Exercice : l indice de Quételet
|
|
|
- Charlotte Micheline Boutin
- il y a 9 ans
- Total affichages :
Transcription
1 Fiche TD avec le logiciel : tdr15 Eercice : l indice de Quételet A.B. Dufour, D. Chessel & J.R. Lobry La masse corporelle d un individu est mesurée à partir du poids et de la taille. L indice le plus utilisé est celui proposé par Adolphe Quételet ( ), astronome et mathématicien belge ( fr.asp) 1 Questions 1. Construire la variable indice de Quételet à partir des données de t3var (fiche 1.2). = poids taille 2 La taille est eprimée en mètre et le poids en kilogrammes. Cet indice s appelle aujourd hui indice de masse corporelle () ou body mass inde (bmi). Il permet de mesurer la corpulence de l homme adulte. L Organisation Mondiale de la Santé a défini les critères suivants : maigreur (inférieur à 18.5), normal (de 18.5 à 25), risque de surpoids (de 25 à 30), obésité (supérieur à 30). Mais l indice de Quételet n a qu une valeur indicative. Pour déterminer l eistence d une obésité réelle, il faut faire d autres mesures destinées à établir eactement la proportion de masse grasse, car c est l ecès de masse grasse qui représente un facteur de risque. 2. Calculer les paramètres statistiques élémentaires de cette nouvelle variable sur l ensemble des individus et en fonction de chaque see. 3. Construire l histogramme de cette nouvelle variable sur l ensemble des individus. 4. Comparer graphiquement les indices de masse corporelle chez les hommes et chez les femmes à l aide d histogrammes et de fonctions de répartitions empiriques (utiliser la fonction ecdf de la librairie stepfun). 5. En utilisant la fonction boplot, représenter l indice de Quételet en fonction du see. 6. Construire sur un seul graphique les nuages de points de l indice de Quételet en fonction de la taille, en fonction du poids, pour chaque see. Commenter. 1
2 7. Représenter, sur un seul graphique, le nuage de points de l indice de Quételet en spécifiant hommes et femmes. Placer les bornes des critères de l O.M.S. Commenter. 2 Réponses 1. Les données options(digits = 4) t3var <- read.table(" h = T) poi <- t3var$poi tai <- t3var$tai * 0.01 see <- factor(t3var$see) <- poi/(tai^2) [1] [14] [27] [40] [53] [66] Paramètres statistiques élémentaires summary() Min. 1st Qu. Median Mean 3rd Qu. Ma mean() [1] var() [1] sd() [1] s <- split(, see) s [1] [14] [1] [14] [27] [40] lapply(s, mean) [1] [1] lapply(s, var) Logiciel R version ( ) tdr15.rnw Page 2/7 Compilé le
3 [1] [1] lapply(s, sd) [1] [1] lapply(s, summary) Min. 1st Qu. Median Mean 3rd Qu. Ma Min. 1st Qu. Median Mean 3rd Qu. Ma Histogramme sur l ensemble des individus hist(, col = grey(0.8)) Histogram of Frequency Représentations graphiques par see lapply(s, range) [1] [1] Logiciel R version ( ) tdr15.rnw Page 3/7 Compilé le
4 par(mfcol = c(2, 2)) par(mar = c(5, 4, 3, 2)) hist([see == "h"], main = "Hommes", lab = "", lim = c(16, 27), col = grey(0.9)) hist([see == "f"], main = "Femmes", lab = "", lim = c(16, 27), col = grey(0.9)) plot(ecdf([see == "h"]), main = "") plot(ecdf([see == "f"]), main = "") Hommes Frequency Femmes Frequency Passage à la modélisation par(mfcol = c(2, 2)) par(mar = c(5, 4, 3, 2)) hist(h <- [see == "h"], main = "Hommes", lab = "", lim = c(16, 27), col = grey(0.9), prob = T) lines(0 <- seq(16, 28, le = 50), dnorm(0, mean(h), sd(h)), lwd = 2, col = "red") hist(f <- [see == "f"], main = "Femmes", lab = "", lim = c(16, 27), col = grey(0.9), prob = T) lines(1 <- seq(16, 26, le = 50), dnorm(1, mean(f), sd(f)), lwd = 2, col = "red") plot(ecdf(h), main = "") lines(0, pnorm(0, mean(h), sd(h)), lwd = 2, col = "red") plot(ecdf([see == "f"]), main = "") lines(1, pnorm(1, mean(f), sd(f)), lwd = 2, col = "red") Logiciel R version ( ) tdr15.rnw Page 4/7 Compilé le
5 Hommes Density Femmes Density Boîte à moustaches boplot( ~ see, col = grey(0.8)) f h 6. Relation entre l, la taille et le poids par(mfcol = c(2, 2)) par(mar = c(5, 4, 2, 2)) plot([see == "h"], tai[see == "h"], lim = c(min(), ma()), ylim = c(min(tai), ma(tai)), pch = 20, lab = "", ylab = "taille", main = "hommes") plot([see == "h"], poi[see == "h"], lim = c(min(), ma()), ylim = c(min(poi), ma(poi)), pch = 20, lab = "", ylab = "poids") plot([see == "f"], tai[see == "f"], lim = c(min(), ma()), ylim = c(min(tai), ma(tai)), pch = 20, lab = "", ylab = "taille", main = "femmes") plot([see == "f"], poi[see == "f"], lim = c(min(), ma()), ylim = c(min(poi), ma(poi)), pch = 20, lab = "", ylab = "poids") Logiciel R version ( ) tdr15.rnw Page 5/7 Compilé le
6 A.B. Dufour, D. Chessel & J.R. Lobry hommes femmes taille taille poids poids Un seul graphique Version de base plot(, pch = 19, ce = 2, col = c("deeppink3", "blue")[unclass(see)]) abline(h = 18.5) abline(h = 25) title("indice de masse corporelle") ll0 = c("femmes", "hommes") legend(1, 24.8, ll0, pch = 21, pt.ce = 2, ce = 1.25, col = c("deeppink3", "blue"), pt.bg = c("deeppink3", "blue")) indice de masse corporelle femmes hommes Inde Version Graphe de Cleveland neo = c(sort(f), sort(h)) neose = as.factor(rep(c("f", "h"), c(25, 41))) moyennes = c(mean(f), mean(h)) dotchart(neo, main = "indice de masse corporelle", pch = 21, bg = grey(0.8), ce = 1.25, groups = neose, gdata = moyennes, gpch = 19, gcol = c("deeppink3", "blue")) abline(v = 18.5, lwd = 2, col = grey(0.6)) abline(v = 25, lwd = 2, col = grey(0.6)) Logiciel R version ( ) tdr15.rnw Page 6/7 Compilé le
7 indice de masse corporelle f h Logiciel R version ( ) tdr15.rnw Page 7/7 Compilé le
Initiation à l analyse en composantes principales
Fiche TD avec le logiciel : tdr601 Initiation à l analyse en composantes principales A.B. Dufour & J.R. Lobry Une première approche très intuitive et interactive de l ACP. Centrage et réduction des données.
Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas
Fiche TD avec le logiciel : tdr335 Densité de population et ingestion de nourriture chez un insecte vecteur de la maladie de Chagas F. Menu, A.B. Dufour, E. Desouhant et I. Amat La fiche permet de se familiariser
Première session de travail
Fiche TD avec le logiciel : tdr12 Première session de travail D. Chessel, A.B. Dufour & J.R. Lobry Table des matières 1 Importer des données 2 2 Consulter la documentation 4 3 Le passage des paramètres
Extraction d information des bases de séquences biologiques avec R
Extraction d information des bases de séquences biologiques avec R 21 novembre 2006 Résumé Le module seqinr fournit des fonctions pour extraire et manipuler des séquences d intérêt (nucléotidiques et protéiques)
Optimiser ses graphiques avec R
Optimiser ses graphiques avec R Jérôme Sueur MNHN Systématique et Evolution UMR CNRS 7205 OSEB [email protected] 28 Avril 2011 1 Typologie 2 Base 3 ggplot2 4 Références Outline 1 Typologie 2 Base 3 ggplot2
Manipuler des données calendaires
Fiche TD avec le logiciel : tdr1b Manipuler des données calendaires D. Chessel La fiche contient quelques exercices élémentaires pour lire, éditer et manipuler des dates d événements. On pourra y revenir
Lire ; Compter ; Tester... avec R
Lire ; Compter ; Tester... avec R Préparation des données / Analyse univariée / Analyse bivariée Christophe Genolini 2 Table des matières 1 Rappels théoriques 5 1.1 Vocabulaire....................................
Fiche TD avec le logiciel. Courbes de niveau. D. Chessel
Fiche TD avec le logiciel : tdr Courbes de niveau D. Chessel Comment représenter la variation d une mesure spatialisée? On utilise pour les illustrations une carte météorologique. Table des matières Introduction
Régression non linéaire
Fiche TD avec le logiciel : tdr46 Régression non linéaire J.R. Lobry Table des matières 1 Une petite simulation 2 2 Estimation d un paramètre 3 3 nlm (non-linear minimization) 8 4 Le piège des minimums
Ajustement au modèle de Lotka-Volterra
Fiche TD avec le logiciel : tdr4a Ajustement au modèle de Lotka-Volterra J.R. Lobry Les données d Umberto D Ancona sur la fréquence de sélaciens dans l Adriatique pendant la première guerre mondiale. Les
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
Introduction aux Statistiques et à l utilisation du logiciel R
Introduction aux Statistiques et à l utilisation du logiciel R Christophe Lalanne Christophe Pallier 1 Introduction 2 Comparaisons de deux moyennes 2.1 Objet de l étude On a mesuré le temps de sommeil
Statistiques avec la graph 35+
Statistiques avec la graph 35+ Enoncé : Dans une entreprise, on a dénombré 59 femmes et 130 hommes fumeurs. L entreprise souhaite proposer à ses employés plusieurs méthodes pour diminuer, voire arrêter,
Un exemple de régression logistique sous
Fiche TD avec le logiciel : tdr341 Un exemple de régression logistique sous A.B. Dufour & A. Viallefont Etude de l apparition ou non d une maladie cardiaque des coronaires 1 Présentation des données Les
Analyse exploratoire des données
Analyse exploratoire des données Introduction à R pour la recherche biomédicale http://wwwaliquoteorg/cours/2012_biomed Objectifs Au travers de l analyse exploratoire des données, on cherche essentiellement
W i r e l e s s B o d y S c a l e - i B F 5 T h a n k y o u f o r p u r c h a s i n g t h e W i r e l e s s B o d y S c a l e i B F 5. B e f o r e u s i n g t h i s u n i t f o r t h e f i r s t t i m
ACP Voitures 1- Méthode
acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Aide-mémoire de statistique appliquée à la biologie
Maxime HERVÉ Aide-mémoire de statistique appliquée à la biologie Construire son étude et analyser les résultats à l aide du logiciel R Version 5(2) (2014) AVANT-PROPOS Les phénomènes biologiques ont cela
SIMULATIONS, ALGORITHMES EN PROBABILITÉS ET STATISTIQUE(S) AU LYCÉE ET AVEC R
ET STATISTIQUE(S) AU LYCÉE ET AVEC R I-INTRODUCTION Que disent les programmes? La simulation un outil pratique mais aussi une alternative didactique L'outil libre, gratuit et collaboratif R Analyse de
Plan. Notes de Cours sur le logiciel R. Documentations. Installation. Anne PHILIPPE. 26 septembre 2012. Documents sur le logiciel R :
Plan Notes de Cours sur le logiciel R Anne PHILIPPE Université de Nantes, Laboratoire de Mathématiques Jean Leray email : [email protected] 26 septembre 22 Dataframes Listes 2 Les fonctions
OBESITE ET EPS. Cf www.sante.fr.(programme national, nutrition santé, courbe de corpulence)
OBESITE ET EPS DEFINITION L obésité se définit comme un excès de poids pouvant retentir sur la santé. La mesure générale acceptée de l obésité est l Indice de Masse Corporelle (IMC : poids en kg / taille
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Introduction à R. Florence Yerly. Dept. de mathématiques, Université de Fribourg (CH) SP 2011
Dept. de mathématiques, Université de Fribourg (CH) SP 2011 Qu est ce que R? Un logiciel de statistiques libre et gratuit ; Un logiciel multi-plateforme (UNIX, Windows MacOS X) R permet de faire des calculs
Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015.
Licence Economie-Gestion, 1ère Année Polycopié de Statistique Descriptive. Année universitaire : 2014-2015. Thèmes des séances de TD Thème n.1: Tableaux statistiques et représentations graphiques. Thème
Leslie REGAD ; Gaëlle LELANDAIS. leslie.regad@univ- paris- diderot.fr ; gaelle.lelandais@univ- paris- diderot.fr
Programmation avec R Polycopié d exercices Leslie REGAD ; Gaëlle LELANDAIS leslie.regad@univ- paris- diderot.fr ; gaelle.lelandais@univ- paris- diderot.fr Ce polycopié rassemble différents exercices vous
Introduction à. Julien Barnier Centre Max Weber CNRS UMR 5283 [email protected]. Version 2.0 12 septembre 2013. http://xkcd.
Introduction à Julien Barnier Centre Max Weber CNRS UMR 5283 [email protected] Version 2.0 12 septembre 2013 http://xkcd.com/627/ Table des matières 1 Introduction 5 1.1 À propos de ce document....................................
SEMIN- Gestion des couleurs sous R. Michel BAYLAC. MNHN Département Systématique et Evolution OSEB [email protected]
SEMIN- Gestion des couleurs sous R Michel BAYLAC MNHN Département Systématique et Evolution OSEB [email protected] SEMIN-R du MNHN 08 Janvier 2008 Sémin R du MNHN : 8 janvier 2008 Gestion des couleurs sous
Méthode de Monte Carlo pour le calcul d'options
Méthode de Monte Carlo pour le calcul d'options LADIAS Elie, WANG Shuai 7 juin 2013 1 Table des matières 1 Méthode de Monte-Carlo et Calcul d'intégrales 4 1.1 Description de la méthode....................
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
TP1 : LOGICIEL R ET PRÉDICTION DE L EFFLORESCENCE ALGALE
Apprentissage statistique et data mining ENSAE, 3 ème année A. Dalalyan TP1 : LOGICIEL R ET PRÉDICTION DE L EFFLORESCENCE ALGALE A propos du logiciel R Le système R est un logiciel distribué gratuitement
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Guide de correction TD 6
Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un
Gestion mémoire et Représentation intermédiaire
Gestion mémoire et Représentation intermédiaire Pablo de Oliveira March 23, 2015 I Gestion Memoire Variables locales Les variables locales sont stockées: Soit dans un registre,
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Quoi de neuf en LabVIEW FPGA 2010?
Quoi de neuf en LabVIEW FPGA 2010? Yannick DEGLA Ingénieur d Application Fonctionnalités de LabVIEW FPGA 2010 Nœud d intégration d IP - Importer directement des fichiers.xco de Xilinx ou vos propres VHDL
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Monitoring des données relatives au poids effectué par les services médicaux scolaires des villes de Bâle, Berne et Zurich
Promotion Santé Suisse Editorial Feuille d information 1 Les données de poids de plus de 13 000 enfants et adolescents dans les villes suisses de, et ont été collectées pour l année scolaire 2012/2013
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Statistique Descriptive Élémentaire
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier
Année de parution 2 numéro 2 avril-mai-juin 2004
ECRIT PERIODIQUE Autorisation de fermeture Gent X n BC 6739 België - Belgique PB PP Gent X BC 6739 CAAMI-info Année de parution 2 numéro 2 avril-mai-juin 2004 Editeur responsable: Joël LIVYNS, Administrateur
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Revue de la jurisprudence récente du TAQ en matière d affaires sociales. M e Lucie Allard et M e Laurence Ferland 29/11/12
Revue de la jurisprudence récente du TAQ en matière d affaires sociales M e Lucie Allard et M e Laurence Ferland 29/11/12 TRIBUNAL ADMINISTRATIF DU QUÉBEC, SECTION DES AFFAIRES SOCIALES: Assurance automobile
AP1.1 : Montages électroniques élémentaires. Électricité et électronique
STI2D Option SIN Terminale AP1.1 : Montages électroniques élémentaires Électricité et électronique Durée prévue : 3h. Problématique : connaître les composants élémentaires de l'électronique Compétences
Terminale SMS - STL 2007-2008
Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,
Exemples d Analyses de Variance avec R
Exemples d Analyses de Variance avec R Christophe Pallier 5 août 00 Résumé R est un logiciel d analyse statistique qui fournit toutes les procédures usuelles (t-tests, anova, tests non paramétriques...)
PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.
PRECISION - REJET DE PERTURBATIONS T.D. G.E.I.I.. Donner les erreurs en position, en vitesse et en accélération d un système de transfert F BO = N(p) D(p) (transfert en boucle ouverte) bouclé par retour
Objectif. Cette formation doit permettre au client d être autonome dans la création de ses rapports avancés en utilisant la fonctionnalité Excel +.
Excel + Objectif Cette formation doit permettre au client d être autonome dans la création de ses rapports avancés en utilisant la fonctionnalité Excel +. 2 Ordre du jour 1. Présentation générale d Excel
IdR Trading et Microstructure CA Cheuvreux. Charles-Albert Lehalle
IdR Trading et Microstructure CA Cheuvreux Charles-Albert Lehalle 2010-2014 Crédit Agricole Cheuvreux Kepler Cheuvreux L objectif de cette IdR «trading et microstructure des marchés» est de stimuler la
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Langage Perl. Introduction & Retour d'expérience. Journée du 30/11/2010 - S. Gallina - GEPV - 1/42
Langage Perl Introduction & Retour d'expérience Journée du 30/11/2010 - S. Gallina - GEPV - 1/42 Perl Practical Extraction and Report Langage Langage de script (non compilé) Conçu par Larry Wall Enrichi
Du bon usage de gnuplot
Recettes d informatique n bis 99- Du bon usage de gnuplot 1. Utiliser la version 3. de gnuplot : /home3/p/pareuh>gnuplot-3. # démarrer une session du grapheur (version 3.) gnuplot> # en réponse gnuplot>quit
Fiche d utilisation du logiciel. 1 - Installation. J. Thioulouse & D. Chessel
Fiche d utilisation du logiciel 1 - Installation J. Thioulouse & D. Chessel Résumé Cette fiche est une introduction à l'utilisation du logiciel R pour les trois environnements Unix, Windows et MacOS. Plan
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
4 Statistiques. Les notions abordées dans ce chapitre CHAPITRE
CHAPITRE Statistiques Population (en milliers) 63 6 6 6 Évolution de la population en France 9 998 999 3 Année Le graphique ci-contre indique l évolution de la population française de 998 à. On constate
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
Une introduction au langage R
Une introduction au langage R Faouzi LYAZRHI UP Biostatistique Ecole Nationale Vétérinaire, 23, chemin des Capelles, BP 87614, F-31076 Toulouse cédex email : [email protected] 2005 1. INSTALLER R 3 2.
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Séance 0 : Linux + Octave : le compromis idéal
Séance 0 : Linux + Octave : le compromis idéal Introduction Linux est un système d'exploitation multi-tâches et multi-utilisateurs, basé sur la gratuité et développé par une communauté de passionnés. C'est
distribution quelconque Signe 1 échantillon non Wilcoxon gaussienne distribution symétrique Student gaussienne position
Arbre de NESI distribution quelconque Signe 1 échantillon distribution symétrique non gaussienne Wilcoxon gaussienne Student position appariés 1 échantillon sur la différence avec référence=0 2 échantillons
Technologies de la Recherche et standards du Web: Quel impact sur l Innovation?
Technologies de la Recherche et standards du Web: Quel impact sur l Innovation? GFII - 6 Décembre 2013 Bernard Odier INRIA W3C Bureau France INRIA: à la pointe de l innovation numérique Création d INRIA
2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des
2010 Minitab, Inc. Tous droits réservés. Version 16.1.0 Minitab, le logo Minitab, Quality Companion by Minitab et Quality Trainer by Minitab sont des marques déposées de Minitab, Inc. aux Etats-Unis et
MIS 102 Initiation à l Informatique
MIS 102 Initiation à l Informatique Responsables et cours : Cyril Gavoille Catherine Pannier Matthias Robine Marc Zeitoun Planning : 6 séances de cours 5 séances de TD (2h40) 4 séances de TP (2h40) + environ
2 Exploration de données et méthodes statistiques
Lise BELLANGER Richard TOMASSONE EXPLORATION DE DONNEES ET METHODES STATISTIQUES SCRIPTS R Le document contient tous les instructions R contenues dans notre livre. Quelques lignes sont différentes des
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Exercices M1 SES 2014-2015 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 2015
Exercices M1 SES 214-215 Ana Fermin (http:// fermin.perso.math.cnrs.fr/ ) 14 Avril 215 Les exemples numériques présentés dans ce document d exercices ont été traités sur le logiciel R, téléchargeable par
Dépistage et gestion du diabète
Dépistage et gestion du diabète Plateforme du diabète Table des matières > Dépistage du diabète 32 millions de diabétique en Europe... 5 Le diabète, ça n arrive pas qu aux autres 6 Les Mutualités Libres
1 Importer et modifier des données avec R Commander
Université de Nantes 2015/2016 UFR des Sciences et Techniques Département de Mathématiques TP1 STATISTIQUE DESCRIPTIVE Frédéric Lavancier Avant propos Ouvrir l application R Saisir dans la console library(rcmdr)
Croissance et vieillissement cellulaires Docteur COSSON Pierre Nb réponses = 81 sur 87. Résultats des questions prédéfinies
Docteur COSSON Pierre Nb réponses = 8 sur 87 A00 8/87 Indicateurs globaux Index global m.= m.=,9 s.=0,. Evaluation générale de cette unité m.=. Sciences médicales de base m.=,. Compétences cliniques m.=,7.
Microsoft Excel : tables de données
UNIVERSITE DE LA SORBONNE NOUVELLE - PARIS 3 Année universitaire 2000-2001 2ème SESSION SLMD2 Informatique Les explications sur la réalisation des exercices seront fournies sous forme de fichiers informatiques.
Modélisation du risque opérationnel Approche Bâle avancée
Modélisation du risque opérationnel Approche Bâle avancée Université Laval Conférence LABIFUL Département de Finance et Assurance 1 Mars, 2013. Ridha Mahfoudhi, Ph.D. Senior Manager Quantitative Analytics,
Développement d une application pilote
Développement d une application pilote Nutri-TIC Flora Massanella Principes Cette seconde phase vise à mettre en pratique les conclusions obtenues lors de la phase A. L application web Nutri- TIC a donc
FIMA, 7 juillet 2005
F. Corset 1 S. 2 1 LabSAD Université Pierre Mendes France 2 Département de Mathématiques Université de Franche-Comté FIMA, 7 juillet 2005 Plan de l exposé plus court chemin Origine du problème Modélisation
TD d économétrie appliquée : Introduction à STATA
Ecole normale supérieure (ENS) Département d économie TD d économétrie appliquée : Introduction à STATA Marianne Tenand [email protected] OBJECTIFS DU TD Découvrir le logiciel d économétrie STATA,
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
INTRODUCTION AU LOGICIEL R
INTRODUCTION AU LOGICIEL R Variables et mise en jambe Anne Dubois, Julie Bertrand, Emmanuelle Comets [email protected] INSERM UMR738 (UMR738) 1 / 68 Sur le site www.cran.r-project.org : Ou trouver
Corrigé des TD 1 à 5
Corrigé des TD 1 à 5 1 Premier Contact 1.1 Somme des n premiers entiers 1 (* Somme des n premiers entiers *) 2 program somme_entiers; n, i, somme: integer; 8 (* saisie du nombre n *) write( Saisissez un
introduction Chapitre 5 Récursivité Exemples mathématiques Fonction factorielle ø est un arbre (vide) Images récursives
introduction Chapitre 5 Images récursives http ://univ-tln.fr/~papini/sources/flocon.htm Récursivité http://www.poulain.org/fractales/index.html Image qui se contient elle-même 1 Exemples mathématiques
Compilation (INF 564)
Présentation du cours Le processeur MIPS Programmation du MIPS 1 Compilation (INF 564) Introduction & architecture MIPS François Pottier 10 décembre 2014 Présentation du cours Le processeur MIPS Programmation
L inégale répartition de l énergie solaire est à l origine des courants atmosphériques
L inégale répartition de l énergie solaire est à l origine des courants atmosphériques I/ Objectif : Dans la partie 2 du programme de seconde «enjeux planétaires contemporains : énergie et sol», sous partie
Compréhension de lecture
o Coche pour indiquer si les phrases sont es ou o Paul et Virginie sont assis sur des fauteuils très confortables. o Virginie a une robe à pois. o Paul boit un café fumant dans une tasse rouge. o Virginie
Distinctions et classements
Distinctions et classements Satisfaire ses clients est la priorité de CGI. Grâce à une approche cohérente, disciplinée et responsable en matière de prestation de services, CGI réalise ses projets dans
Notice technique. Système de surveillance MAS 711
Notice technique Système de surveillance MAS 711 Informations d ordre général Le MAS 711 Flygt est un système de surveillance de pompes destiné aux grosses pompes Flygt, c est à dire aux pompes équipées
TD 1 - Structures de Traits et Unification
TD 1 - Structures de Traits et Unification 1 Définitions Un trait (en: feature) est un couple attribut-valeur. Une structure de traits (en: feature structure) est un ensemble de traits. On peut les représenter
Le Système d Information Routier
Le Système d Information Routier CONTEXTE DU PROJET : 2004 INSTITUTIONNEL : ACTE II DE LA DECENTRALISATION La loi du 13 août 2004 relative aux libertés et Responsabilités locales a prévu dans le domaine
Cartographie des Hotspots Démographiques et du Changement Climatique: Pérou
Pérou - Besoin de planification familiale non satisfait, 2011 Au Pérou, six pour cent des femmes mariées ont un besoin non satisfait de planification familiale. A l intérieur du pays ces taux varient suivant
ABS 2RM : quels effets observés sur la fréquence accident?
ABS 2RM : quels effets observés sur la fréquence accident? Bertrand Nelva-Pasqual, Mutuelle des Motards Journées Scientifiques "Deux-roues motorisés" 15 et 16 octobre 2013, Lyon-Bron Groupe d Échanges
VOLT LA NOUVELLE CHEVROLET
VOLT LA NOUVELLE CHEVROLET Chevrolet Volt Un nouveau chapitre de l Histoire Chevrolet présente la Volt, voiture électrique à autonomie étendue. Bien plus qu un véhicule hybride ou qu une voiture électrique
Programmation Objet - Cours II
Programmation Objet - Cours II - Exercices - Page 1 Programmation Objet - Cours II Exercices Auteur : E.Thirion - Dernière mise à jour : 05/07/2015 Les exercices suivants sont en majorité des projets à
Schréder partenaire des villes et communes. Nivelles grand place
Schréder partenaire des villes et communes Nivelles grand place Une réalisation Schréder où convivialité de l espace public rime avec économie d énergie Mise en lumière de la Grand Place de Nivelles Nivelles,
Analyse des correspondances avec colonne de référence
ADE-4 Analyse des correspondances avec colonne de référence Résumé Quand une table de contingence contient une colonne de poids très élevé, cette colonne peut servir de point de référence. La distribution
Architecture matérielle des systèmes informatiques
Architecture matérielle des systèmes informatiques IDEC, Renens. Version novembre 2003. Avertissement : ce support de cours n est pas destiné à l autoformation et doit impérativement être complété par
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Gestion des données avec R
Gestion des données avec R Christophe Lalanne & Bruno Falissard Table des matières 1 Introduction 1 2 Importation de fichiers CSV 1 2.1 Structure du fichier de données...................................
ESIEA PARIS 2011-2012
ESIEA PARIS 2011-2012 Examen MAT 5201 DATA MINING Mardi 08 Novembre 2011 Première Partie : 15 minutes (7 points) Enseignant responsable : Frédéric Bertrand Remarque importante : les questions de ce questionnaire
