Biosciences Avner Bar-Hen Université Aix-Marseille III 2000 2001 Table des matières 1 Introduction 3 2 Introduction à l analyse statistique 5 1 Introduction.................................
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Une introduction. Lionel RIOU FRANÇA. Septembre 2008
Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4
Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants)
CIVILITE-SES.doc - 1 - Une variable binaire prédictrice (VI) et une variable binaire observée (VD) (Comparaison de pourcentages sur 2 groupes indépendants) 1 PRÉSENTATION DU DOSSIER CIVILITE On s intéresse
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
Entretien portant sur la location (exemple)
Entretien portant sur la location (exemple) Seulement Fiduciaire immobilier Nom/prénom du candidat/de la candidate Arrondissement d'examen Entreprise formatrice Veuillez observer ce qui suit: 1. L'examen
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
Loi binomiale Lois normales
Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
La simulation probabiliste avec Excel
La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier [email protected] Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires
1 Définition de la non stationnarité
Chapitre 2: La non stationnarité -Testsdedétection Quelques notes de cours (non exhaustives) 1 Définition de la non stationnarité La plupart des séries économiques sont non stationnaires, c est-à-direqueleprocessusquiles
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
1. Vocabulaire : Introduction au tableau élémentaire
L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Complexité. Licence Informatique - Semestre 2 - Algorithmique et Programmation
Complexité Objectifs des calculs de complexité : - pouvoir prévoir le temps d'exécution d'un algorithme - pouvoir comparer deux algorithmes réalisant le même traitement Exemples : - si on lance le calcul
TESTS D HYPOTHÈSE FONDÉS SUR LE χ². http://fr.wikipedia.org/wiki/eugénisme
TESTS D HYPOTHÈSE FONDÉS SUR LE χ² http://fr.wikipedia.org/wiki/eugénisme Logo du Second International Congress of Eugenics 1921. «Comme un arbre, l eugénisme tire ses constituants de nombreuses sources
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Jeux de caracte res et encodage (par Michel Michaud 2014)
Jeux de caracte res et encodage (par Michel Michaud 2014) Les ordinateurs ne traitent que des données numériques. En fait, les codages électriques qu'ils conservent en mémoire centrale ne représentent
ECTS CM TD TP. 1er semestre (S3)
Organisation du parcours M2 IRS en alternance De façon générale, les unités d enseignements (UE) sont toutes obligatoires avec des ECTS équivalents à 3 sauf le stage sur 27 ECTS et réparties sur deux semestres
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Etab=MK3, Timbre=G430, TimbreDansAdresse=Vrai, Version=W2000/Charte7, VersionTravail=W2000/Charte7 Direction des Études et Synthèses Économiques Département des Comptes Nationaux Division des Comptes Trimestriels
Programmation Objet - Cours II
Programmation Objet - Cours II - Exercices - Page 1 Programmation Objet - Cours II Exercices Auteur : E.Thirion - Dernière mise à jour : 05/07/2015 Les exercices suivants sont en majorité des projets à
À l'intention des parents
Septembre 2011 À l'intention des parents Information sur les examens en vue de l'obtention du diplôme Votre fils ou votre fille passera bientôt des examens en vue de l'obtention du diplôme? Voici de l'information
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand
UNE FORMATION POUR APPRENDRE À PRÉSENTER DES DONNÉES CHIFFRÉES : POUR QUI ET POURQUOI? Bénédicte Garnier & Elisabeth Morand Service méthodes statistiques Institut National d Etudes Démographiques (Ined)
Tests statistiques et régressions logistiques sous R, avec prise en compte des plans d échantillonnage complexes
, avec prise en compte des plans d échantillonnage complexes par Joseph LARMARANGE version du 29 mars 2007 Ce cours a été développé pour une formation niveau M2 et Doctorat des étudiants du laboratoire
Bases : Probabilités, Estimation et Tests.
Université René Descartes LMD Sciences de la Vie et de la Santé UFR Biomédicale, M1 de Santé Publique 45 rue des Saints-Père, 75 006 Paris Spécialité Biostatistique M1 COURS de BIOSTATISTIQUE I Bases :
TP de Statistiques: Utilisation du logiciel R
TP de Statistiques: Utilisation du logiciel R Année 2006-2007 2 Table des matières Introduction i 1 Premiers pas avec R 1 1.1 R est une calculatrice............................................. 1 1.2 R
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
Mario Geiger octobre 08 ÉVAPORATION SOUS VIDE
ÉVAPORATION SOUS VIDE 1 I SOMMAIRE I Sommaire... 2 II Évaporation sous vide... 3 III Description de l installation... 5 IV Travail pratique... 6 But du travail... 6 Principe... 6 Matériel... 6 Méthodes...
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Comité conseil en matière de prévention et sécurité des personnes et des biens Octobre 2013
PROJET Encadrement du système de caméras de sécurité et Foire aux questions Comité conseil en matière de prévention et sécurité des personnes et des biens Octobre 2013 2 3 Table des matières 1. CADRE JURIDIQUE...4
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes
de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,[email protected]
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Exemples d application
AgroParisTech Exemples d application du modèle linéaire E Lebarbier, S Robin Table des matières 1 Introduction 4 11 Avertissement 4 12 Notations 4 2 Régression linéaire simple 7 21 Présentation 7 211 Objectif
- Le Diagramme de Gantt. - Le Diagramme de Pert - La Méthode QQCQCCP - La Méthode MOSI - Cahier des charges fonctionnel
Planifier le projet > Identifier les étapes > Organiser le projet > Identifier les étapes - Le Diagramme de Gantt > Organiser le projet - Le Diagramme de Pert - La Méthode QQCQCCP - La Méthode MOSI - Cahier
M2 IAD UE MODE Notes de cours (3)
M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de
Algorithmes de recherche
Algorithmes de recherche 1 Résolution de problèmes par recherche On représente un problème par un espace d'états (arbre/graphe). Chaque état est une conguration possible du problème. Résoudre le problème
Tableau 1 : Structure du tableau des données individuelles. INDIV B i1 1 i2 2 i3 2 i4 1 i5 2 i6 2 i7 1 i8 1
UN GROUPE D INDIVIDUS Un groupe d individus décrit par une variable qualitative binaire DÉCRIT PAR UNE VARIABLE QUALITATIVE BINAIRE ANALYSER UN SOUS-GROUPE COMPARER UN SOUS-GROUPE À UNE RÉFÉRENCE Mots-clés
K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau
Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des
Principe de symétrisation pour la construction d un test adaptatif
Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, [email protected] 2 Université
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES
Leçon 11 PROBLEMES D'ORDONNANCEMENT AVEC RESSOURCES Dans cette leçon, nous retrouvons le problème d ordonnancement déjà vu mais en ajoutant la prise en compte de contraintes portant sur les ressources.
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Limitations of the Playstation 3 for High Performance Cluster Computing
Introduction Plan Limitations of the Playstation 3 for High Performance Cluster Computing July 2007 Introduction Plan Introduction Intérêts de la PS3 : rapide et puissante bon marché L utiliser pour faire
