Plan. Notes de Cours sur le logiciel R. Documentations. Installation. Anne PHILIPPE. 26 septembre Documents sur le logiciel R :

Dimension: px
Commencer à balayer dès la page:

Download "Plan. Notes de Cours sur le logiciel R. Documentations. Installation. Anne PHILIPPE. 26 septembre 2012. Documents sur le logiciel R :"

Transcription

1 Plan Notes de Cours sur le logiciel R Anne PHILIPPE Université de Nantes, Laboratoire de Mathématiques Jean Leray 26 septembre 22 Dataframes Listes 2 Les fonctions 3 Les graphiques 4 Structures de contrôle et Itérations 5 Autour des lois de probabilités 6 Outils graphiques en statistique 7 Inférence statistique Estimation non paramétrique Tests Régression 8 Séries Chronologiques Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 2 / 47 Installation Documentations Le logiciel R est un freeware disponible sur le site Il eiste des versions Windows MacOS X Linu... Outils disponibles : un langage de programmation orienté objet des fonctions de "base" des librairies/packages complémentaires (8 sur le site CRAN) Documents sur le logiciel R : philippe/r_freeware.html Site consacré au graphiques addictedtor.free.fr/graphiques/ Collection spécifique UseR chez Springer Plus de 8 livres, par eemple Introductory Statistics With R Bayesian Computation With R Applied Statistical Genetics With R : Generalized Additive Models : An Introduction with R Etending the Linear Model With R Time Series Analysis And Its Applications : With R Eamples Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 3 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 4 / 47

2 Au démarrage Sous linu > apparaît automatiquement en début de chaque ligne de commandes + apparaît en début de ligne si la ligne précédente est incomplète Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 5 / 47 Utiliser l aide Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 6 / 47 Éditeur Sous MacOS et Windows, un éditeur de tete intégré au logiciel R > > > > help ( " p l o t " )? plot help. search ( " p l o t " )?? p l o t Les démos : # pour o b t e n i r l a > demo ( ) > demo ( g r a p h i c s ) l i s t e d e s demos Les eemples : La fonction eample eécute les eemples généralement inclus à la fin des fichiers d aide. Ctrl R eécute la ligne sur laquelle se trouve le curseur ou les lignes d un bloc sélectionné. source("nom-du-fichier.r") pour eécuter le code contenu dans le fichier nom-du-fichier.r > eample (FUN) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 7 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 8 / 47

3 Librairies Toutes les librairies ne sont pas chargées au lancement du logiciel library() retourne la liste des librairies installées. library(lib) charge la librairie LIB library(help = LIB) retourne la liste des fonctions de la librairie LIB search(), searchpaths() retourne la liste des librairies chargées. Dataframes Listes Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 9 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 / 47 Opérations élémentaires Objets Opérations élémentaires sur les scalaires :,, +, /, ˆ > Opérations avec affectation (avec ou sans affichage) =2+4 6 (=2+4) # avec affichage du résultat 6 3 Les principau types sont entier, réel, complee caractère logique : TRUE, FALSE, NA (not available) Les objets de base sont vecteurs, matrices data.frames, listes Quelques fonctions génériques : ls() retourne la liste des objets de la session. rm(a) supprime l objet a Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 2 / 47

4 Fonctions is/as is.(obj) teste si obj est un objet de type as.(obj) contraint si possible obj au type d objet où représente un type d objet (comple, real, vector matri etc...) > =3 > is. real() [] TRUE > is. comple() [] FALSE > as. comple() [] 3+i > as. character() [] "3" Dataframes Listes Remarque : Conversion de TRUE / FALSE en valeur numérique : > as. integer(t) [] > as. integer(f) [] Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 3 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 4 / 47 Créer des vecteurs la fonction c( ) concatène des scalaires ou des vecteurs : > =c (,4,9) > y=c (,2,3) > y [] Suites arithmétiques de raison ou - : c(a:b). > c (:4) > c (4:) # a<b raison # a>b raison [] [] # a b n est pas un entier > c (.4:7) [] Généralisation : seq(a,b,t) où a est premier terme, le dernier apple b et la raison t seq(from, to) la raison est seq(from, to, by= ) on fie la raison seq(from, to, length.out= ) on fie le nb de termes par eemple > seq (,4,by =.) [] [26] =rep(y,n) pour créer un vecteur constitué de l élément y répété n fois. (y peut être un scalaire ou un vecteur) par eemple > rep (,4) [] Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 5 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 6 / 47

5 Créer des matrices Les matrices sont créées avec la fonction matri() à partir d un vecteur. On doit fier le nombre de colonnes ncol et/ou le nombre de lignes nrow. > = matri( c (2,3,5,7,,3), ncol=2) Par défaut la matrice est remplie colonne par colonne. Pour remplir ligne par ligne, on ajoute l argument byrow=t > y = matri( c (2,3,5,7,,3), ncol=2, byrow=t) > > y [,] [,2] [,] [,2] [,] 2 7 [,] 2 3 [2,] 3 [2,] 5 7 [3,] 5 3 [3,] 3 Attention : si la dimension du vecteur n est pas égale au produit (ncol nrow) alors l opération effectuée est la suivante : > matri( c (:3), ncol=2,nrow=3) [,] [,2] [,] [2,] 2 2 [3,] 3 3 > matri( c (:3), ncol=2) [,] [,2] [,] 3 [2,] 2 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 7 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 8 / 47 Quelques matrices particulières : diagonale, Toeplitz Concaténer des vecteurs/matrices > diag (:4) [,] [,2] [,3] [,4] [,] [2,] 2 [3,] 3 [4,] 4 > diag > toeplitz (:4) [,] [,2] [,3] [,4] [,] [2,] [3,] [4,] La fonction diag retourne une matrice diagonale lorsque le paramètre d entrée est un vecteur. Si le paramètre d entrée est une matrice, alors elle retourne un vecteur constitué de la diagonale de la matrice rbind cbind > =: > y=^2 > rbind(,y) [,] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,] y > cbind(,y) y [,] [2,] 2 4 [3,] 3 9 [4,] 4 6 [5,] 5 25 [6,] 6 36 etc Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 9 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 2 / 47

6 Etraire des éléments d un vecteur ou d une matrice Opérations sur les Matrices/Vecteurs > vect=c (.5:9.5 ) > vect [] Etraire un élément > vect [] > mat [2,] [].5 [] 2.5 Etraire un bloc ou plusieurs coordonnées > mat=matri(vect,ncol=3,nrow=3) [,] [,2] [,3] [,] [2,] [3,] Colonne/ligne d une matrice > mat [,] > mat [3,] [] [] > mat [2:3,:2] > vect[c (,3,7)] [,] [,2] [] [,] [2,] Attention : vect[-j] retourne le vecteur vect sans la j ème coordonnée > vect[ c (,3,7)] retourne Les opérations + * - / entre 2 vecteurs ou matrices de même dimension sont des opérations terme à terme. > [] > y [] > y [] 4 5 > A [,] [,2] [,] 2 [2,] 4 9 > B [,] [,2] [,] 2 [2,] > A B [,] [,2] [,] 2 [2,] 4 9 > Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 2 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Attention Si les vecteurs ne sont pas de même longueur, le plus court est complété automatiquement. > =c (:5) > : [] y : 2 2 > y =c (,2) > y +y : [] 2 > + y [] Quelques opérations particulières sur les matrices > a=matri (, ncol=2,nrow=2) > a [,] [,2] [,] [2,] > a+3 #matrice +scalaire [,] [,2] [,] 4 4 [2,] 4 4 > a+c (:2) #matrice + vecteur [,] [,2] [,] 2 2 [2,] 3 3 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

7 Action d une fonction sur un vecteur ou une matrice Quelques fonctions sur les matrices Soit FUN une fonction définie sur les scalaires qui retourne un scalaire. Par eemple sqrt square root abs absolute value sin cos tan trigonometric functions (radians) ep log eponential and natural logarithm log common l o g a r i t h m gamma lgamma gamma function and i t s natural log Lorsque le paramètre d entrée est un vecteur (respectivement une matrice), la fonction FUN est appliquée sur chacune des composantes. L objet retourné est un vecteur (respectivement une matrice). s Eemple Si A =(a i,j ) est une matrice, alors ep(a) retourne une matrice constituée des éléments e a i,j. solve Le produit matriciel est obtenu avec % % Calcul des valeurs/vecteurs propres :eigen Calcul du déterminant : det t(a) retourne la transposée de la matrice A décomposition de Choleski :chol (X) retourne R telle que X = R R où R est une matrice triangulaire supérieure et R est la transposée de R. décomposition svd : svd(x) retourne (U,D,V) telles que X = UDV où U et V sont orthogonales et D est diagonale. solve(a) retourne l inverse de la matrice A solve(a,b) retourne tel que A = b Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Objets booléens et instructions logiques Les opérations logiques : <, >, <=, >=,!= [différent], == [égal] retournent TRUE ou FALSE. La comparaison entre deu vecteurs est une comparaison terme à terme. Si les vecteurs ne sont pas de même longueur, le plus court est complété automatiquement. > a= :5 ; b=2.5 > a<b [] TRUE TRUE FALSE FALSE FALSE Il est possible de définir plusieurs conditions à remplir avec les opérateurs ET : & OU : Pour etraire les éléments d un vecteur vect, on peut utiliser des instructions logiques. Soit I un vecteur de booléens de même longueur que vect : vect[i] retourne les coordonnées vect[j] telles que I [j] =TRUE. Applications etraire les composantes >8 vect[vect>8] : vect>8 est un vecteur de TRUE et FALSE, on etrait les composantes affectées à TRUE. etraire les composantes >8 ou <2 vect[(vect>8) (vect<2)] etraire les composantes >8 et < vect[(vect>8) & (vect<)] Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

8 Effet de la précision sur la comparaison de réels Fonction which > ( sqrt(2)^2 == 2) [] FALSE Une solution > all. equal( sqrt (2)^2,2) [] TRUE #ou >istrue ( all. equal( sqrt (2)^2,2)) Est ce que p 2 2 = 2? Soit vec un vecteur logique. La fonction which(vec) retourne les indices des coordonnées du vecteur vec qui prennent la valeur TRUE > =(:)^2 > [] > which(== 25) [] 5 > which( > 2) [] Eemple Les commandes [>] et [which(>)] retournent le même vecteur. Cas particulier which.ma() retourne which(==ma()) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 3 / 47 Dataframes Ces fonctions retournent un scalaire : sum() (somme P i i), prod() (produit Q i i), mean() (moyenne n P n i= i ) ma(), min() length() (longueur du vecteur), dim(), ncol(), nrow() (dimension de la matrice/nombre de lignes / nombre de colonnes.) Ces fonctions retournent un vecteur : cumsum() (sommes cumulées (, + 2,..., P n i= i), cumprod() (produits cumulés), sort (tri), order, unique remarque : sort() = [order()] fft() (transformé de Fourier) Dataframes Listes Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 3 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

9 Dataframes Dataframes Définition des data.frames Opérations sur les dataframes C est une matrice dont toutes les colonnes ne sont pas nécessairement du même type : scalaire, booléen, caractère. Par eemple > data= data. frame(=,2=:,a=letters [:]) 2 a a 2 2 b 3 3 c 4 4 d 5 5 e 6 6 f 7 7 g 8 8 h 9 9 i j Par défaut les lignes sont numérotées,2 etc. Pour visualiser les premières lignes head() 2 Pour definir ou visualiser le nom des lignes row.names 3 Pour definir ou visualiser le nom des colonnes names 4 La dimension de l objet est donnée par dim > names(data) [] "" "2" "a" > names(data)< c ("c","c2","c3") > head(data,3) c c2 c3 a 2 2 b 3 3 c > dim(data) [] 3 >row. names(data) < letters [:] #le vecteurs letters contient les lettres de l alphabet > head(data,2) c c2 c3 a a b 2 b Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Dataframes Dataframes Opérations sur les dataframes Opérations sur les dataframes Les opérations entre des dataframes sont opérations terme à terme comme pour les matrices. A = data. frame(=:3,y=2:4) B = data. frame(=,yy=:3) C= data. frame(=:3,y=rep("a",3)) > A y > A+C y 2 NA 2 4 NA 3 6 NA > B yy > A+B y Warning message : In Ops. factor(left,right): ceci n est par pertinent pour des variables facteurs > C y a 2 2 a 3 3 a Pour etraire un élément ou un bloc, la syntae est la même que pour les matrices. Pour etraire une colonne les deu syntaes suivantes peuvent être utilisées > A$ [] 2 3 > A[,] [] 2 3 Pour concaténer des dataframes ayant le même nombre de lignes data. frame(a,b) y yy Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

10 Listes Listes Définition d une liste Dataframes Listes C est une structure qui regroupe des objets (pas nécessairement de même type). On crée les listes avec la fonction list Eemple On construit une liste appelée rnd qui contient 3 objets : un vecteur dans serie un scalaire dans taille une chaîne de caractères dans type La syntae est la suivante >rdn=list(serie=c (:), taille =,type="arithm") attention Une liste peut être créée sans donner des noms au variables c est a dire rdn=list(c(:),,"arithm"). Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Listes Listes Opérations sur les listes Pour visualiser la liste des composantes d une liste >names(rdn) [] "serie" "taille" "type" > summary(rdn) Length Class Mode serie none numeric taille none numeric type none character Pour atteindre les composantes d une liste >rdn$ taille OU >rnd[[2]] [] [] Pour etraire les objets d une liste >attach(rdn) "serie" "taille" "type" supprimer les objets créés à la ligne précédente : >detach(rdn) attention Si la liste a été créée sans spécifier de noms au variables, il n y a pas de nom par défaut et la seule la première syntae est utilisable. Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 4 / 47

11 Listes Listes Importer/eporter des données Importer/eporter des objets R Sauvegarder des objets R dans un fichier Importer une suite : =scan("data.dat") : pour créer un vecteur à partir de données stockées dans un fichier, ici data.dat. 2 Importer un tableau : =read.table("data.dat") =read.table("data.dat", header=true) L instruction header=true permet de préciser que la première ligne du fichier contient le nom des colonnes du tableau. 3 Eporter : write, write.table > =: > y=list(a=, b=true,c=" e e m p l e " ) > save(,y, file= sav. rda ) 2 Lire un fichier qui contient des objets R > load("sav. rda") > [] Attention si un objet R appelé (ou y) eistait avant l appel de la fonction load, il a été remplacé par celui contenu dans le fichier sav.rda 3 saverds peut aussi être utiliser si on sauvegarde une unique liste. Le fichier est lu avec readrds. On peut changer le nom de la liste à la lecture du fichier > a= list(=,y=3) > saverds(a, sav. rds ) > b = readrds( sav. rds ) > b $ [] $y [] 3 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 4 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Les fonctions Les fonctions Structure générale pour créer des fonctions 2 Les fonctions La structure générale d une fonction est >FUN=function(liste_des_paramètres) { commandes return(objets_retournés) } Les accolades { et } définissent le début et la fin de la fonction. La dernière instruction return contient le ou les objets retournés par la fonction. Eécuter la fonction : FUN(...) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

12 Les fonctions Les fonctions Eemple Renvois multi-arguments La fonction suivante retourne le résultat de n lancers d une pièce. PF = function(n,proba. pile ) { #nb aléatoire suivant Unif (,) u=runif(n) pf=(u<proba. p i l e ) pf = as. integer( pf) return( pf) } La sortie de la fonction est PF (, / 2) [] # avec affectation de la sortie dans le vecteur = PF(,/ 2) [] La fonction return interdit les sorties avec plusieurs arguments : il faut les regrouper dans un seul objet sous la forme d une liste. PF = function(n,proba. pile ) { u=runif(n) #nb aléatoire suivant Unif (,) pf=(u<proba. p i l e ) pf = as. integer( pf) f =mean( pf) return( list(echantillon = pf,frequence = f)) } Eécution de la fonction : PF ( 4, / 2) $ echantillon [] $ frequence [].25 l= PF(4,/ 2) l $ echantillon [] l $ f [].5 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Paramètres par défaut Les fonctions Paramètres d entrée Les fonctions On peut affecter des valeurs par défaut au paramètres d entrée d une fonction. Modification de la fonction PF par défaut on suppose que la pièce est équilibrée. PF = function(n,proba. pile=/ 2) { u=runif(n) #nb aléatoire suivant Unif (,) pf=(u<proba. p i l e ) pf = as. integer( pf) return( pf) } Les commandes PF ( ) OU PF (, / 2) retournent le même résultat Il y a trois façons de spécifier les paramètres d entrée d une fonction par la position : les paramètres d entrée sont affectés au premiers arguments de la fonction. PF(3,/2) : les paramètres d entrée sont n=3 et proba.pile=/2 par le nom : il s agit du moyen le plus sûr, les noms des arguments sont précisés de manière eplicite. On peut alors écrire PF(proba.pile=/2,n=3), l ordre n est plus prioritaire avec des valeurs par défaut : ces valeurs par défaut seront utilisées si les paramètres d entrée ne sont pas spécifiés. On peut alors écrire PF(3) ou PF(n=3) : les paramètres d entrée sont n=3 et la valeur par défaut pour proba.pile c est à dire /2. Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

13 Les fonctions Remarque sur les valeurs par défaut Les fonctions Pour les fonctions de deu variables Modification de la fonction PF : on inverse l ordre des paramètres d entrée : PF = function(proba. pile=/ 2, n) {... } PF ( ) Erreur dans. Internal( runif(n, min, ma )) : n est manquant PF( n=) [] f une fonction de deu variables f :(, y) 7! f (, y) et y deu vecteurs de même dimension. La commande f(,y) retourne le vecteur constitué des éléments f ( i, y i ). Si et y ne sont pas de même dimension, celui de plus petite dimension est répété. Tableau croisés La fonction outer retourne une matrice de la forme M(i, j) =fun( i, y j ) IL est donc préférable de placer les paramètres sans valeur par défaut en premier dans la déclaration des variables d entrée. =:5 y=:5 M= outer(,y, fun ) fun peut aussi être une opération élémentaire +/-* Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 5 / 47 la fonction Vectorize Les fonctions Les fonctions Illustration sur des fonctions de 2 variables Soit f une fonction dont le paramètre d entrée est un scalaire. Vectorize transforme la fonction f en une fonction vectorielle c est à dire une fonction qui évalue la fonction f en chaque point d un vecteur d entrée. Soit =(,..., n ), on veut évaluer f au points i. # on transforme la fonction { f } en une fonction vectorielle df. > df = Vectorize (f, ) >y=df() Autres programmations possibles avec une boucle for > y = rep (,n) > for ( i in :n) y[ i ] = f ([ i ]) 2 avec la fonction sapply > y = sapply(, f ) > f=function(,y) sin(+y^2) > f (,) [] > # > = :3 > y= :3 > # on calcule f ( [ i ],y [ i ]) > f (,y) [] > z =:2 > f (, z) [] Message d avis : In + y^2 : la taille d un objet plus long n est pas multiple de la taille d un objet plu > # le calcul effectué est > #f ( [],z []) f ( [2],z [2]) f ( [3],z []) > #identique à > f (,c (z,z[])) [] Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 5 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

14 y y Les fonctions Les graphiques suite > f (,y) [] > # identique à > f (rep (3,),y) [] > > #calcul du tableau croisé f ( [ i ],y [ j ]) > df = Vectorize(f, ) > df(,z) [,] [,2] [,3] [,] [2,] > # les vecteurs colonnes sont f (,:2) f (2,:2) f (3,:2) 3 Les graphiques Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Les graphiques Les fonctions usuelles plot(), lines(), points() Les graphiques Quelques arguments de la fonction plot plot est la fonction centrale Le fonctions points ou lines sont utilisées pour superposer des courbes ou des nuages de points. 2 4 type=p Premier eemple : représenter des vecteurs plot(y) / plot(,y) = seq( 4,4,.) y=log(^2+/^2) plot(y) Inde plot(,y,pch=3) pour fier les limites des aes ylim=c(ay,by) et lim=c(a,b) par défaut les bornes sont optimisées sur la première courbe tracée type="p" (points) ou "l" (ligne) : pour tracer une ligne ou un nuage de points. pch : type de points lty : type de lignes. col :couleur Inde type=l Inde type=s Inde type=h Inde Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

15 z y y z y y Graphique en 3D représentation d une fonction de R 2! R Les graphiques Les graphiques Représentation graphique d une matrice contour(, y, matrice... ) image( ) persp( ) < seq(,, length= 3) y < f < function(,y) { r < sqrt(^2+y^2); sin(r)/ r } z < outer(, y, f) persp(, y, z, theta = 3, phi = 3, epand =.5, col = "lightblue") Maunga Whau Volcano Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Superposition de courbes Les graphiques légende legend Les graphiques superposer des courbes legend(,.9, c ("^2 "," sin ","cos" ), col = c (3,4,6), lty = c (2,, ), pch = c (, 3, 4)) =rnorm (2) y=rep (2) #nuage de points plot(,y) #ajouter un nuage de points points(+.,y+., pch=2) #ajouter une ligne lines( sort(),y, lty=2) #ajouter une ligne horizontale abline(h=3) #tete + frametitle tet (,5,"commentaire") title("superposer des courbes") y commentaire ^ ^2- sin cos les emplacements prédéfinis : topleft, inset =.5 left (,y) bottomleft (,y) (,y) top (,y) center (,y) bottom (,y) topright, inset =.2 (,y) right (,y) bottomright (,y) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 6 / 47

16 y Les graphiques Autour de la fonction plot Illustrations Les graphiques Le graphique produit par la fonction plot() dépend de la classe de l objet. methods( plot) [] "plot.data.frame" "plot. default" [3] "plot. density" "plot. factor" [5] "plot.formula" "plot. function" [7] "plot.histogram" "plot.lm" [9] "plot.mlm" "plot.mts" [] "plot.new" "plot.posixct" [3] "plot.posixlt" "plot. table" [5] "plot. ts" "plot.window" [7] "plot.y" sur une fonction (par e sin) plot( sin,lim=c( pi, pi )) sur un tableau =rpois (,) y=table() y plot(y) sur un histogramme ou une densité r=rnorm (,) z=hist(r,plot=f ) plot(z) w=density(r) plot(w) sin () Frequency Histogram of r r density.default( = r) N = Bandwidth =.3564 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 6 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Les graphiques Représentation graphique d une matrice ou dataframe Les outils graphiques matplot et pairs sont adaptés au matrices dont les colonnes correspondent à des variables. Eemple Les graphiques Fonction matplot(matrice...) Cette fonction représente sur un même graphique les colonnes d une matrice ou d une data.frame. Anderson s Iris Data 3 species >data(iris) >iris Sepal. Length Sepal. Height Petal. Length Petal. Height Species setosa setosa setosa v e r s i c o l o r v e r s i c o l o r v i r g i n i c a v i r g i n i c a iris Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

17 Les graphiques Utilisation des biplots, pairs(matrice,...) Cette fonction représente tous les nuages de points possibles entre les différentes colonnes Sepal.Length Anderson's Iris Data -- 3 species Sepal.Width Les graphiques Construction d un polygone On commence par fier les aes des abscisses et des ordonnés à l aide d un graphique vide. plot( c (,9), c (,2), type="n") 2 Avec la fonction polygon, on trace le polygone défini pas ses sommets polygon( c (4.5,5.5,5.5,4.5),c (,,,)) 3 Arguments supplémentaires polygon (:9, c (2,,2,,NA,2,,2,), col=c ("red", "blue"), border=c ("green", "yellow", lwd=3, lty=c ("dashed", "solid")) Petal.Length Petal.Width c(, 2) etape c(, 2) etape 2 c(, 2) etape c(, 9) c(, 9) c(, 9) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 autre eemple Les graphiques Les graphiques Distance Distance Between Brownian Motions Pour sauvegarder un graphique : utilisation de la fonction dev.print. pour obtenir un fichier postscript : dev.print(postscript, file="essai.ps") pour obtenir un fichier pdf : dev.print(pdf, file="essai.pdf") Time utilisation des menus (sous widows ou mac seulement) n= z.haut=c (,cumsum( rnorm(n)) ) z.bas= c (,cumsum( rnorm(n))) < c (:n, n:) yy < c (z.bas, rev(z.haut)) #graphique vide pour fier les dimensions plot (, yy, type="n", lab="time", ylab="distance") #tracer le polygone polygon(, yy, col=" g r a y ", b o r d e r = " r e d " ) title("distance Between Brownian Motions") La fenêtre graphique peut être fractionnée en utilisant par(mfrow=c(n,m)), on obtient alors n m graphiques sur une même page organisés sur n lignes et m colonnes split.screen(m,n) screen(i), screen(i,false) pour sélectionner la sous fenêtre erase.screen() close.screen(all = TRUE) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

18 Structures de contrôle et Itérations Structures de contrôle et Itérations Instructions conditionnelles 4 Structures de contrôle et Itérations La syntae if (condition) {instructions} permet de calculer les instructions uniquement si la condition est vraie. if (condition) { A } else {B} calcule les instructions A si la condition est vraie et les instructions B sinon. Par eemple, if (>) y=*log() else y= Remarque : Si les instructions se limitent à un seul calcul comme dans cet eemple on peut utiliser la fonction ifelse y=ifelse(>,*log(),) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 7 / 47 Structures de contrôle et Itérations Opération non vectorielle Avec la commande if (condition)... else... la condition ne peut pas être vectorielle Par eemple > = :7 > if(>2) print("a") else print("b") [] "B" Dans la condition, a une longueur supérieure à. Seul le premier élément est utilisé : (>2) correspond à ([] >2) 2 ifelse permet d appliquer une instruction conditionnelle sur chacune des coordonnées d un vecteur. > ifelse(<2,"a","b") [] "A" "B" "B" "B" "B" "B" "B" Alternative : > g = function() if(>2) print("a") else print("b") >vg = Vectorize(g, ) > vg(:) Itérations Structures de contrôle et Itérations On utilise les boucles pour eécuter plusieurs fois une instruction ou un bloc d instructions Les trois types de boucle sont for : for(var in seq) {commandes} while : while(cond) { commandes} repeat : repeat {commandes;if (cond) break } Dans une boucle for, le nombre d itérations est fié. 2 La durée d eecution des boucles while/repeat peut être infinie! Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre 22 7 / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

19 Eemple Structures de contrôle et Itérations Eemple Structures de contrôle et Itérations Les 3 programmations suivantes retournent le même résultat. Avec l instruction for for ( i in :) { commandes } 2 Avec l instruction while. i= while (i <= ) { commandes i = i+ } 3 Avec l instruction repeat i= repeat { commandes i = i+ if (i>) break } On veut simuler n variables aléatoires suivant la loi de X X p où les X i sont iid suivant la loi uniforme sur [, ]. On stocke l échantillon dans Y. # initialisation de Y avec des Y = rep (,n) for ( i in :n ) { Y[ i ] = sum( runif(p,,)) } Une autre façon de remplir Y par concaténation : # Y est un vecteur vide Y = NULL for ( i in :n ) { Y = c (Y, sum( runif(p,,))) } Une autre programmation : # initialisation de Y avec des Y = rep (,n) for( i in :p) { Y = Y + runif(n,,) } Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Eemple Structures de contrôle et Itérations Eemple Structures de contrôle et Itérations On simule des variables aléatoires suivant la loi de Bernoulli B(/2) jusqu à l obtention du premier. Le nombre de variables (noté N dans le code ci dessous) simulées suivant la loi de Bernoulli suit une loi géométrique de paramètre /2. En utilisant while =rbinom (,,.5) N= while (!= ) { =rbinom (,,.5) N=N+ } En utilisant repeat N= repeat { =rbinom (,,.5) N=N+ if (==) break } On dispose des températures moyennes mensuelles relevées à Nottingham pendant ans de 92 à 939. > nottem Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec etc > nottem=matri(nottem,ncol=2,byrow=t) On souhaite calculer un profil moyen annuel et le stocker dans le vecteur temp. temp = rep (,2) for (i in :2) temp[i] = mean( nottem [, i ] ) On peut aussi initialiser le vecteur temp comme le vecteur vide, puis on le remplit en concaténant les résultats temp = NULL for (i in :2) temp = c (temp, mean( nottem [, i ] ) ) Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47 Anne PHILIPPE (U. Nantes) Logiciel R 26 septembre / 47

Le logiciel R. Documentations. http://cran.r-project.org/

Le logiciel R. Documentations. http://cran.r-project.org/ Le logiciel R Université de Nantes, Laboratoire de Mathématiques Jean Leray Journées académiques 9 de l IREM des Pays de la Loire Nantes, le 9 juillet Email : Anne.philippe@univ-nantes.fr www.math.sciences.univ-nantes.fr/

Plus en détail

Installation. Notes de Cours sur le logiciel R. Plan. Au démarrage

Installation. Notes de Cours sur le logiciel R. Plan. Au démarrage Installation Notes de Cours sur le logiciel R Anne PHILIPPE Université de Nantes, UFR des Sciences et Techniques Laboratoire de Mathématiques Jean Leray email : Anne.philippe@math.univ-nantes.fr 1 er octobre

Plus en détail

Lancement du logiciel R à l UTES :

Lancement du logiciel R à l UTES : ISUP CS1 TP d introduction à R Le logiciel R est un logiciel libre. Pour télécharger une version du logiciel, il faut passer par CRAN (Comprehensive R Archive Network), un réseau mondial de sites qui stockent

Plus en détail

Introduction à R. Florence Yerly. Dept. de mathématiques, Université de Fribourg (CH) SP 2011

Introduction à R. Florence Yerly. Dept. de mathématiques, Université de Fribourg (CH) SP 2011 Dept. de mathématiques, Université de Fribourg (CH) SP 2011 Qu est ce que R? Un logiciel de statistiques libre et gratuit ; Un logiciel multi-plateforme (UNIX, Windows MacOS X) R permet de faire des calculs

Plus en détail

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques

Cours 7 : Exemples. I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Cours 7 : Exemples I- Régression linéaire simple II- Analyse de variance à 1 facteur III- Tests statistiques Exemple 1 : On cherche à expliquer les variations de y par celles d une fonction linéaire de

Plus en détail

Normalité des rendements?

Normalité des rendements? Normalité des rendements? Daniel Herlemont 31 mars 2011 Table des matières 1 Introduction 1 2 Test de Normalité des rendements 2 3 Graphiques quantile-quantile 2 4 Estimation par maximum de vraisemblance

Plus en détail

Cours 4. XII- Les graphiques

Cours 4. XII- Les graphiques Cours 4 XII- Les graphiques XII-1 Généralités On crée des graphes en utilisant les fonctions graphiques se trouvant dans les packages de R (package "graphics " ou " stats " pour la plupart). Le résultat

Plus en détail

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation

Programme des épreuves des concours externes de recrutement des personnels techniques et administratifs de recherche et de formation Programme des épreuves des concours externes de recrutement des personnels E1 RECRUTEMENT DES ASSISTANTS INGENIEURS DE RECHERCHE ET DE FORMATION...2 E1.1 Gestionnaire de base de données...2 E1.2 Développeur

Plus en détail

Introduction à MATLAB R

Introduction à MATLAB R Introduction à MATLAB R Romain Tavenard 10 septembre 2009 MATLAB R est un environnement de calcul numérique propriétaire orienté vers le calcul matriciel. Il se compose d un langage de programmation, d

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

Introduction aux Statistiques et à l utilisation du logiciel R

Introduction aux Statistiques et à l utilisation du logiciel R Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil

Plus en détail

Lire ; Compter ; Tester... avec R

Lire ; Compter ; Tester... avec R Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Cours 1. I- Généralités sur R II- Les fonctions de R et autres objets III-Les vecteurs

Cours 1. I- Généralités sur R II- Les fonctions de R et autres objets III-Les vecteurs Cours 1 I- Généralités sur R II- Les fonctions de R et autres objets III-Les vecteurs IV-Les facteurs I-1 Généralités sur R R (1995, AT&T Bell Laboratories) est un logiciel d analyse statistique et graphique,

Plus en détail

Cours STAT 2150. "Statistique non paramétrique: Méthodes de lissage"

Cours STAT 2150. Statistique non paramétrique: Méthodes de lissage Cours STAT 2150 "Statistique non paramétrique: Méthodes de lissage" Année académique 2008-2009 Séance 1 1 Table de matière du cours 1. Introduction (Fonction de répartition, histogramme, propriétés d un

Plus en détail

Cours 7 : Utilisation de modules sous python

Cours 7 : Utilisation de modules sous python Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est

Plus en détail

Annexe commune aux séries ES, L et S : boîtes et quantiles

Annexe commune aux séries ES, L et S : boîtes et quantiles Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans

Plus en détail

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.

MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne

Plus en détail

EXEMPLE : FAILLITE D ENTREPRISES

EXEMPLE : FAILLITE D ENTREPRISES EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : «Applied Multivariate Statistical

Plus en détail

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE

TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE TESTS STATISTIQUES: COMPARAISON, INDÉPENDANCE ET RÉGRESSION LINÉAIRE Les résultats donnés par R et SAS donnent les valeurs des tests, la valeur-p ainsi que les intervalles de confiance. TEST DE COMPARAISON

Plus en détail

Introduction à Scilab

Introduction à Scilab Introduction à Scilab Nicolas Kielbasiewicz 21 juin 2007 Scilab est un logiciel gratuit développé à l INRIA (l Institut National de Recherche en Informatique et Automatique) sous Windows, Linux et Mac,

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS

Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence

Plus en détail

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique

Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Projet CLANU en 3GE: Compléments d algèbre linéaire numérique Année 2008/2009 1 Décomposition QR On rappelle que la multiplication avec une matrice unitaire Q C n n (c est-à-dire Q 1 = Q = Q T ) ne change

Plus en détail

Ch. 1 : Bases de programmation en Visual Basic

Ch. 1 : Bases de programmation en Visual Basic Ch. 1 : Bases de programmation en Visual Basic 1 1 Variables 1.1 Définition Les variables permettent de stocker en mémoire des données. Elles sont représentées par des lettres ou des groupements de lettres

Plus en détail

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2

Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html. R.R. Université Lyon 2 Ricco Rakotomalala http://eric.univ-lyon2.fr/~ricco/cours/cours_programmation_r.html 1 R est un langage de programmation. L objet de base est un vecteur de données. C est un «vrai» langage c.-à-d. types

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab

l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab scilab à l École nationale des ponts et chaussées http://cermics.enpc.fr/scilab Tests de comparaison pour l augmentation du volume de précipitation 13 février 2007 (dernière date de mise à jour) Table

Plus en détail

Chapitre 3. Les distributions à deux variables

Chapitre 3. Les distributions à deux variables Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles

Plus en détail

Corrigé des TD 1 à 5

Corrigé des TD 1 à 5 Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un

Plus en détail

http://cermics.enpc.fr/scilab

http://cermics.enpc.fr/scilab scilab à l École des Ponts ParisTech http://cermics.enpc.fr/scilab Introduction à Scilab Graphiques, fonctions Scilab, programmation, saisie de données Jean-Philippe Chancelier & Michel De Lara cermics,

Plus en détail

Calcul Formel et Numérique, Partie I

Calcul Formel et Numérique, Partie I Calcul Formel et Numérique N.Vandenberghe nvdb@irphe.univ-mrs.fr Table des matières 1 Introduction à Matlab 2 1.1 Quelques généralités.......................... 2 2 Où trouver des informations 2 3 Opérations

Plus en détail

Méthodes non paramétriques par permutations

Méthodes non paramétriques par permutations Méthodes non paramétriques par permutations Denis Puthier 11 juin 2008 Laboratoire INSERM TAGC/ERM206, Parc Scientifique de Luminy case 928,13288 MARSEILLE cedex 09, FRANCE. http://biologie.univ-mrs.fr/view-data.php?id=245

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION

TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION TESTS PORTMANTEAU D ADÉQUATION DE MODÈLES ARMA FAIBLES : UNE APPROCHE BASÉE SUR L AUTO-NORMALISATION Bruno Saussereau Laboratoire de Mathématiques de Besançon Université de Franche-Comté Travail en commun

Plus en détail

Initiation au logiciel R

Initiation au logiciel R Université Paris Dauphine Année 2005 2006 U.F.R. Mathématiques de la Décision MAT-6-3 : Statistique exploratoire et numérique (NOISE) Initiation au logiciel R Jean-Michel MARIN Ce document a pour objectif

Plus en détail

Introduction à la statistique non paramétrique

Introduction à la statistique non paramétrique Introduction à la statistique non paramétrique Catherine MATIAS CNRS, Laboratoire Statistique & Génome, Évry http://stat.genopole.cnrs.fr/ cmatias Atelier SFDS 27/28 septembre 2012 Partie 2 : Tests non

Plus en détail

Programmation en VBA

Programmation en VBA Programmation en VBA Présentation de Visual Basic Visual Basic : Basic : dérivé du langage Basic (Biginner s All purpose Symbolic Instruction Code) des années 60 Visual : dessin et aperçu de l interface

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires CHAPITRE I. SIMULATION DE VARIABLES ALÉATOIRES 25 Chapitre I Simulation de variables aléatoires La simulation informatique de variables aléatoires, aussi complexes soient elles, repose sur la simulation

Plus en détail

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position

distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

1 Recherche en table par balayage

1 Recherche en table par balayage 1 Recherche en table par balayage 1.1 Problème de la recherche en table Une table désigne une liste ou un tableau d éléments. Le problème de la recherche en table est celui de la recherche d un élément

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Fiche d utilisation du logiciel. 1 - Installation. J. Thioulouse & D. Chessel

Fiche d utilisation du logiciel. 1 - Installation. J. Thioulouse & D. Chessel Fiche d utilisation du logiciel 1 - Installation J. Thioulouse & D. Chessel Résumé Cette fiche est une introduction à l'utilisation du logiciel R pour les trois environnements Unix, Windows et MacOS. Plan

Plus en détail

La simulation probabiliste avec Excel

La simulation probabiliste avec Excel La simulation probabiliste avec Ecel (2 e version) Emmanuel Grenier emmanuel.grenier@isab.fr Relu par Kathy Chapelain et Henry P. Aubert Incontournable lorsqu il s agit de gérer des phénomènes aléatoires

Plus en détail

Statistiques descriptives

Statistiques descriptives Statistiques descriptives L3 Maths-Eco Université de Nantes Frédéric Lavancier F. Lavancier (Univ. Nantes) Statistiques descriptives 1 1 Vocabulaire de base F. Lavancier (Univ. Nantes) Statistiques descriptives

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

Température corporelle d un castor (une petite introduction aux séries temporelles)

Température corporelle d un castor (une petite introduction aux séries temporelles) Température corporelle d un castor (une petite introduction aux séries temporelles) GMMA 106 GMMA 106 2014 2015 1 / 32 Cas d étude Temperature (C) 37.0 37.5 38.0 0 20 40 60 80 100 Figure 1: Temperature

Plus en détail

3.2. Matlab/Simulink. 3.2.1. Généralités

3.2. Matlab/Simulink. 3.2.1. Généralités 3.2. Matlab/Simulink 3.2.1. Généralités Il s agit d un logiciel parfaitement dédié à la résolution de problèmes d'analyse numérique ou de traitement du signal. Il permet d'effectuer des calculs matriciels,

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015

Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015 Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par

Plus en détail

Le modèle linéaire généralisé avec R : fonction glm()

Le modèle linéaire généralisé avec R : fonction glm() SEMIN- Le modèle linéaire généralisé avec R : fonction glm() Sébastien BALLESTEROS UMR 7625 Ecologie Evolution Ecole Normale Supérieure 46 rue d'ulm F-75230 Paris Cedex 05 sebastien.ballesteros@biologie.ens.fr

Plus en détail

données en connaissance et en actions?

données en connaissance et en actions? 1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)

Plus en détail

Héritage en java : Calculatrice SDC

Héritage en java : Calculatrice SDC Programmation orientée objet L3 MIAGE Héritage en java : Calculatrice SDC Travail à rendre : le code complet du projet SDC sous forme d une archive tar.gz. L archive comportera trois répertoires : un répertoire

Plus en détail

INTRODUCTION AU LOGICIEL R

INTRODUCTION AU LOGICIEL R INTRODUCTION AU LOGICIEL R Variables et mise en jambe Anne Dubois, Julie Bertrand, Emmanuelle Comets emmanuelle.comets@inserm.fr INSERM UMR738 (UMR738) 1 / 68 Sur le site www.cran.r-project.org : Ou trouver

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Marketing quantitatif M2-MASS

Marketing quantitatif M2-MASS Marketing quantitatif M2-MASS Francois.Kauffmann@unicaen.fr UCBN 2 décembre 2012 Francois.Kauffmann@unicaen.fr UCBN Marketing quantitatif M2-MASS 2 décembre 2012 1 / 61 Première partie I Analyse Analyse

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes):

I. Programmation I. 1 Ecrire un programme en Scilab traduisant l organigramme montré ci-après (on pourra utiliser les annexes): Master Chimie Fondamentale et Appliquée : spécialité «Ingénierie Chimique» Examen «Programmation, Simulation des procédés» avril 2008a Nom : Prénom : groupe TD : I. Programmation I. 1 Ecrire un programme

Plus en détail

1 Introduction 4 1.1 Historique... 4 1.2 Environnement... 4 1.3 Quelques fonctions utiles... 5 1.4 Le système d aide... 5

1 Introduction 4 1.1 Historique... 4 1.2 Environnement... 4 1.3 Quelques fonctions utiles... 5 1.4 Le système d aide... 5 Initiation à R Brigitte SCHAEFFER 1 et Sophie SCHBATH 2 1 INRA-Jouy, Unité Mathématique et Informatique Appliquées 2 INRA-Jouy, Unité Mathématique, Informatique & Génome Mai 2008 Table des matières 1 Introduction

Plus en détail

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction

2.1. Les fonctions. Les fonctions se définissent de la manière suivante : NomDeLaFonction(param1, param2,...)= { \\ Code de la fonction TP1, prise en main de Pari/GP et arithmétique Le programme que nous allons utiliser pour les TP se nomme PARI/GP dont le point fort est la théorie des nombres (au sens large). Il est donc tout à fait adapter

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)

CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures) CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un

Plus en détail

Une introduction. Lionel RIOU FRANÇA. Septembre 2008

Une introduction. Lionel RIOU FRANÇA. Septembre 2008 Une introduction INSERM U669 Septembre 2008 Sommaire 1 Effets Fixes Effets Aléatoires 2 Analyse Classique Effets aléatoires Efficacité homogène Efficacité hétérogène 3 Estimation du modèle Inférence 4

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Le langage PHP. Walid Belkhir Université de Provence belkhir@cmi.univ-mrs.fr http://www.lif.univ-mrs.fr/ belkhir/

Le langage PHP. Walid Belkhir Université de Provence belkhir@cmi.univ-mrs.fr http://www.lif.univ-mrs.fr/ belkhir/ Le langage PHP Walid Belkhir Université de Provence belkhir@cmi.univ-mrs.fr http://www.lif.univ-mrs.fr/ belkhir/ 1 / 38 Plan 1 Introduction au langage PHP 2 2 / 38 Qu est ce que PHP? langage interprété

Plus en détail

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.

TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p. STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,

Plus en détail

Analyse exploratoire des données

Analyse exploratoire des données Analyse exploratoire des données Introduction à R pour la recherche biomédicale http://wwwaliquoteorg/cours/2012_biomed Objectifs Au travers de l analyse exploratoire des données, on cherche essentiellement

Plus en détail

Statistique descriptive et prévision

Statistique descriptive et prévision Statistique descriptive et prévision Année 2010/2011 L. Chaumont Contents 1. Étude d une variable 5 1.1. Définitions................................ 5 1.2. Représentations graphiques usuelles................

Plus en détail

Quelques analyses simples avec R en écologie des communautés

Quelques analyses simples avec R en écologie des communautés Jérôme Mathieu janvier 2007 Quelques analyses simples avec R en écologie des communautés 1 Visualisation des données... 2 Aperçu rapide d'un tableau de données... 3 Visualiser les corrélations entre des

Plus en détail

Séance 8 : Régression Logistique

Séance 8 : Régression Logistique Séance 8 : Régression Logistique Sommaire Proc LOGISTIC : Régression logistique... 2 Exemple commenté : Achat en (t+1) à partir du sexe et du chiffre d affaires de la période précédente. 4 La régression

Plus en détail

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles)

1/24. I passer d un problème exprimé en français à la réalisation d un. I expressions arithmétiques. I structures de contrôle (tests, boucles) 1/4 Objectif de ce cours /4 Objectifs de ce cours Introduction au langage C - Cours Girardot/Roelens Septembre 013 Du problème au programme I passer d un problème exprimé en français à la réalisation d

Plus en détail

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique

ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique ALEATOIRE - Les enjeux du cours de Probabilités en première année de l Ecole Polytechnique Télécom ParisTech, 09 mai 2012 http://www.mathematiquesappliquees.polytechnique.edu/ accueil/programmes/cycle-polytechnicien/annee-1/

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Principe de symétrisation pour la construction d un test adaptatif

Principe de symétrisation pour la construction d un test adaptatif Principe de symétrisation pour la construction d un test adaptatif Cécile Durot 1 & Yves Rozenholc 2 1 UFR SEGMI, Université Paris Ouest Nanterre La Défense, France, cecile.durot@gmail.com 2 Université

Plus en détail

TP 1 Introduction à Matlab Février 2009

TP 1 Introduction à Matlab Février 2009 1 Introduction TP 1 Introduction à Matlab Février 2009 Matlab pour «MATtrix LABoratory», est un logiciel qui a été conçu pour fournir un environnement de calcul numérique de haut niveau. Il est particulièrement

Plus en détail

NON-LINEARITE ET RESEAUX NEURONAUX

NON-LINEARITE ET RESEAUX NEURONAUX NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail

Plus en détail

Modèles pour données répétées

Modèles pour données répétées Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Découverte du tableur CellSheet

Découverte du tableur CellSheet Découverte du tableur CellSheet l application pour TI-83 Plus et TI-84 Plus. Réalisé par Guy Juge Professeur de mathématiques et formateur IUFM de l académie de Caen Pour l équipe des formateurs T 3 Teachers

Plus en détail

Formation Permanente

Formation Permanente Formation Permanente André Bouchier CENTRE INRA de MONTPELLIER FORMATION AU LOGICIEL Programmation et interfaces graphiques (durée : environ 6 heures) version du 13 février 2006 Copyright André Bouchier.

Plus en détail

Évaluation de la régression bornée

Évaluation de la régression bornée Thierry Foucart UMR 6086, Université de Poitiers, S P 2 M I, bd 3 téléport 2 BP 179, 86960 Futuroscope, Cedex FRANCE Résumé. le modèle linéaire est très fréquemment utilisé en statistique et particulièrement

Plus en détail

Initiation à l analyse en composantes principales

Initiation à l analyse en composantes principales Fiche TD avec le logiciel : tdr601 Initiation à l analyse en composantes principales A.B. Dufour & J.R. Lobry Une première approche très intuitive et interactive de l ACP. Centrage et réduction des données.

Plus en détail

Ligne de commande Linux avancée et scriptage bash (Linux 201)

Ligne de commande Linux avancée et scriptage bash (Linux 201) Ligne de commande Linux avancée et scriptage bash (Linux 201) laurent.duchesne@calculquebec.ca maxime.boissonneault@calculquebec.ca Université Laval - Septembre 2014 1 2 Se connecter à Colosse ssh colosse.calculquebec.ca

Plus en détail

Résolution de systèmes linéaires par des méthodes directes

Résolution de systèmes linéaires par des méthodes directes Résolution de systèmes linéaires par des méthodes directes J. Erhel Janvier 2014 1 Inverse d une matrice carrée et systèmes linéaires Ce paragraphe a pour objet les matrices carrées et les systèmes linéaires.

Plus en détail

Algorithmique Travaux Dirigés

Algorithmique Travaux Dirigés Algorithmique Travaux Dirigés Master Technologie et Handicap : Intensifs 1 Corrigé Exercice 1 Affectations 1. Considérons les algorithmes ci-dessous. (a) Quel sera le contenu des variables a, b et éventuellement

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

FORMULAIRE DE STATISTIQUES

FORMULAIRE DE STATISTIQUES FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)

Plus en détail

Modélisation des lois multidimensionnelles par la théorie des copules

Modélisation des lois multidimensionnelles par la théorie des copules Modélisation des lois multidimensionnelles par la théorie des copules Grégoire Mercier jeudi 9 novembre 26 Contenu 2 Mesure de dépendance Lien avec les copules 3 Estimation de l information mutuelle Estimation

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail