Espace 2 Solides 7 Figures planes 14 Frises et dallages 22

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Espace 2 Solides 7 Figures planes 14 Frises et dallages 22"

Transcription

1 Espace 2 Solides 7 Figures planes 14 Frises et dallages 22 1

2 Espace Vocabulaire et symboles * Système de repérage C est le système qu on utilise pour définir la position d un point à l aide des coordonnées. Exemple : La longitude et la latitude représentent une coordonnée. La coordonnée dans ce plan cartésien est (2, 3) Plan Un plan, c est un espace géométrique à deux dimensions. Exemple : Les représentations les plus fréquentes en géométrie sont des surfaces plates comme le dessus de ton bureau, le plancher, le mur ou une feuille de papier. Plan cartésien Dans un plan cartésien, les axes sont perpendiculaires et les graduations sur les axes ont la même mesure. L axe des X est horizontal et l axe des Y vertical. 2

3 Espace Couple Un couple est une paire ordonnée de nombres. Dans un couple, l ordre des deux composantes est très important, on ne peut pas les inverser. Exemple : Les couples (2, 4) et (4, 2) sont donc des couples différents. Un couple se note entre parenthèses. De plus, les deux éléments du couple sont séparés par une virgule. Écriture d un couple : (a, b) Exemple : 3

4 Espace Effectuer des activités de repérage dans un plan * 1. Trace le chemin le plus rapide du lutin pour se rendre à la cheminée en utilisant les symboles suivants : 2. Trouve dans quelle case se trouvent les flocons de neige. A B C D E F G H

5 Espace Effectuer des activités de repérage sur un axe * 1. Complète les axes gradués suivants : 2. Place les lettres sur l axe selon leur position. A : 5 D : 2 B : 1 E : 8 C : 10 F : 0 5

6 Espace Repérer des points dans le plan cartésien dans le 1 er quadrant * Pour trouver les coordonnées d un point, il faut d abord chercher le chiffre sur l axe horizontal et ensuite celui sur l axe vertical. Exemple : (3,2) 1. Écris les coordonnées de chaque élément. Le sapin : (, ) Le cadeau : (, ) Le renne : (, ) Le bas : (, ) 2. Dessine Une lumière : ( 2, 7 ) Un nuage : ( 9, 0 ) 6

7 Solides RÉVISION 1 er cycle Identifier les principaux solides Boule Cône Cylindre Prisme Pyramide Cube Vocabulaire Solide : Le solide est une figure en trois dimensions. Exemple : Le cube, la boule, les pyramides, les prismes et le cylindre sont des solides. Base d un solide : C est la surface sur laquelle se tient le solide. Exemple : La base de cette pyramide à base carrée est un carrée. 7

8 Solides Vocabulaire * Arête Segment déterminé par la rencontre de deux faces. Une arête c est une ligne! ATTENTION! Il existe des solides qui n ont pas d arête. On les appelle les corps ronds, comme le cône, le cylindre et la boule. Sommet Point de rencontre de deux arêtes d un solide. Un sommet, c est un point! Face Forme géométrique à deux dimensions. L ensemble de faces forme un solide. Une face, c est une figure plane! Développement d un solide Représentation sur un plan des faces d un solide de façon à ce que toutes les faces soient reliées entre elles. Exemple : Voici un exemple du développement du prisme à base triangulaire. 8

9 Solides 1. Associe chaque solide à son nom. sphère (boule) cône cylindre cube prisme à base carré prisme à base rectangulaire prisme à base triangulaire pyramide à base carrée pyramide à base rectangulaire pyramide à base triangulaire 9

10 Solides Développer un prisme ou une pyramide * 1. Complète le tableau en indiquant le nombre de formes nécessaires pour fabriquer les solides suivants. 10

11 Solides Décrire des prismes et des pyramides à l aide de faces, de sommets, d arêtes* 1. Observe les solides, puis remplis le tableau. Solides Nombres de faces Nombres d arêtes Nombre de sommets A) Pyramide à base triangulaire B) Cube C) Pyramide à base carrée D) Prisme à base carrée 11

12 Solides E) Prisme à base triangulaire Classifier des prismes et des pyramides* 1. Observe les solides suivants et indique s il s agit d un prisme ou d une pyramide. A B C D E F PRISMES PYRAMIDES 2. Selon toi, quelle est la différence entre un prisme et une pyramide? 12

13 13

14 Solides Associer le développement de la surface d un prisme ou d une pyramide * 1. Observe bien les développements puis écris le nom du prisme ou de la pyramide dans la case correspondante. 14

15 Figures planes RÉVISION 1 er cycle Décrire des figures planes : carré, rectangle, triangle, losange Les figures planes sont délimitées par des lignes fermées. Ce sont des figures à deux dimensions. Carré Cercle Triangle Rectangle Losange Vocabulaire Une ligne est une figure à une dimension de l espace. Ligne brisée Ligne courbe Ligne droite Ligne fermée Ligne ouverte 15

16 Figures planes Vocabulaire et symboles * Polygone C est une figure plane déterminée par une ligne simple fermée constituée uniquement de segments de droite. Exemple : Selon son nombre de côtés, un polygone peut porter un nom particulier. = 3 côtés Quadrilatère = 4 côtés = 5 côtés = 8 côtés = 6 côtés = 10 côtés = 7 côtés = 12 côtés 16

17 Figures planes Décrire des polygones convexes et non convexes * Polygone convexe C est un polygone dont tous les angles intérieurs sont inférieurs à 180. Exemple : Voici deux polygones convexes, tous les angles sont plus petits que 180. Polygone non convexe C est un polygone dont au moins un des angles intérieurs est supérieur à 180. Exemple : Voici deux polygones non convexes, au moins un des angles est plus grand que

18 Figures planes 1. Observes les polygones et fait un X sur les polygones non convexes. 2. Dessine 2 polygones convexes et 1 polygone non convexe sur le quadrillage ci-dessous. 18

19 Figures planes Identifier et construire des droites parallèles et des droites perpendiculaires * Est parallèle à ( // ) Se dit de droites qui n ont aucun point en commun. La distance entre deux droites parallèles est constante. Elles ne se toucheront jamais. - Le symbole du parallélisme est «//» qui signifie est parallèle à. Exemple : Les droites d 1 et d 2 sont des droites parallèles. Donc d 1 // d 2 s Est perpendiculaire à ( ) Se dit de droites qui se croisent et forment un angle droit. - Le symbole de cette relation est qui signifie est perpendiculaire à. Sur une figure, on indique la perpendicularité par un petit carré placé au sommet de l angle droit. Exemple : Les droites d 1 et d 2 sont des droites perpendiculaires. Donc d 1 d 2 19

20 Figures planes 1. Peux-tu identifier les droites perpendiculaires en utilisant un crayon de couleur? 2. Trace une droite perpendiculaire à la droite d1. 3. Trace une droite parallèle à la droite d3. d3 d1 20

21 Figures planes Décrire des quadrilatères * b Quadrilatère Tous les quadrilatères sont des polygones à quatre côtés. Tous leurs côtés opposés sont parallèles et de même longueur (parallélogramme). Les diagonales se coupent en leur milieu. Exemple : 1. Remplis ce tableau avec l aide de ton enseignante. Côtés Angles Diagonales RECTANGLE LOSANGE CARRÉ Trapèze Le trapèze est aussi un quadrilatère car il a 4 côtés. Par contre, il possède seulement deux côtés opposés parallèles. Donc, ce n est pas un parallélogramme. 21

22 Figures planes Classifier des quadrilatères * 1. Peux-tu écrire le nom de tous les quadrilatères suivants? 22

23 Frises et dallages Frises et dallages Observer et produire des régularités de figures géométriques * f Figure symétrique Une figure est symétrique s il existe un axe de symétrie qui permet d appliquer cette figure sur elle-même. Exemple : La figure ABC est une figure symétrique., 1. Encercle les lettres qui sont symétriques. 2. Trace en rouge l axe de symétrie de ces figures. 23

24 Frises et dallages Vocabulaire * j Axe de réflexion Un axe de réflexion est une droite qui sert à définir une réflexion. Exemple : s Frise Une frise peut être constituée de dessins ou de formes géométriques qui sont répétés dans le même ordre et à la même distance. Cela forme une bande continue et ordonnée sur laquelle le ou les motifs se répètent en suivant une certaine régularité. Exemple : Dallage Le dallage, c est le recouvrement d un plan par plusieurs polygones sans superposition ni espace libre. Exemple : 24

25 Frises et dallages Observer et produire des frises et des dallages à l aide de la réflexion * 1. Termine la frise suivante. 2. Parfois, on utilise la réflexion pour composer une frise. Trouve la régularité et termine les frises. Exemple : Axe de réflexion Axe de réflexion Axe de réflexion 3. Dessine un dallage en utilisant au moins 3 couleurs. 25

26 26

Vocabulaire de base de la géométrie

Vocabulaire de base de la géométrie Géom 1 Vocabulaire de base de la géométrie Un point En géométrie, un point est représenté par une petite croix. On lui donne le nom d une lettre en majuscule, qu on écrit juste à côté. X A Un segment C

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

Progression des apprentissages en mathématique : quelques précisions

Progression des apprentissages en mathématique : quelques précisions en mathématique : quelques précisions Géométrie/Géométrie p. 35, n o A-1 Repérage Effectuer des activités de repérage sur un axe, selon les nombres à l étude p. 35, n o A-2 Repérer un point dans le plan

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

Se repérer sur un quadrillage

Se repérer sur un quadrillage Se repérer sur un quadrillage Sur un quadrillage, on peut repérer grâce aux nœuds ou aux cases: Repérage de cases Repérage de nœuds Sur ce quadrillage, les colonnes sont repérées par des le8res et les

Plus en détail

Progression des activités géométriques au cycle 3 (programmes 2002)

Progression des activités géométriques au cycle 3 (programmes 2002) Progression des activités géométriques au cycle 3 (programmes 2002) Vocabulaire spécifique CE2 CM Repérage, utilisation de plans, de cartes Repérer une case ou un point sur un quadrillage Ecrire les coordonnées

Plus en détail

GEOMETRIE. A. Les familles de polygones GEO 8. LES QUADRILATERES

GEOMETRIE. A. Les familles de polygones GEO 8. LES QUADRILATERES GEOMETRIE GEO 1. LES INSTRUMENTS DU DESSIN A. La règle B. L équerre C. Le compas D. Le calque E. Le quadrillage F. Le gabarit GEO 2. POINTS, LIGNES, DROITES ET SEGMENTS A. Le point B. La droite C. LE SEGMENT

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res

Connaître le vocabulaire et le codage en géométrie. Connaître le vocabulaire et le codage en géométrie. res Ge1 Connaître le vocabulaire et le codage en géométrie. Ge2 Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée

Plus en détail

Québec TABLEAU DE CORRÉLATION

Québec TABLEAU DE CORRÉLATION Québec TABLEAU DE CORRÉLATION PROGRESSION DES APPRENTISSAGES SENS ET ÉCRITURE DES NOMBRES A. NOMBRES NATURELS INFÉRIEURS À 100 000 1. Compter ou réciter la comptine des nombres naturels décrire : b. par

Plus en détail

Arithmétique. Sens et écriture des nombres. Notions enseignées. Primaire. 2 e cycle. 1 re 2 e 1er. A. Nombre inférieur à

Arithmétique. Sens et écriture des nombres. Notions enseignées. Primaire. 2 e cycle. 1 re 2 e 1er. A. Nombre inférieur à Arithmétique Sens et écriture des nombres L élève apprend à le faire avec l intervention de l enseignant ou enseignante. L élève le fait par lui-même à la fin de l année scolaire. Primaire 2 e cycle Notions

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite.

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. Droite et segment une droite un segment B B A A C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. C est la partie de la droite qui est délimitée par deux

Plus en détail

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12

PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 LES LIGNES Pré-requis PROGRESSION POSSIBLE POUR LE COURS DE GEOMETRIE DANS LE CYCLE 10-12 Sous-compétences à développer Identifier des lignes : Horizontales Verticales Obliques Brisées Courbes : ouvertes

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

Arithmétique : A. Nombres naturels inférieurs à

Arithmétique : A. Nombres naturels inférieurs à Arithmétique : SENS ET ÉCRITU URE DES NOMBRES A. Nombres naturels inférieurs à 100 000 Compter ou réciter la comptine des nombres naturels : - par ordre croissant ou décroissant - par bonds Dénombrer des

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est. Géom 1 CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Géom 1 Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail

3 e cycle. Nom : Groupe :

3 e cycle. Nom : Groupe : 3 e cycle Nom : Groupe : 2 Table des matières Arrondir..... Chiffre / nombre.... Comparer des nombres... 4 Nombre pair, impair.... 4 Nombre premier... 4 Nombre consécutifs... Plus petit, plus grand, égal..

Plus en détail

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre!

Attention! Pour être droit, l angle doit longer en même temps les deux plus petits côtés de ton équerre! Deux droites sont perpendiculaires si elles se coupent en formant un angle droit. On peut vérifier que deux droites sont perpendiculaires en utilisant une équerre. (d2) (d2) ttention! Pour être droit,

Plus en détail

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles

Sommaire géométrie. Le segment de droite Point, droite, demi-droite et segment de droite. Droites perpendiculaires Droites parallèles Sommaire géométrie ans le plan Géom 01 Géom 02 Géom 03 Géom 04 Géom 05 Géom 06 Géom 07 Géom 08 Géom 09 Géom 10 Géom 11 Géom 12 Géom 13 Géom 14 Géom 15 Géom 16 Dans l espace Géom 17 Géom 18 Géom 19 Géom

Plus en détail

Vocabulaire de la géométrie

Vocabulaire de la géométrie GEOM 1 Vocabulaire de la géométrie 1 Le point Le point est un endroit précis du plan. On le représente par une croix dont il est le centre et on le nomme avec une lettre majuscule. 2 Droite Trois points

Plus en détail

Ex 1 : Vrai ou faux. Géom 1

Ex 1 : Vrai ou faux. Géom 1 CONNAITRE LE VOCABULAIRE ET LES INSTRUMENTS GEOMETRIQUES Géom 1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Ex 1 : Vrai ou faux

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GÉOM 0 GÉOM 1 GÉOM 2 GÉOM 3 GÉOM 4 GÉOM 5 GÉOM 6 GÉOM 7 GÉOM 8 GÉOM 9 GÉOM 10 GÉOM 11 GÉOM 12 GÉOM 13 Points, lignes, droites

Plus en détail

Arithmétique. Sens et écriture des nombres. Notions enseignées. Primaire. 1 er cycle 1 re 2 e 1er A. Nombre inférieur à

Arithmétique. Sens et écriture des nombres. Notions enseignées. Primaire. 1 er cycle 1 re 2 e 1er A. Nombre inférieur à L élève apprend à le faire avec l intervention de l enseignant ou enseignante. L élève le fait par lui-même à la fin de l année scolaire. Arithmétique Sens et écriture des nombres Primaire 1 er cycle 1

Plus en détail

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2)

Vocabulaire géométrique (Cm1) Vocabulaire géométrique (Cm2) Vocabulaire géométrique (Cm1) La droite : c est un trait qui passe par un nombre infini de points alignés. On ne peut donc pas mesurer une droite. Le point : on le représente par une croix et on le nomme

Plus en détail

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE.

Ex 1 : Complète avec les mots de la leçon a)on le représente par une croix : c est CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE. CONNAITRE LE VOCABULAIRE ET LE CODAGE EN GEOMETRIE La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc pas

Plus en détail

Une droite ne s arrête jamais. On peut la prolonger à l infini.

Une droite ne s arrête jamais. On peut la prolonger à l infini. G 1 POINTS, LIGNES ET SEGMENTS Une ligne peut être droite ou courbe. Une droite ne s arrête jamais. On peut la prolonger à l infini. On la nomme par une lettre entre parenthèses. ( ) es points situés sur

Plus en détail

Géométrie des Transformations

Géométrie des Transformations Géométrie des Transformations Plan des activités de SIXIÈME ANNÉE PRIMAIRE Thème 1 Remise en route générale Rappel de: Figures déformées, non déformées, semblables, isométriques, isométriques déplacées,

Plus en détail

ESPACE ET GÉOMÉTRIE Programmes cycle 2

ESPACE ET GÉOMÉTRIE Programmes cycle 2 Connaissances ESPACE ET GÉOMÉTRIE Programmes cycle 2 Capacités Repérage, orientation - Situer un objet, une personne par rapport à soi ou par rapport à une - Connaître et savoir utiliser le vocabulaire

Plus en détail

Espace et géométrie Cycle 3

Espace et géométrie Cycle 3 Espace et géométrie Cycle 3 Les tableaux suivants résument les grandes lignes de la progressivité des apprentissages sur l ensemble du cycle 3, tels qu ils sont proposés par la méthode «Cap Maths», avec

Plus en détail

Planification des savoirs essentiels 3 e année

Planification des savoirs essentiels 3 e année Planification des savoirs essentiels 3 e année Mathématique Étape 1 Lire et écrire tout nombre naturel < 1000 Situer des nombres naturels à l aide de différents supports o Valeur de position Dénombrer

Plus en détail

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page

Table des matières DANS L ESPACE 24. N Leçon Niveau 1 Niveau 2 Niveau 3 Page Géométrie Table des matières N Leçon Niveau 1 Niveau 2 Niveau 3 Page DANS LE PLAN 3 Gé1 Les lignes X X X 4 Gé2 La droite X X X 5 Gé3 Les points alignés X X 5 Gé4 Le segment X X 6 Gé5 La demi-droite X X

Plus en détail

Géométrie CM1/CM2 - FH

Géométrie CM1/CM2 - FH Gm1 : Connaître le vocabulaire et les instruments de géométrie. En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. Gm2 : Identifier et

Plus en détail

GÉOMÉTRIE. Ecole santa cruz M.Cohen

GÉOMÉTRIE. Ecole santa cruz M.Cohen GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.01 Objets et notations GM.02 Les instruments de dessin GM.03 Tracer 2 droites perpendiculaires GM.04 Tracer 2 droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE 1 Les instruments pour reproduire 2 Reproduire des figures planes 3 Les polygones 4 Les quadrilatères 5 Le carré et le rectangle 6 Les triangles 7 Construire des figures géométriques

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire

SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides. Aide-mémoire SECTION 5 : LES SOLIDES Leçon 11 : L identification des solides Aide-mémoire Les solides sont les figures qui ont trois dimensions : une longueur, une largeur et une hauteur. Les propriétés des solides

Plus en détail

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un. Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... Prénom et Nom : Date : Evaluation n 1 : Les polygones

Plus en détail

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé.

Géom1. Connaître le vocabulaire et le codage en géométrie. La géométrie exige rigueur et précision dans le vocabulaire utilisé. Connaître le vocabulaire et le codage en géométrie Géom1 La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres e Nom : Groupe : Enseignant(e) : 12 2013-2014 Des polygones aux polyèdres Les polygones réguliers et les différents solides fascinent les mathématiciens et les mathématiciennes depuis plus de 2000 ans.

Plus en détail

Les polygones. Objectif: Reconnaître, nommer, décrire et tracer des polygones en utilisant les instruments de géométrie. Dico-maths p.

Les polygones. Objectif: Reconnaître, nommer, décrire et tracer des polygones en utilisant les instruments de géométrie. Dico-maths p. Les polygones Objectif: Reconnaître, nommer, décrire et tracer des polygones en utilisant les instruments de géométrie. Dico-maths p.40 Comparaison et report de longueurs Objectif: Utiliser le compas pour

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe :

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : GÉOMÉTRIE GM.0 Objets et notations GM.0 Les instruments de dessin GM.0 Tracer droites perpendiculaires GM.0 Tracer droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés GM.08

Plus en détail

COURS. Le polyèdre représenté ci-dessus n est pas convexe : il n est pas situé tout entier du même côté du plan contenant la face JBCK.

COURS. Le polyèdre représenté ci-dessus n est pas convexe : il n est pas situé tout entier du même côté du plan contenant la face JBCK. EC 9A : ELEMENTS DE MATHEMATIQUES GEOMETRIE DANS L ESPACE COURS Objectifs du chapitre : Reconnaître et utiliser les propriétés relatives aux faces, arêtes et sommets pour les solides suivants : cube, pavé

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique La géométrie exige rigueur et précision dans le vocabulaire utilisé. Une droite est formée par un nombre infini de points alignés : on ne peut donc

Plus en détail

Note aux parents. Voici le lexique mathématique de votre enfant. Celui-ci a été élaboré en lien

Note aux parents. Voici le lexique mathématique de votre enfant. Celui-ci a été élaboré en lien 2 e CYCLE Note aux parents Voici le lexique mathématique de votre enfant. Celui-ci a été élaboré en lien avec la progression des apprentissages en mathématique. Vous y trouverez tout le vocabulaire mathématique

Plus en détail

Arden Quin, «sans titre

Arden Quin, «sans titre rden Quin, «sans titre Page 1 Page 2 Page 3 Page 5 Page 6 Page 7 Page 8 Page 9 Page 10 Page 11 Page 12 Page 13 Page 14 Page 15 Page 16 Page 17 Repérage sur quadrillage ; agrandissement ; réduction. Mesurer

Plus en détail

Suggestion de programmation par périodes : Mathématiques CM2 CM2 Période 1 Période 2 Période 3 Période 4 Période 5 Nombres entiers

Suggestion de programmation par périodes : Mathématiques CM2 CM2 Période 1 Période 2 Période 3 Période 4 Période 5 Nombres entiers - 1 - CM2 Période 1 Période 2 Période 3 Période 4 Période 5 Nombres entiers Nombres et calculs Fractions Nombres décimaux Connaître, savoir écrire et nommer les nombres entiers (jusqu au milliard). Comparer,

Plus en détail

Géométrie Année

Géométrie Année Géométrie nnée 2012-2013 Sommaire G1- Le vocabulaire de géométrie G2- Les droites perpendiculaires G3- Les droites parallèles G4- Les polygones G5- Les quadrilatères G6- Les triangles G7- Les cercles G8-

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : (d)

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : (d) GÉOMÉTRIE GM.0 Objets et notations GM.0 Les instruments de dessin GM.0 Tracer droites perpendiculaires GM.04 Tracer droites parallèles GM.05 Les polygones GM.06 Les quadrilatères GM.07 Les carrés GM.08

Plus en détail

Propositions d harmonisation en mathématiques sur les trois années de cycle 3

Propositions d harmonisation en mathématiques sur les trois années de cycle 3 Propositions d harmonisation en mathématiques sur les trois années de cycle 3 1 Nombres et calculs Jusqu'au million - Comprendre et appliquer les règles de la numération aux grands nombres. Jusqu'au -

Plus en détail

PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES AU PRÉSCOLAIRE ET AU PRIMAIRE

PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES AU PRÉSCOLAIRE ET AU PRIMAIRE Lexique mathématique au 2 e cycle École : Nom : PRODUCTION DU SERVICE DES RESSOURCES ÉDUCATIVES AU PRÉSCOLAIRE ET AU PRIMAIRE Mai 2016 Édition 2016 Le lexique mathématique du 2 e cycle a été revu afin

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

I. Les figures élémentaires :

I. Les figures élémentaires : I. Les figures élémentaires : A. Les triangles : Triangle isocèle Un triangle isocèle est un triangle qui a deux de ses côtés de. un triangle est isocèle les deux côtés issus du sommet principal ont. un

Plus en détail

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : (d)

OBJETS ET NOTATIONS. Une ligne est une suite de points qui ne s'arrête pas. On la trace sans lever le crayon. une ligne peut être courbe : (d) GÉOMÉTRIE GM.0 Objets et notations GM.0 Les instruments de dessin GM.0 Tracer droites perpendiculaires GM.0 Tracer droites parallèles GM.0 Les polygones GM.06 Les quadrilatères GM.07 Le carré GM.08 Le

Plus en détail

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle.

I. Polygones : II. Triangles : 1) Définition : Les segments [AC], [AB] et [BC] sont les trois côtés du triangle. 1 / 6 I. Polygones : Un polygone est une figure fermée dont les côtés sont des segments. II. Triangles : 1) Un triangle est un polygone à trois côtés. Les segments [AC], [AB] et [BC] sont les trois côtés

Plus en détail

Les savoirs essentiels liés au programme de mathématique

Les savoirs essentiels liés au programme de mathématique Les savoirs essentiels liés au programme de mathématique Légende Nouveauté au 1 er cycle Nouveauté au 2 e cycle * Nouveauté pour les élèves ayant vécu le nouveau Programme au Premier cycle Précisions importantes

Plus en détail

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles

GÉOMÉTRIE. Définition Méthode de tracé avec la règle et l'équerre GM.04 Tracer 2 droites parallèles GÉOMÉTRIE GM.0 Objets et notations Le point La ligne et la droite Le segment Intersection GM.0 Les instruments de dessin La règle L'équerre Le compas Le calque Le gabarit GM.0 Tracer droites perpendiculaires

Plus en détail

MATHEMATIQUES - GEOMETRIE

MATHEMATIQUES - GEOMETRIE FICHE GE.13 Objectif : Reconnaître un rectangle Utilise tes instruments et vérifie s il s agit ou non de carré, puis colorie les carrés. FICHE GE.14 Objectif : Connaître les propriétés du carré 1/ Explique

Plus en détail

Géométrie à l école élémentaire

Géométrie à l école élémentaire Géométrie à l école élémentaire 1. Au cycle 2 2. Au cycle 3 3. Activités possibles 1. CYCLE DES APPRENTISSAGES FONDAMENTAUX - PROGRAMME DU CP ET CE1 Géométrie Les élèves enrichissent leurs connaissances

Plus en détail

Cf. Exemples de situations, d activités et de ressources pour l élève CM1 CM2 6 ème. Connaissances et compétences associées

Cf. Exemples de situations, d activités et de ressources pour l élève CM1 CM2 6 ème. Connaissances et compétences associées MATHEMATIQUES Cycle 3 - NOMBRES ET CALCULS Attendus de fin de cycle Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux. Calculer avec des nombres entiers et

Plus en détail

Mathématiques - programmation C.M. 2 -

Mathématiques - programmation C.M. 2 - Période 1 L addition des nombres L addition en ligne des nombres L addition des nombres La soustraction en ligne des nombres Le système de numération des nombres Lecture et écriture des nombres Décomposition

Plus en détail

Progression géométrie CM

Progression géométrie CM Progression géométrie CM2 2015-2016 Séquences Gé1 Connaître le vocabulaire et le codage en géométrie Utiliser en situation le vocabulaire géométrique : points alignés, droite, droites perpendiculaires,

Plus en détail

Vocabulaire en géométrie

Vocabulaire en géométrie G1 Vocabulaire en géométrie : on trace une petite croix. On utilise des lettres pour désigner les points. x A : c est un trait qui passe par 2 points. On l écrit avec des parenthèses. Une droite est infinie

Plus en détail

Mathématiques cycle 2 Espace et géométrie

Mathématiques cycle 2 Espace et géométrie Mathématiques cycle 2 Espace et géométrie PROGRAMMATIONS BO N 11 du 26 nov 2015 Attendus de fin de cycle (Se) repérer et (se) déplacer en utilisant des repères et des représentations. Reconnaitre, nommer,

Plus en détail

Mathématiques. Progressions programmes 2016.

Mathématiques. Progressions programmes 2016. Mathématiques. Progressions programmes 2016. Nombres et calculs Les nombres entiers -Composer, décomposer les grands nombres entiers, en utilisant des regroupements par milliers. - Unités de numération

Plus en détail

Novembre au cycle 3. R. Charnay - G. Combier La géométrie au cycle 3 / Romorantin 1

Novembre au cycle 3. R. Charnay - G. Combier La géométrie au cycle 3 / Romorantin 1 au cycle 3 1 La géométrie au cycle 3 / Romorantin 1 De quoi parle-t-on de l'école au collège? Espace sensible et géométrie 2 La géométrie au cycle 3 / Romorantin 2 Du spatial au géométrique Un problème

Plus en détail

PROGRAMMATION DE MATHEMATIQUES - CM2

PROGRAMMATION DE MATHEMATIQUES - CM2 Période 1 (7 semaines) PROGRAMMATION DE MATHEMATIQUES - CM2 Connaître par coeur les tables d addition nombres de 0 à 50. Problèmes relevant de l addition, : addition d un nombre de 2 de la soustraction

Plus en détail

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 JEUDI 16 JUIN FORMATION HISTORIQUE ET GÉOGRAPHIQUE. historique et géographique

ÉPREUVE EXTERNE COMMUNE SOLIDES ET FIGURES LIVRET 3 JEUDI 16 JUIN FORMATION HISTORIQUE ET GÉOGRAPHIQUE. historique et géographique ÉPREUVE EXTERNE COMMUNE CEB2016 SOLIDES ET FIGURES LIVRET 3 JEUDI 16 JUIN FRANÇAIS SAVOIR ÉCOUTER français SAVOIR ÉCRIRE savoir MATHÉMATIQUES écouter GRANDEURS savoir écrire SOLIDES ET mathématiques FIGURES

Plus en détail

Mathématiques cycle 3 Espace et géométrie. PROGRAMMATIONS BO n 11 du 26 novembre 2015

Mathématiques cycle 3 Espace et géométrie. PROGRAMMATIONS BO n 11 du 26 novembre 2015 Mathématiques cycle 3 Espace et géométrie PROGRAMMATIONS BO n 11 du 26 novembre 2015 Attendus de fin de cycle Se) repérer et (se) déplacer dans l'espace en utilisant ou en élaborant des représentations.

Plus en détail

ARITHMÉTIQUE : SENS DES OPÉRATIONS SUR DES NOMBRES

ARITHMÉTIQUE : SENS DES OPÉRATIONS SUR DES NOMBRES ARITHMÉTIQUE : SENS ET ÉCRITURE DES NOMBRES Nombres naturels - Nombres naturels inférieurs à 100 000 (unité de mille ou millier, dizaine de mille) : lecture, écriture, représentation, comparaison, classification,

Plus en détail

Pour se repérer et pour dire à quel endroit se trouvent les choses, on utilise un vocabulaire précis.

Pour se repérer et pour dire à quel endroit se trouvent les choses, on utilise un vocabulaire précis. Géométrie Se repérer dans l espace Gé1 Pour se repérer et pour dire à quel endroit se trouvent les choses, on utilise un vocabulaire précis. Géométrie Se repérer dans l espace Gé1 Pour se repérer et pour

Plus en détail

Exploitation Solides

Exploitation Solides Nom :... Prénom :... lasse :... xploitation Solides Questions relatives à la restitution des connaissances 1) Vrai ou faux? oche la bonne réponse. Tout cube est un prisme droit. Toute pyramide est un polyèdre

Plus en détail

Progression mathématique commune ( )

Progression mathématique commune ( ) 6 ème Progression mathématique commune (2016-2017) Ce document est élaboré par le réseau Berry Sud et basé sur le B.O du 26/11/15. Chapitre 1 - Nombres décimaux. Comprendre et utiliser la notion de nombre

Plus en détail

Algorithmique. Castor informatique, puis Algoréa. Suivre et écrire un programme de construction d une figure de géométrie, un programme de calculs.

Algorithmique. Castor informatique, puis Algoréa. Suivre et écrire un programme de construction d une figure de géométrie, un programme de calculs. Voici le visuel du manuel actuellement utilisé dans notre collège en classe de 6 e.. Castor informatique, puis Algoréa. Suivre et écrire un programme de construction d une figure de géométrie, un programme

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

- Utiliser des instruments pour réaliser des tracés : règle, équerre ou gabarit de l angle droit.

- Utiliser des instruments pour réaliser des tracés : règle, équerre ou gabarit de l angle droit. Compétence CE1 : reproduire, tracer un carré, un rectangle, un triangle rectangle. - Décrire, reproduire, tracer un carré, un rectangle, un triangle rectangle. - Utiliser des instruments pour réaliser

Plus en détail

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles.

Les faces latérales sont représentées par des parallélogrammes, mais dans la réalité, ce sont des rectangles. Chapitre 8 GEOMETRIE GEOMETRIE DANS L ESPACE 1 ) Solides usuels de l espace le cube La face avant et la face arrière sont représentées par des carrés. Les faces latérales sont représentées par des parallélogrammes,

Plus en détail

CYCLE 3 /Correspondance entre le programme et les compétences des 6 domaines

CYCLE 3 /Correspondance entre le programme et les compétences des 6 domaines NOMBRES ET CALCULS CYCLE 3 /Correspondance entre le programme et les compétences des 6 domaines NOMBRES ENTIERS Composer, décomposer les grands nombres entiers, en utilisant des regroupements par milliers.

Plus en détail

A MATHEMATIQUE 70 Addition Voir aussi valeur de position d un chiffre dans un nombre. Effectue les additions. 57 4 addition + 6 + 8 + 44 9 70 0 59 88 + 4 + 76 + 85 4 0 44 59 56 74 5 + 5 + 78 + 45 59 99

Plus en détail

Continuum des attentes et des contenus

Continuum des attentes et des contenus Continuum des attentes et des contenus Quelques précisions au sujet de ce continuum : Les attentes et contenus ciblés par les activités de cette trousse sont de couleur mauve. Les autres attentes et contenus

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I - Prismes Prisme droit : Un prisme droit est un solide composé : De deux bases polygonales parallèles et superposables, De faces latérales rectangulaires perpendiculaires aux

Plus en détail

Géom1. Connaitre le vocabulaire et les instruments géométriques

Géom1. Connaitre le vocabulaire et les instruments géométriques Connaitre le vocabulaire et les instruments géométriques Géom1 En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer,

Plus en détail

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT

«LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT «LES QUADRILATÈRES» Fiche pédagogique élaborée par Lidia SARAT 1. Définition : un quadrilatère est une figure géométrique qui a 4 côtés 2. Définition : un trapèze est un quadrilatère qui a deux côtés parallèles.

Plus en détail

MATHEMATIQUES CYCLE 2. ESPACE ET GEOMETRIE (1) Repérage, orientation. Niveaux Compétences Objectifs Activités

MATHEMATIQUES CYCLE 2. ESPACE ET GEOMETRIE (1) Repérage, orientation. Niveaux Compétences Objectifs Activités ESPACE ET GEOMETRIE (1) Repérage, orientation Dans l espace proche, connaître et utiliser le vocabulaire lié au positions relatives ou à la description de déplacements (devant, derrière, entre, à gauche

Plus en détail

Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux

Mémento de géométrie. Cycle 3. J appartiens à : Ecole de Saint Jean le Vieux Mémento de géométrie ycle 3 J appartiens à : Ecole de Saint Jean le Vieu Mars 2015 Sommaire 1. Point, droite et segment 2 2. roites perpendiculaires 3 3. roites parallèles 4 4. Les polygones 5 5. Le parallélogramme

Plus en détail

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire. - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x 4 2 2 A = b

Plus en détail

TABLEAU DE COMPETENCES

TABLEAU DE COMPETENCES EVALUATIONS DIAGNOSTIQUES DEBUT CM2 TABLEAU DE COMPETENCES Programmes 2008 Compétence en fin de CM1 - Connaître, savoir écrire et nommer les nombres entiers jusqu au milliard. - Comparer, ranger, encadrer

Plus en détail

Les nombres entiers (4) Je sais lire et convertir les nombres romains. Les nombres entiers (5)

Les nombres entiers (4) Je sais lire et convertir les nombres romains. Les nombres entiers (5) Les nombres entiers Les nombres entiers (4) Je sais lire et convertir les nombres romains. Les nombres entiers (8) Je sais donner l ordre de grandeur d un nombre. Les nombres entiers (1) Les nombres entiers

Plus en détail

SYMETRIES. 1 ) Axe de symétrie.

SYMETRIES. 1 ) Axe de symétrie. Chapitre GEOMETRIE SYMETRIES 1 ) Axe de symétrie. On dit qu une figure plane admet un axe de symétrie lorsque, si je plie ma feuille le long de l axe, alors les deux parties de la figure se superposent

Plus en détail

La géométrie mentale. Qu est-ce que la géométrie mentale? En faites-vous? mercredi 16 janvier 2013

La géométrie mentale. Qu est-ce que la géométrie mentale? En faites-vous? mercredi 16 janvier 2013 La géométrie mentale mercredi 16 janvier 2013 Qu est-ce que la géométrie mentale? En faites-vous? 1. La figure est formée d un cercle et d un carré. Le cercle passe par les quatre sommets du carré. 2.

Plus en détail

Progression de mathématiques. Cycle 2 (CP, CE1, CE2)

Progression de mathématiques. Cycle 2 (CP, CE1, CE2) Progression de mathématiques Cycle 2 (CP, CE1, CE2) Nombres et calculs Comprendre et utiliser des nombres entiers pour dénombrer, ordonner, repérer, comparer comparer jusqu'à 100 - Dénombrer, constituer

Plus en détail

Figures usuelles et axes de symétrie

Figures usuelles et axes de symétrie Chapitre 4 Figures usuelles et axes de symétrie I. Figures usuelles 1) Triangles un triangle est un polygone ayant 3 côtés. Vocabulaire : ABC est un triangle. A A, B et C sont ses 3 sommets. [AB], [AC]

Plus en détail

Objectifs Objets Durée

Objectifs Objets Durée ALIGNEMENTS Donner du sens à l'alignement d'objets ponctuels. Développer des procédures de contrôle ou de production. -Améliorer les compétences pratiques dans l'espace sensible. Faire employer des procédures

Plus en détail

Mathématiques - Cycle 3

Mathématiques - Cycle 3 Mathématiques - Cycle 3 NOMBRES ET CALCUL Attendus de fin de cycle: Utiliser et représenter les grands nombres entiers, des fractions simples, les nombres décimaux. Calculer avec des nombres entiers et

Plus en détail

PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base)

PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base) PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base) GEO_GP501 Unité d'apprentissage :Éléments de géométrie (situer un point) série N 1 : Situer précisément un point. Choisir

Plus en détail

Progression des apprentissages

Progression des apprentissages Nom de l élève: Date: Progression des apprentissages 2 e année Mathématique - arithmétique SENS ET ÉCRITURE DES NOMBRES (jusqu à 1000) compte ou récite la comptine des nombres naturels par ordre croissant

Plus en détail

PROGRESSIONS CYCLE DES APPROFONDISSEMENTS COMPETENCE N 3 LES PRINCIPAUX ELEMENTS DE MATHEMATIQUES

PROGRESSIONS CYCLE DES APPROFONDISSEMENTS COMPETENCE N 3 LES PRINCIPAUX ELEMENTS DE MATHEMATIQUES PROGRESSIONS CYCLE DES APPROFONDISSEMENTS COMPETENCE N 3 LES PRINCIPAUX ELEMENTS DE MATHEMATIQUES NOMBRES ET CALCUL CE2 CM1 CM2 Ecrire, nommer, comparer et utiliser les nombres entiers, les nombres décimaux

Plus en détail