Langages hors-contexte
|
|
|
- Anne-Sophie Suzanne Charbonneau
- il y a 9 ans
- Total affichages :
Transcription
1 Langages hors-contexte Au-delà des langages réguliers Les langages hors-contexte (angl. Context-Free Languages, CFL) ont de nomreuses applications dans l étude des langages naturels, en compilation (syntaxe de langages de programmation), analyse de programmes, etc. Exemples Langages des parenthèses, des expressions arithmétiques, des palindromes, {a n n n 0},.... Grammaires hors-contexte Une grammaire hors-contexte (CGF) G = V, Σ, R, consiste d un ensemle (fini) V de symoles non-terminaux (ou variales), d un alphaet (fini) Σ de symoles terminaux, d un ensemle de règles R V (V Σ) et d une variale initiale (axiome) V. 1/13
2 Langages hors-contexte Exemple <phrase> <GN><GV> <GN> <nom-complexe> <nom-complexe><cdn> <nom-complexe> <article><nom> <CdN> <adjectif>... <GV> <vere><gn> <article> le la mon ma... <nom> fille garçon danse <adjectif> aîné(e)... <vere> aime... Dérivation L application d une règle A v de R au mot uaw (V Σ) produit le mot uvw (on note uaw uvw). On écrit u = v si l on peut dériver le mot u du mot v, c-a-d. si on a soit u = v, ou s il existent u 1,..., u n (V Σ) tels que u u 1 u n v. Le langage engendré par G est défini par L(G) = {w Σ = w}. 2/13
3 Exemple (dérivation) Langages hors-contexte <phrase> <GN><GV> <nom-complexe><cdn><gv> <article><nom><cdn><gv> ma <nom><cdn><gv> ma fille<cdn><gv> ma fille<adjectif><gv> ma fille aîné(e)<gv> = ma fille aîné(e) aime la danse Dérivation gauche Une dérivation gauche est une dérivation où on remplace toujours la variale la plus à gauche (si possile), voir exemple. Un arre de dérivation pour un mot w Σ à partir d une variale B V est un arre ordonné étiqueté, dont les nœuds internes sont étiquetés par des variales dans V, et les feuilles par des terminaux (dans Σ) ou ɛ ; pour tout nœud v étiqueté par A V, si A 1,..., A n V Σ sont les étiquettes des enfants v1,..., vn de v, alors A A 1 A n est une règle de G. La racine est étiquetée par B, et w est la frontière de l arre. 3/13
4 Exemples - grammaires Une CFG qui engendre des expressions arithmétiques utilisant +, et les variales a,, c (langage non-régulier!) : E E + T T T T F F F (E) a c Une CFG qui engendre le langage {a n n n 0} : a ɛ Une CFG qui engendre les palindromes sur {a, } : aa ɛ Définition Un langage de mots s appelle hors-contexte (angl. context-free language, CFL), s il est engendré par une grammaire hors-contexte. 4/13
5 Exemples - arres de dérivation E E T + T F a a F ( E ) a F ɛ T * F F c 5/13
6 REG CFL oit L Σ accepté par un NFA A = Q, Σ, δ, q 0, F. Alors L est engendré par la CFG G = Q, Σ, R, q 0, où R contient toutes les règles de la forme p aq si q δ(p, a), ainsi que q ɛ si q F. Amiguïté Une CFG G telle qu il existe un mot dans L(G) qui possède au moins 2 arres de dérivation à partir de l axiome, s appelle amiguë. Un langage hors-contexte L est amigu, si toute CFG qui l engendre est amiguë. Exemple La CFG G = {E}, {a,, c}, R, E où R contient les règles E E + E E E (E) a c est amiguë. Le langage des expressions arithmétiques ne l est pas (la CFG page 4 est non-amiguë). 6/13
7 Chomsky Une CFG est en forme normale de Chomsky si les toutes les règles ont la forme A BC ou A a, avec A, B, C des variales et a un symole terminal. On permet aussi la règle ɛ. Proposition Toute CFG G peut être transformée en une CFG G équivalente (c-a-d., t.q. L(G) = L(G )) en forme normale de Chomsky. Proposition Etant donnée une CFG G en forme normale de Chomsky et un mot w Σ, on peut décider en temps polynomial en w et G, si w L(G) (algorithme CYK : Cocke/Younger/Kasami). 7/13
8 Clôture Opérations de clôture La famille des langages hors-contexte est fermée par les opérations rationnelles (union, produit, itération) et par intersection avec les réguliers. Elle n est pas fermée ni par complémentaire, ni par intersection. Lemme de l étoile pour les CFL oit L Σ un langage hors-contexte. Alors il existe un entier N > 0 tel que pour tout mot z L de longueur supérieure à N, il existe une décomposition z = uvwxy avec les propriétés suivantes : 1 vwx N. 2 vx ɛ. 3 Pour tout k 0, le mot uv k wx k y appartient à L. 8/13
9 Exemple a a u = a, v = = x, w = #, y = a # 9/13
10 Applications 1 Pour toute CFG G il existe un entier N > 0 (qui dépend de G) t.q. L(G) est infini ssi il existe un mot w L(G) de longueur w > N. 2 Le lemme de l étoile permet de démontrer qu un langage n est pas hors-contexte. L n est pas CFL si : Quelque soit N > 0 il existe z N L(G) de longueur supérieure à N t.q. quelque soit la décomposition z N = uvwxy satisfaisant vwx N et vx non-vide, il existe k 0 t.q. uv k wx k y / L. Exemple 1 : {a n n c n n 0} n est pas CFL. Par contre, L 1 = {a n n c m m, n 0} et L 2 = {a n m c n m, n 0} sont CFL - donc L 1 L 2 ne l est pas. Exemple 2 : L = {w#w w {a, } } n est pas CFL. Par contre L co est CFL (pas immédiat à voir...). 10/13
11 Définition Un automate à pile A est un automate fini, auquel on rajoute une mémoire sous forme de pile. Formellement, A = Q, Σ, Γ, δ, q 0, F, Z, où Q est l ensemle (fini) d états, Σ l alphaet de l entrée, Γ l alphaet de la pile, δ Q (Σ {ɛ}) Γ Q Γ la relation de transition, q 0 Q l état initial, F Q l ensemle des états finaux et Z Γ le fond de la pile. Une transition (p, a, A, q, v) lit le symole actuel a Σ (ou rien si a = ɛ), et remplace le sommet A Γ de la pile par le mot v Γ. L état change de p à q. Une configuration (état généralisé) de A est un couple (p, w) Q Γ consistant de l état de contrôle p et le mot de pile w Γ (le sommet étant le premier symole de w). Une transition de A par (p, a, A, q, v) correspond donc au passage d une configuration (p, Aw) à la a configuration (q, vw), en lisant a Σ {ɛ} : (p, Aw) (q, vw). u On écrit (p, w) = (p, w ) s il existe une suite de transitions (p, w) a 0 (p 1, w 1 ) a 1 an 1 (p n, w n ) an (p, w ) telle que u = a 0 a n. La configuration initiale est (q 0, Z). Le langage accepté par A est L(A) = {u Σ u (q 0, Z) = (q, w), q F, w Γ }. 11/13
12 Remarques On peut définir le langage accepté par un automate à pile aussi par pile u vide (avec ou sans état final) : on demande (q 0, Z) = (q, ɛ) dans L(A). Ces variantes sont toutes équivalentes. Les automates à pile déterministes sont plus failes. Pour eux, l acceptation par état final ou par pile vide ne sont pas équivalentes. Exemples a/z, A /A, ɛ a/x, AX a/a, ɛ /A, ɛ start 0 1 ɛ/x, X ɛ/z,ɛ start 0 1 f a/a, AA /X, BX /B, ɛ Le premier automate reconnaît {a m n m n 0}, le deuxième reconnaît les palindromes de longueur paire (X {A, B, Z}). 12/13
13 CFG, automates et arres Théorème Pour tout langage hors-contexte il existe un automate à pile (à un état) qui le reconnaît (avec pile vide). Réciproquement, les langages reconnus par les automates à pile sont des langages hors-contexte. Proposition 1 oit G une CFG. L ensemle des arres de dérivation de G est reconnaissale. 2 oit L un langage reconnaissale d arres. L ensemle des frontières des arres de L est un langage hors-contexte. 13/13
Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1
Chap 4: Analyse syntaxique 1 III- L'analyse syntaxique: 1- Le rôle d'un analyseur syntaxique 2- Grammaires non contextuelles 3- Ecriture d'une grammaire 4- Les méthodes d'analyse 5- L'analyse LL(1) 6-
Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur
Université Paris-Sud Licence d Informatique Informatique Théorique : Théorie des Langages, Analyse Lexicale, Analyse Syntaxique Jean-Pierre Jouannaud Professeur Adresse de l auteur : LIX École Polytechnique
CH.6 Propriétés des langages non contextuels
CH.6 Propriétés des langages non contetuels 6.1 Le lemme de pompage 6.2 Les propriétés de fermeture 6.3 Les problèmes de décidabilité 6.4 Les langages non contetuels déterministes utomates ch6 1 6.1 Le
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Réalisabilité et extraction de programmes
Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme
Théorie des Langages
Théorie des Langages Analyse syntaxique descendante Claude Moulin Université de Technologie de Compiègne Printemps 2010 Sommaire 1 Principe 2 Premiers 3 Suivants 4 Analyse 5 Grammaire LL(1) Exemple : Grammaire
Fondements de l informatique Logique, modèles, et calculs
Fondements de l informatique Logique, modèles, et calculs Cours INF423 de l Ecole Polytechnique Olivier Bournez Version du 20 septembre 2013 2 Table des matières 1 Introduction 9 1.1 Concepts mathématiques........................
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Cours de Master Recherche
Cours de Master Recherche Spécialité CODE : Résolution de problèmes combinatoires Christine Solnon LIRIS, UMR 5205 CNRS / Université Lyon 1 2007 Rappel du plan du cours 16 heures de cours 1 - Introduction
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Algorithmique et Programmation Fonctionnelle
Algorithmique et Programmation Fonctionnelle RICM3 Cours 9 : Lambda-calcul Benjamin Wack Polytech 2014-2015 1 / 35 La dernière fois Typage Polymorphisme Inférence de type 2 / 35 Plan Contexte λ-termes
1.1 Rappels sur le produit cartésien... 1. 1.2 Relations... 3. 1.3 Graphes dirigés... 8. 1.4 Arbres... 12. 1.5 Exercices... 19. 2.1 Motivation...
Table des matières 1 Relations et graphes 1 1.1 Rappels sur le produit cartésien.................... 1 1.2 Relations.................................. 3 1.3 Graphes dirigés..............................
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Initiation à l algorithmique
Informatique S1 Initiation à l algorithmique procédures et fonctions 2. Appel d une fonction Jacques TISSEAU Ecole Nationale d Ingénieurs de Brest Technopôle Brest-Iroise CS 73862-29238 Brest cedex 3 -
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)
1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d
Projet d informatique M1BI : Compression et décompression de texte. 1 Généralités sur la compression/décompression de texte
Projet d informatique M1BI : Compression et décompression de texte Le but de ce projet est de coder un programme réalisant de la compression et décompression de texte. On se proposera de coder deux algorithmes
INITIATION AU LANGAGE C SUR PIC DE MICROSHIP
COURS PROGRAMMATION INITIATION AU LANGAGE C SUR MICROCONTROLEUR PIC page 1 / 7 INITIATION AU LANGAGE C SUR PIC DE MICROSHIP I. Historique du langage C 1972 : naissance du C dans les laboratoires BELL par
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Algorithmes récursifs
Licence 1 MASS - Algorithmique et Calcul Formel S. Verel, M.-E. Voge www.i3s.unice.fr/ verel 23 mars 2007 Objectifs de la séance 3 écrire des algorithmes récursifs avec un seul test rechercher un élément
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Compilation. Algorithmes d'analyse syntaxique
Compilation Algorithmes d'analyse syntaxique Préliminaires Si A est un non-terminal et γ une suite de terminaux et de non-terminaux, on note : A γ si en partant de A on peut arriver à γ par dérivations
Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application
Université de Provence Licence Math-Info Première Année V. Phan Luong Algorithmique et Programmation en Python Cours 1 : Introduction Ordinateurs - Langages de haut niveau - Application 1 Ordinateur Un
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN
LES OUTILS D ALIMENTATION DU REFERENTIEL DE DB-MAIN Les contenues de ce document sont la propriété exclusive de la société REVER. Ils ne sont transmis qu à titre d information et ne peuvent en aucun cas
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Théorie des Graphes Cours 3: Forêts et Arbres II / Modélisation
IFIPS S7 - informatique Université Paris-Sud 11 1er semestre 2009/2010 Théorie des Graphes Cours 3: Forêts et Arbres II / 1 Forêts et arbres II Théorème 1.1. Les assertions suivantes sont équivalentes
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Algorithmique et Programmation, IMA
Algorithmique et Programmation, IMA Cours 2 : C Premier Niveau / Algorithmique Université Lille 1 - Polytech Lille Notations, identificateurs Variables et Types de base Expressions Constantes Instructions
UNIVERSITE IBN ZOHR Faculté des sciences Agadir. Filière SMA & SMI. Semestre 1. Module : Algèbre 1
UNIVERSITE IBN ZOHR Faculté des sciences Agadir Filière SMA & SMI Semestre 1 Module : Algèbre 1 Année universitaire : 011-01 A. Redouani & E. Elqorachi 1 Contenu du Module : Chapitre 1 : Introduction Logique
ARBRES BINAIRES DE RECHERCHE
ARBRES BINAIRES DE RECHERCHE Table de symboles Recherche : opération fondamentale données : éléments avec clés Type abstrait d une table de symboles (symbol table) ou dictionnaire Objets : ensembles d
Les structures de données. Rajae El Ouazzani
Les structures de données Rajae El Ouazzani Les arbres 2 1- Définition de l arborescence Une arborescence est une collection de nœuds reliés entre eux par des arcs. La collection peut être vide, cad l
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Théorie des graphes et optimisation dans les graphes
Théorie es graphes et optimisation ans les graphes Christine Solnon Tale es matières 1 Motivations 2 Définitions Représentation es graphes 8.1 Représentation par matrice ajacence......................
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
Année 2014/15 2. 1 er septembre 2014. 2. Version de Anca Muscholl, issue du poly de Marc Zeitoun. 1/143
Modèles de calcul Année 2014/15 2 M1, Univ. Bordeaux http://www.labri.fr/perso/anca/mc.html 1 er septembre 2014 2. Version de Anca Muscholl, issue du poly de Marc Zeitoun. 1/143 Modalités du cours 12 cours,
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Nombres premiers. Comment reconnaître un nombre premier? Mais...
Introduction Nombres premiers Nombres premiers Rutger Noot IRMA Université de Strasbourg et CNRS Le 19 janvier 2011 IREM Strasbourg Definition Un nombre premier est un entier naturel p > 1 ayant exactement
Grammaires d unification
Cours sur le traitement automatique des langues (IV) Violaine Prince Université de Montpellier 2 LIRMM-CNRS Grammaires d unification Grammaire catégorielle Grammaire syntagmatique généralisée (GPSG) Les
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
La NP-complétude. Johanne Cohen. PRISM/CNRS, Versailles, France.
La NP-complétude Johanne Cohen PRISM/CNRS, Versailles, France. Références 1. Algorithm Design, Jon Kleinberg, Eva Tardos, Addison-Wesley, 2006. 2. Computers and Intractability : A Guide to the Theory of
INFORMATIONS DIVERSES
Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
Bases de programmation. Cours 5. Structurer les données
Bases de programmation. Cours 5. Structurer les données Pierre Boudes 1 er décembre 2014 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License. Types char et
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Note de cours. Introduction à Excel 2007
Note de cours Introduction à Excel 2007 par Armande Pinette Cégep du Vieux Montréal Excel 2007 Page: 2 de 47 Table des matières Comment aller chercher un document sur CVMVirtuel?... 8 Souris... 8 Clavier
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Introduction à la théorie des graphes. Solutions des exercices
CAHIERS DE LA CRM Introduction à la théorie des graphes Solutions des exercices Didier Müller CAHIER N O 6 COMMISSION ROMANDE DE MATHÉMATIQUE 1 Graphes non orientés Exercice 1 On obtient le graphe biparti
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
Anne Tasso. Java. Le livre de. premier langage. 10 e édition. Avec 109 exercices corrigés. Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2
Anne Tasso Java Le livre de premier langage 10 e édition Avec 109 exercices corrigés Groupe Eyrolles, 2000-2015, ISBN : 978-2-212-14154-2 Table des matières Avant-propos Organisation de l ouvrage..............................
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
Manuel d utilisation 26 juin 2011. 1 Tâche à effectuer : écrire un algorithme 2
éducalgo Manuel d utilisation 26 juin 2011 Table des matières 1 Tâche à effectuer : écrire un algorithme 2 2 Comment écrire un algorithme? 3 2.1 Avec quoi écrit-on? Avec les boutons d écriture........
Cours Informatique Master STEP
Cours Informatique Master STEP Bases de la programmation: Compilateurs/logiciels Algorithmique et structure d'un programme Programmation en langage structuré (Fortran 90) Variables, expressions, instructions
UML (Paquetage) Unified Modeling Language
UML (Paquetage) Unified Modeling Language Sommaire Introduction Objectifs Paquetage Espace de nommage d un paquetage Dépendances entre paquetages 2 Notion introduite véritablement par UML car superficiellement
Maple: premiers calculs et premières applications
TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent
Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane
Calcul de développements de Puiseux et application au calcul du groupe de monodromie d'une courbe algébrique plane Poteaux Adrien XLIM-DMI, UMR-CNRS 6172 Université de Limoges Soutenance de thèse 15 octobre
CORRECTION EXERCICES ALGORITHME 1
CORRECTION 1 Mr KHATORY (GIM 1 A) 1 Ecrire un algorithme permettant de résoudre une équation du second degré. Afficher les solutions! 2 2 b b 4ac ax bx c 0; solution: x 2a Solution: ALGORITHME seconddegré
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Utilisation des tableaux sémantiques dans les logiques de description
Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal [email protected]
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Algorithmique, Structures de données et langage C
UNIVERSITE PAUL SABATIER TOULOUSE III Algorithmique, Structures de données et langage C L3 IUP AISEM/ICM Janvier 2005 J.M. ENJALBERT Chapitre 1 Rappels et compléments de C 1.1 Structures Une structure
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
Extrait du poly de Stage de Grésillon 1, août 2010
MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Logiciel Libre Cours 3 Fondements: Génie Logiciel
Logiciel Libre Cours 3 Fondements: Génie Logiciel Stefano Zacchiroli [email protected] Laboratoire PPS, Université Paris Diderot 2013 2014 URL http://upsilon.cc/zack/teaching/1314/freesoftware/
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Taux d évolution moyen.
Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Cours d Informatique
Cours d Informatique 1ère année SM/SMI 2007/2008, Info 2 Département de Mathématiques et d Informatique, Université Mohammed V [email protected] [email protected] 2007/2008 Info2, 1ère année SM/SMI 1
Licence ST Université Claude Bernard Lyon I LIF1 : Algorithmique et Programmation C Bases du langage C 1 Conclusion de la dernière fois Introduction de l algorithmique générale pour permettre de traiter
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Quelques tests de primalité
Quelques tests de primalité J.-M. Couveignes (merci à T. Ezome et R. Lercier) Institut de Mathématiques de Bordeaux & INRIA Bordeaux Sud-Ouest [email protected] École de printemps C2 Mars
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
1 Introduction C+ + Algorithm e. languag. Algorigramm. machine binaire. 1-1 Chaîne de développement. Séance n 4
1 Introduction 1-1 Chaîne de développement Algorithm e C+ + Algorigramm e languag e machine binaire Le programme est écrit à l aide de Multiprog sous forme d algorigramme puis introduit dans le microcontrôleur
Résolution de systèmes linéaires par des méthodes directes
Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
