Chapitre 4 : Variables Aléatoires Discrètes
|
|
|
- Bernard Alain
- il y a 9 ans
- Total affichages :
Transcription
1 Chapitre 4 : Variables Aléatoires Discrètes L2 Eco-Gestion, option AEM (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 1 / 20
2 Plan 1 Notion de variable aléatoire Exemples 2 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition Espérance Variance et écart-type 3 Variable aléatoire centrée réduite Inégalité de Bienaymé-Tchebycheff 4 Compléments Fonction génératrice des moments Indépendance et somme de v.a. (indépendantes) (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 2 / 20
3 Plan 1 Notion de variable aléatoire Exemples 2 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition Espérance Variance et écart-type 3 Variable aléatoire centrée réduite Inégalité de Bienaymé-Tchebycheff 4 Compléments Fonction génératrice des moments Indépendance et somme de v.a. (indépendantes) (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 3 / 20
4 Notion de variable aléatoire Souvent, lors d une expérience aléatoire, on ne s intéresse pas à l issue ω de cette épreuve, mais à une fonction de cette réalisation (notée X (ω)) de cette issue, donnant une valeur numérique... (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 4 / 20
5 Notion de variable aléatoire Exemples Exemples 1 On jette deux fois un dé ; on s intéresse à la somme des numéros obtenus. On s intéresse au nombre de lancers d une pièces pour obtenir "pile". On choisit deux réels au hasard dans [0,1] ; on s intéresse à leur somme. Exemple 2 Une urne contient une boule rouge R, une boule verte V et une boule bleue B. On effectue deux tirages avec remise. On considère la règle du jeu suivante : 1 pour chaque boule rouge tirée, on gagne 3 euros ; 2 pour chaque boule verte tirée, on gagne 1 euro ; 3 pour chaque boule bleue tirée, on perd 4 euros. On s intéresse au montant des gains ou des pertes. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 5 / 20
6 Notion de variable aléatoire Soit un espace probabilisé (Ω, P(Ω), P) associé à une expérience aléatoire. On appelle variable aléatoire discrète, une application X, de Ω dans X (Ω) = {x 1,x 2,...x n,...}, ensemble fini ou dénombrable : X : Ω X (Ω) = {x 1,x 2,...x n,...} ω X (ω) X (Ω) est appelé ensemble des observables. Retour sur les exemples Parmi les exemples, quelles sont les v.a. discrètes? Définir alors Ω. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 6 / 20
7 Plan 1 Notion de variable aléatoire Exemples 2 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition Espérance Variance et écart-type 3 Variable aléatoire centrée réduite Inégalité de Bienaymé-Tchebycheff 4 Compléments Fonction génératrice des moments Indépendance et somme de v.a. (indépendantes) (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 7 / 20
8 Loi de probabilité (ou distribution) d une variable aléatoire La loi de probabilité (ou distribution) de la v.a. discrète X est la fonction : X (Ω) = {x 1,x 2,...x n,...} [0,1] x i P(X = x i ) définie par P(X = x i ) = P(ω telles que X (ω) = x i ). On note généralement P(X = x i ) = p i. Retour sur les exemples Déterminer la loi de probabilité des exemples de v.a. discrètes. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 8 / 20
9 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition On appelle fonction de répartition de X, la fonction F : R [0, 1] x F (x) = P(X x) Autrement dit, F (x) = x i X (Ω),x i x P(X = X i ). Propriétés pour tout x réel, on a 0 F (x) 1. La fonction de répartition d une v.a. est croissante et est continue à droite. X est une variable aléatoire discrète si et seulement si sa fonction de répartition est une fonction en escalier. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 9 / 20
10 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition Retour sur l exemple R,V,B Calculer et tracer la fonction de répartition de X. Propriété Soient X une v.a. discrète, X (Ω) = {x 1,x 2,...x n,...} l ensemble des observables, et F sa fonction de répartition. On a : P(X = x 1 ) = F (x 1 ) pour i 2 P(X = x i ) = F (x i ) F (x i 1 ) Conséquence La connaissance de la loi de probabilité de X permet de calculer la fonction de répartition, et inversement. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 10 / 20
11 Loi de probabilité (ou distribution) d une variable aléatoire Fonction quantile Propriété Soient X une v.a. discrète, X (Ω) = {x 1,x 2,...,x n,...} l ensemble des observables, et F sa fonction de répartition. Le quantile d ordre α [0,1], noté q(α) = FX 1 (α) est la plus petite réalisation appartenant à X (Ω) associée à une probabilité supérieure ou égale à α Retour sur l exemple R,V,B F (q(α)) = F (F 1 (α)) = P(X q(α)) α. Calculer la médiane et le troisième quartile, c-a-d les quantiles d ordre 0.5 et (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 11 / 20
12 Loi de probabilité (ou distribution) d une variable aléatoire Espérance L espérance d une v.a. discrète X est le nombre réel, s il existe, défini par E(X ) = i Retour sur l exemple R,V,B Calculer E(X ). Propriétés de l espérance x i P(X = x i ) = x i p i i Soit f une fonction de X (Ω) dans R. On a : E[f (X )] = i p i f (x i ) Propriété de linéarité : soient a,b R, on a E[aX + b] = ae(x ) + b Retour sur l exemple R,V,B Soit Y = 2X + b, quelle est la valeur de b pour que E(Y ) = 0? (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 12 / 20
13 Loi de probabilité (ou distribution) d une variable aléatoire Variance et écart-type La variance d une v.a. X est, si elle existe, l espérance de la variable aléatoire (X E(X )) 2. On la note Var(X ) : Var(X ) = E[(X E(X )) 2 ] = E(X 2 ) E(X ) 2 0 Ainsi, dans le cas discret : Var(X ) = i p i x 2 i E(X ) 2 Intérêt La variance permet de quantifier la dispersion des valeurs de la variable aléatoire autour de l espérance. Retour sur l exemple R,V,B Calculer Var(X ). (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 13 / 20
14 Loi de probabilité (ou distribution) d une variable aléatoire Variance et écart-type Propriété de la variance Var(X ) = 0 si et seulement si X est une v.a. constante. Soient a,b R : Var(aX + b) = a 2 Var(X ). On appelle écart-type de la v.a. X, la racine carrée de sa variance. On le note σ(x ). Intérêt Indice de dispersion possédant la même unité que les observables. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 14 / 20
15 Plan 1 Notion de variable aléatoire Exemples 2 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition Espérance Variance et écart-type 3 Variable aléatoire centrée réduite Inégalité de Bienaymé-Tchebycheff 4 Compléments Fonction génératrice des moments Indépendance et somme de v.a. (indépendantes) (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 15 / 20
16 Variable aléatoire centrée réduite La v. a. centrée réduite définie à partir de la variable aléatoire X (supposée non constante et admettant un écart type fini) est la variable Y = X E(X ) σ(x ). Propriétés de la variable centrée réduite Montrer que E(Y ) = 0 et que Var(Y ) = σ(y ) = 1. Intérêt facilite la comparaison de variables aléatoires. La connaissance de la loi centrée réduite permet d obtenir la loi d autres variables. (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 16 / 20
17 Variable aléatoire centrée réduite Inégalité de Bienaymé-Tchebycheff Inégalité de Bienaymé-Tchebycheff Soit X une variable aléatoire réelle. Pour tout réel ε > 0, on a : X E(X ) P( ε) 1 σ(x ) ε 2 (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 17 / 20
18 Plan 1 Notion de variable aléatoire Exemples 2 Loi de probabilité (ou distribution) d une variable aléatoire Fonction de répartition Espérance Variance et écart-type 3 Variable aléatoire centrée réduite Inégalité de Bienaymé-Tchebycheff 4 Compléments Fonction génératrice des moments Indépendance et somme de v.a. (indépendantes) (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 18 / 20
19 Compléments : Fonction génératrice des moments Fonction génératrice des moments La fonction génératrice d une v.a. discrète X définie sur X (Ω) = {x 1,...,x n,...}, est la fonction M X définie sur R et à valeurs dans R + par Propriété M X (t) = E(exp(tX )) = x i X (Ω) exp(tx i )P(X = x i ). La fonction génératrice d une v.a. discrète X (lorsqu elle existe) détermine tous les moments. En effet, pour tout k 1, on a E(X k ) = M (k) X (t) t=0, ainsi E(X ) = M X (0),E(X 2 ) = M X (0). Retour sur l exemple R,V,B Retrouver le fait que E(X ) = 0 et E(X 2 ) = 52/3 en utilisant le fait que M X (t) = (exp( 8t) + 2exp( 3t) + 2exp( t) + exp(2t) + 2exp(4t) + exp(6t))/9 (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 19 / 20
20 Compléments Indépendance et somme de v.a. (indépendantes) Soient X et Y deux v.a. discrètes définies sur {x i,i I } et {y j,j J } où I et J sont deux ensembles dénombrables. On a les définitions et propriétés suivantes : X et Y sont dites indépendantes ssi pour tous i I et j J, P([X = x i ] [Y = y j ]) = P(X = x i )P(Y = y j ). Z = X + Y est une v.a. discrète définie sur {x i + y j,i I,j J }, et on a toujours E(Z) = E(X ) + E(Y ). Si en outre, X et Y sont indépendantes, Var(X + Y ) = Var(X ) + Var(Y ). Somme de dés Soient X 1 et X 2 les faces supérieures correspondantes à deux lancers indépendants de dé et soit Z la moyenne de ces deux v.a. Calculer E(Z) et Var(Z) (même question avec n dés). (L2 Eco-Gestion, option AEM) Chapitre 4 : Variables Aléatoires Discrètes 20 / 20
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. [email protected]. http ://freakonometrics.blog.free.
Actuariat I ACT2121 septième séance Arthur Charpentier [email protected] http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
4. Exercices et corrigés
4. Exercices et corrigés. N 28p.304 Dans une classe de 3 élèves, le club théâtre (T) compte 0 élèves et la chorale (C) 2 élèves. Dix-huit élèves ne participent à aucune de ces activités. On interroge au
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Représentation d une distribution
5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Couples de variables aléatoires discrètes
Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude
Probabilités et statistique. Benjamin JOURDAIN
Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech
Loi d une variable discrète
MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
Statistiques à une variable
Statistiques à une variable Calcul des paramètres statistiques TI-82stats.fr? Déterminer les paramètres de la série statistique : Valeurs 0 2 3 5 8 Effectifs 16 12 28 32 21? Accès au mode statistique Touche
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples.
LEÇON N 7 : Schéma de Bernoulli et loi binomiale. Exemples. Pré-requis : Probabilités : définition, calculs et probabilités conditionnelles ; Notion de variables aléatoires, et propriétés associées : espérance,
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
Probabilités et Statistique
Ricco Rakotomalala Probabilités et Statistique Notes de cours Université Lumière Lyon 2 Avant-propos Ce document est un support de cours pour les enseignements des probabilités et de la statistique. Il
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
ENS de Lyon TD 1 17-18 septembre 2012 Introduction aux probabilités. A partie finie de N
ENS de Lyon TD 7-8 septembre 0 Introduction aux probabilités Exercice Soit (u n ) n N une suite de nombres réels. On considère σ une bijection de N dans N, de sorte que (u σ(n) ) n N est un réordonnement
EI - EXERCICES DE PROBABILITES CORRIGES
EI 1 EI - EXERCICES DE PROBABILITES CORRIGES Notations 1 Les coefficients du binôme sont notés ( n p 2 Un arrangement de n objets pris p à p est noté A p n 3 Si A est un ensemble fini, on notera A ou card
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas
1 TD1 : rappels sur les ensembles et notion de probabilité
1 TD1 : rappels sur les ensembles et notion de probabilité 1.1 Ensembles et dénombrement Exercice 1 Soit Ω = {1, 2, 3, 4}. Décrire toutes les parties de Ω, puis vérier que card(p(ω)) = 2 4. Soit k n (
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
Théorie et Codage de l Information (IF01) exercices 2013-2014. Paul Honeine Université de technologie de Troyes France
Théorie et Codage de l Information (IF01) exercices 2013-2014 Paul Honeine Université de technologie de Troyes France TD-1 Rappels de calculs de probabilités Exercice 1. On dispose d un jeu de 52 cartes
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Séries Statistiques Simples
1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
MÉTHODE DE MONTE CARLO.
MÉTHODE DE MONTE CARLO. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) Méthode de Monte Carlo. 1 / 95 PLAN DU COURS 1 MÉTHODE DE MONTE CARLO 2 PROBLÈME DE SIMULATION Théorème fondamental
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
MA6.06 : Mesure et Probabilités
Année universitaire 2002-2003 UNIVERSITÉ D ORLÉANS Olivier GARET MA6.06 : Mesure et Probabilités 2 Table des matières Table des matières i 1 Un peu de théorie de la mesure 1 1.1 Tribus...............................
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé
Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Bases : Probabilités, Estimation et Tests.
Université René Descartes LMD Sciences de la Vie et de la Santé UFR Biomédicale, M1 de Santé Publique 45 rue des Saints-Père, 75 006 Paris Spécialité Biostatistique M1 COURS de BIOSTATISTIQUE I Bases :
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #4-5 ARTHUR CHARPENTIER 1 Un certain test médical révèle correctement, avec probabilité 0.85, qu une personne a le sida lorsqu elle l a vraiment et révèle incorrectement,
ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven
IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/
Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
Statistiques Descriptives à une dimension
I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des
Étude des résultats des investisseurs particuliers sur le trading de CFD et de Forex en France
Étude des résultats des investisseurs particuliers sur le trading de CFD et de Forex en France Le 13 octobre 2014 Autorité des marchés financiers 17, place de la Bourse 75082 Paris cedex 02 Tél. : 01 53
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
Statistique Descriptive Élémentaire
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
1. Vocabulaire : Introduction au tableau élémentaire
L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
dénombrement, loi binomiale
dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Calcul Stochastique pour la finance. Romuald ELIE
Calcul Stochastique pour la finance Romuald ELIE 2 Nota : Ces notes de cours sont librement inspirées de différentes manuels, polycopiés, notes de cours ou ouvrages. Citons en particulier ceux de Francis
CAPTEURS - CHAINES DE MESURES
CAPTEURS - CHAINES DE MESURES Pierre BONNET Pierre Bonnet Master GSI - Capteurs Chaînes de Mesures 1 Plan du Cours Propriétés générales des capteurs Notion de mesure Notion de capteur: principes, classes,
Estimation et tests statistiques, TD 5. Solutions
ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
INFIRMIER(E) GRADUE(E) SPECIALISE(E) EN SANTE COMMUNAUTAIRE HAUTE ECOLE DE LA PROVINCE DE LIEGE PROFESSEUR : RENARD X.
INFIRMIER(E) GRADUE(E) SPECIALISE(E) EN SANTE COMMUNAUTAIRE HAUTE ECOLE DE LA PROVINCE DE LIEGE PROFESSEUR : RENARD X. Année scolaire 009-010 TABLE DES MATIERES CHAPITRE 1: Eléments de statistiques descriptives...
NOTES DE COURS STT1700. Introduction à la statistique. David Haziza
NOTES DE COURS STT1700 Introduction à la statistique David Haziza Automne 008 Qu est ce que la statistique? La statistique est la science dont le but est de donner un sens aux données. L étude statistique
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Résumé du Cours de Statistique Descriptive. Yves Tillé
Résumé du Cours de Statistique Descriptive Yves Tillé 15 décembre 2010 2 Objectif et moyens Objectifs du cours Apprendre les principales techniques de statistique descriptive univariée et bivariée. Être
MATLAB : COMMANDES DE BASE. Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */.
Page 1 de 9 MATLAB : COMMANDES DE BASE Note : lorsqu applicable, l équivalent en langage C est indiqué entre les délimiteurs /* */. Aide help, help nom_de_commande Fenêtre de travail (Command Window) Ligne
I3, Probabilités 2014 Travaux Dirigés F BM F BM F BM F BM F B M F B M F B M F B M 20 20 80 80 100 100 300 300
I3, Probabilités 2014 Travaux Dirigés TD 1 : rappels. Exercice 1 Poker simplié On tire 3 cartes d'un jeu de 52 cartes. Quelles sont les probabilités d'obtenir un brelan, une couleur, une paire, une suite,
9 5 2 5 Espaces probabilisés
BCPST2 9 5 2 5 Espaces probabilisés I Mise en place du cadre A) Tribu Soit Ω un ensemble. On dit qu'un sous ensemble T de P(Ω) est une tribu si et seulement si : Ω T. T est stable par complémentaire, c'est-à-dire
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Feuille 6 : Tests. Peut-on dire que l usine a respecté ses engagements? Faire un test d hypothèses pour y répondre.
Université de Nantes Année 2013-2014 L3 Maths-Eco Feuille 6 : Tests Exercice 1 On cherche à connaître la température d ébullition µ, en degrés Celsius, d un certain liquide. On effectue 16 expériences
STA108 Enquêtes et sondages. Sondages àplusieurs degrés et par grappes
STA108 Enquêtes et sondages Sondages àplusieurs degrés et par grappes Philippe Périé, novembre 2011 Sondages àplusieurs degrés et par grappes Introduction Sondages à plusieurs degrés Tirage des unités
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre plein les poches. Problème : vous n êtes pas seul!
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
