Propagation d ondes en milieu chaotique

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Propagation d ondes en milieu chaotique"

Transcription

1 Propagation d ondes en milieu chaotique Stéphane Nonnenmacher DSM/IPhT Forum de la théorie Saclay, 7 Février 2008

2 Ondes en cavité Divers phénomènes physiques peuvent être décrits en termes d onde en cavité quasibidimensionnelle ondes acoustiques ondes sismiques

3 cavités micro-ondes cavité optiques (ex: fibre optique) y k x

4 Modes stationnaires de vibration Dans toutes ces situations, les modes stationnaires de vibration (discrets) sont décrits par la même équation de Helmholtz {( 2 x )ψ y 2 n (x, y) + k 2 n ψ n (x, y) = 0 ψ n (x, y) = 0 sur le bord de la cavité.

5 Importance de la forme de la cavité Pour certaines géométries (cercle, rectangle), on connaît précisément la forme des modes stationnaires (ψ n, k n ). Pour une cavité générique, on ne sait pas dire grand-chose. Ex: cavité en forme de limaçon et de cardioïde

6 Des ondes aux rayons lumineux/particules ponctuelles Lorsque la longueur d onde est petite (k 1 L), on peut construire des paquets d onde localisés en espace et en vitesse. Pendant un certain temps, le paquet d onde évolue comme une particule ponctuelle: il décrit un rayon lumineux. On est dans le cadre de l optique géométrique limite semiclassique de la mécanique quantique (la longueur d onde k 1 eff ). Pour comprendre les modes stationnaires de haute fréquence, il faut d abord analyser la dynamique des rayons ( billard classique ). Celle-ci dépend fortement de la forme du billard.

7 Cercle: dynamique régulière Symétrie = toutes les trajectoires sont régulières, et occupent une petite zone de l espace des phases. Conservation du moment orbital: dynamique intégrable. Correspondance simple trajectoires moment orbital modes vibratoires. On a des formules explicites pour les modes stationnaires.

8 Billard stade : dynamique chaotique Opposé du cercle: la dynamique classique dans le stade est totalement chaotique: instabilité par rapport aux conditions initiales ergodicité: la trajectoire visite toute la cavité de façon homogène

9 Modes vibratoires chaotiques description statistique: ψ n ressemble à une onde aléatoire [Voros 77,Berry 77] les fréquences de vibration (k n ) ressemblent statistiquement aux valeurs propres de matrices aléatoires [Bohigas-Giannoni-Schmit 84] ergodicité = presque tous les modes de haute fréquence sont macroscopiquement équidistribués [Schnirelman 74, Zelditch 87, Zelditch-Zworski 93]

10 Tous les modes sont-ils équidistribués? Correspondance ondes-particules: une onde stationnaire de haute fréquence doit ressembler (macroscopiquement) à une certaine distribution de points dans l espace des phases, invariante par la dynamique classique (distribution semiclassique). [Heller 84]: observation de cicatrices d orbites périodiques sur certains modes. Ces cicatrices sont-elles visibles dans la distribution semiclassique? ( ont-elles un poids positif lorsque k n?) Plus généralement, parmi la grande variété de distributions invariantes, lesquelles peuvent apparaître comme limites de modes vibratoires stationnaires? [Rudnick-Sarnak 93] ont conjecturé que la seule distribution semiclassique serait la distribution homogène.

11 Un résultat récent Plutôt qu un billard plat, il est plus simple d étudier les surface riemanniennes M de courbure 1: leur flot géodésique est naturellement chaotique [Poincaré]. M [Lindenstrauss 06]: pour une surface M ayant des propriétés arithmétiques, il n existe effectivement qu une seule distribution semiclassique. [Anantharaman-N 07]: pour toute mesure semiclassique sur M (non arithmétique, courbure < 0 variable), le poids des orbites périodiques est au plus 1/2: les modes de haute fréquence sont au moins à moitié délocalisés. On a pu exhiber des mesures semiclassiques nonhomogènes uniquement sur des systèmes chaotiques à temps discret [Faure-N-DeBièvre 03,Anantharaman-N 06]. La conjecture de [Rudnick-Sarnak 93] reste d actualité pour les flots géodésiques et les billards chaotiques.

12 Description thermodynamique d un système chaotique En partitionnant M, on associe à chaque trajectoire une suite infinie d indices, c est-à-dire une configuration d une chaîne de spins 1D. 1 t=0 6 t= t=4 t=1 5 t=2 time: La limite t correspond à la limite thermodynamique. Distribution invariante µ sur M mesure invariante par translation sur la chaîne de spins. H entropie par site H(µ) = lim t (µ) t t. Mesure la complexité de µ par rapport au flot, mais aussi sa concentration spatiale: µ OP localisée sur une orbite périodique est d entropie nulle H(µ OP ) = 0. la distribution homogène a l entropie maximale, H(µ homog ) = λ (Liapounov exp.).

13 Entropie des modes stationnaires L entropie H t (µ) est donnée par les poids µ([ɛ 0 ɛ t ]) des points ayant la même histoire entre 0 et t. L entropie sera grande si ces poids sont petits. Instabilité du flot ces points forment un rectangle de largeur e λt. e λt 0 t Correspondance classique-quantique = pour un temps t < T E = log eff /λ (temps d Ehrenfest), le poids µ([ɛ 0 ɛ t ]) P ɛ0 ɛ t ψ 2, où P ɛ0 ɛ t = U t P ɛt U P ɛ1 UP ɛ0 est le projecteur quantique sur le rectangle [ɛ 0 ɛ t ]. Principe d incertitude un mode de longueur d onde eff ne peut être localisé dans un rectangle de taille < eff = P ɛ0 ɛ t ψ min ( 1, 1/2 eff e λt/2) (intéressant pour t > T E )

14 Entropie des modes stationnaires Pour relier les deux régions t T E, on utilise un principe d incertitude entropique, basé sur l unitarité du propagateur U. toute distribution semiclassique µ a une entropie H(µ) λ/2. Les distributions semiclassiques non-homogènes obtenues pour le chat d Arnold quantique peuvent saturer cette inégalité: l entropie de la mesure semiclassique µ = 1 2 (µ OP + µ homog ) vaut exactement λ/2. p q

15 Entropie des modes stationnaires C est aussi le cas pour certaines distributions semiclassiques fractales du boulanger quantique.

16 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

17 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

18 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

19 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

20 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

21 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

22 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

23 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

24 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

25 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

26 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

27 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

28 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.

29 Un intérêt technologique: pompage d énergie dans une fibre optique chaotique R c n cl R p=3 p=4 n co p=6 p=10 Tous les 100km, il faut pomper de l énergie à travers un coeur actif. Le pompage fonctionne bien si le mode de vibration est assez intense au niveau du coeur. = une pompe circulaire n est pas efficace.

Transformations chaotiques quantifiées: un laboratoire pour le chaos quantique

Transformations chaotiques quantifiées: un laboratoire pour le chaos quantique Transformations chaotiques quantifiées: un laboratoire pour le chaos quantique Stéphane Nonnenmacher (SPhT, CEA-Saclay) Bordeaux, 15 Novembre 2007 Plan Quelques aspects du chaos quantique Limite semiclassique

Plus en détail

Chapitre 12 Physique quantique

Chapitre 12 Physique quantique DERNIÈRE IMPRESSION LE 29 août 2013 à 13:52 Chapitre 12 Physique quantique Table des matières 1 Les niveaux d énergie 2 1.1 Une énergie quantifiée.......................... 2 1.2 Énergie de rayonnement

Plus en détail

Courant électrique et distributions de courants

Courant électrique et distributions de courants Cours d électromagnétisme Courant électrique et distributions de courants 1 Courant électrique 1.1 Définition du courant électrique On appelle courant électrique tout mouvement d ensemble des particules

Plus en détail

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 )

Faisceau gaussien. A = a 0 e ikr e i k. 2R (x2 +y 2 ) Faisceau gaussien 1 Introduction La forme du faisceau lumineux émis par un laser est particulière, et correspond à un faisceau gaussien, ainsi nommé car l intensité décroît suivant une loi gaussienne lorsqu

Plus en détail

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale

EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale EXAMEN #2 ONDES ET PHYSIQUE MODERNE 20% de la note finale Automne 2011 Nom : Chaque question à choix multiples vaut 3 points 1. Une lentille convergente dont l indice de réfraction est de 1,5 initialement

Plus en détail

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique

Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Corrigés de la séance 13 Chap 25-26: La lumière, l optique géométrique Questions pour réfléchir chap. 26 Q3. Expliquez pourquoi la distance focale d une lentille dépend en réalité de la couleur de la lumière

Plus en détail

Placement optimal de capteurs sur des modèles EDP

Placement optimal de capteurs sur des modèles EDP Placement optimal de capteurs sur des modèles EDP E. Trélat Univ. Paris 6 (Labo. J.-L. Lions) et Institut Universitaire de France Lancement du DIM RDM-IdF, 8 décembre Motivations Problème Placer des capteurs

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

L'apport de la physique au diagnostic médical

L'apport de la physique au diagnostic médical L'apport de la physique au diagnostic médical L'application des découvertes de la physique à l'exploration du corps humain fournit aux médecins des informations essentielles pour leurs diagnostics. Ils

Plus en détail

TD 9 Problème à deux corps

TD 9 Problème à deux corps PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile

Plus en détail

cpgedupuydelome.fr -PC Lorient

cpgedupuydelome.fr -PC Lorient Première partie Modèle scalaire des ondes lumineuses On se place dans le cadre de l optique géométrique 1 Modèle de propagation 1.1 Aspect ondulatoire Notion d onde électromagnétique On considère une onde

Plus en détail

Électromagnétisme et Optique Physique

Électromagnétisme et Optique Physique Électromagnétisme et Optique Physique Dr.R.Benallal DÉPARTEMENT DE PHYSIQUE École Préparatoire en Sciences et Techniques de Tlemcen Physique 4 Fevrier-Juin 2013 Programme du module I Électromagnétisme

Plus en détail

Dynamique et fractals

Dynamique et fractals Dynamique et fractals Arnaud Chéritat Toulouse III Dynamique et fractals p.1/25 Dynamiques Dynamique discrète, continue. Champs de vecteurs, dynamique hamiltonienne. Dynamique réelle, dynamique complexe

Plus en détail

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction

G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner

Plus en détail

Chap. III : Le modèle quantique de l atome

Chap. III : Le modèle quantique de l atome Monde atomique beaucoup trop petit pour la physique classique de Newton et Maxwell développement d une nouvelle physique, la physique dite quantique Le français Louis de Broglie (prix Nobel de physique

Plus en détail

Sujet Centrale 2012 Physique Option MP

Sujet Centrale 2012 Physique Option MP I Le Satellite Jason 2 IA1) IA - Etude l orbite Sujet Centrale 2012 Physique Option MP Cf cours : IA2) a) Le référentiel géocentrique est le référentiel de centre Terre en translation par rapport au référentiel

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique.

Nous nous intéresserons ici à une version simplifiée du modèle corpusculaire pour décrire l optique géométrique. OPTIQUE GEOMETRIQUE Définitions : L optique est la science qui décrit les propriétés de la propagation de la lumière. La lumière est un concept extrêmement compliqué et dont la réalité physique n est pas

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

6. Ondes électromagnétiques et rayons lumineux

6. Ondes électromagnétiques et rayons lumineux 6. Ondes électromagnétiques et rayons lumineux Ce chapitre contient des rappels d optique géométrique et vise à faire le lien entre les notions d ondes étudiées au début du cours et l optique géométrique.

Plus en détail

Chimie Analytique I: Chapitre 14 Introduction aux méthodes spectroscopiques

Chimie Analytique I: Chapitre 14 Introduction aux méthodes spectroscopiques Chimie Analytique I: Chapitre 14 Introduction aux méthodes spectroscopiques 14.1 Molécule: Quelles libertés? Pour une molécule possédant N atomes, il existe 3N degrés de liberté (de mouvement). C'est dans

Plus en détail

RECHERCHE DE CHEMIN MINIMAL

RECHERCHE DE CHEMIN MINIMAL REHERHE DE HEIN INIL par Yvon KWLSK, Sofiane SERUTU et Jérémy VEIRN, élèves de troisième au collège dulphe DELEGRGUE de ourcelles lès Lens (Pas de alais) 2003 Enseignant : Stéphane RERT (collège DELEGRGUE

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens.

Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Introduction à la physique du laser. 1ère partie : les caractéristiques des faisceaux gaussiens. Objectifs Connaître les caractéristiques de la structure gaussienne d un faisceau laser (waist, longueur

Plus en détail

LES FIBRES OPTIQUES. o 2.n 1.d

LES FIBRES OPTIQUES. o 2.n 1.d LES FIBRES OPTIQUES 1) Propagation des modes dans les fibres : Mode de propagation : cos = (m + ()) o 2.n 1.d A chaque valeur de m est associé un angle m solution de l équation ci dessus. A chaque m est

Plus en détail

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction

Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction Le Monde Quantique L3 PHYTEM Bases de la Mécanique Quantique Cours d introduction C. Fabre fabre@spectro.jussieu.fr rdres de grandeur - échelle terrestre : d 7 10 m 25 10 Kg - échelle terrestre : d 7 10

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 4 : Les ondes Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. IV- Les ondes Finalité du chapitre Pour

Plus en détail

Etude expérimentale sur les interférences lumineuses

Etude expérimentale sur les interférences lumineuses Etude expérimentale sur les interférences lumineuses La lumière est une onde électromagnétique. Deux ondes sont à même d interagir en se sommant. Dans certains cas particuliers, notamment pour deux rayons

Plus en détail

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php

3LESLENTILLESMINCES. http://femto-physique.fr/optique_geometrique/opt_c3.php 3LESLENTILLESMINCES Cette fiche de cours porte sur les lentilles minces. L approche est essentiellement descriptive et repose sur la maîtrise de la construction des rayons lumineux. Ce chapitre est accessible

Plus en détail

Il se servit un verre de vin blanc,

Il se servit un verre de vin blanc, Les ordinateurs quantiques affrontent le chaos Le parallélisme autorisé par la mécanique quantique permet d effectuer des calculs d une manière radicalement nouvelle. Un ordinateur quantique fondé sur

Plus en détail

LEÇONS DE PHYSIQUE 2004

LEÇONS DE PHYSIQUE 2004 LEÇONS DE PHYSIQUE 2004 1. Utilisation des intégrales premières du mouvement en mécanique. Exemples et applications. 2. Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 3.

Plus en détail

Chapitre 5 : Les lentilles et les instruments d optique

Chapitre 5 : Les lentilles et les instruments d optique Exercices Chapitre 5 : Les lentilles et les instruments d optique E. (a) On a 33, 2 0cm et 20 cm. En utilisant l équation 5.2, on obtient 33 0 cm 33 20 cm 858 cm Le chat voit le poisson à 858 cm derrière

Plus en détail

Ouverture au monde quantique

Ouverture au monde quantique Ouverture au monde quantique I Les forces newtoniennes Les forces d interaction gravitationnelle et électrostatique ont une propriété commune : leur 1 valeur est proportionnelle à, où r représente la distance

Plus en détail

Les métamatériaux. Ryan Arseneault Département de physique et d astronomie Université de Moncton, Canada

Les métamatériaux. Ryan Arseneault Département de physique et d astronomie Université de Moncton, Canada Les métamatériaux Ryan Arseneault Département de physique et d astronomie Université de Moncton, Canada La science et la technologie ont une soif insatiable de matériaux meilleurs et plus performants qui

Plus en détail

Avant-propos. Les auteurs. Partie I Signaux physiques 1

Avant-propos. Les auteurs. Partie I Signaux physiques 1 Avant-propos v Les auteurs vii Partie I Signaux physiques 1 1 Oscillateur harmonique 3 I Introduction, définitions.......................... 3 I.1 Exemple............................... 3 I.2 Caractérisation

Plus en détail

Capsule théorique sur l optique géométrique (destinée au personnel)

Capsule théorique sur l optique géométrique (destinée au personnel) Capsule théorique sur l optique géométrique (destinée au personnel) Octobre 2014 Table des matières Spectre électromagnétique... 3 Rayons lumineux... 3 Réflexion... 3 Réfraction... 3 Lentilles convergentes...

Plus en détail

Imagerie interférométrique avec des données bruitées

Imagerie interférométrique avec des données bruitées Imagerie interférométrique avec des données bruitées Josselin Garnier (Université Paris Diderot) But de l imagerie : sonder un milieu inconnu avec des ondes pour en extraire de l information. Une méthode

Plus en détail

PHY-5041-2 L OPTIQUE EXERCICES SUPPLÉMENTAIRES «LES LENTILLES» DOCUMENT PRÉPARÉ PAR LYNE DESRANLEAU

PHY-5041-2 L OPTIQUE EXERCICES SUPPLÉMENTAIRES «LES LENTILLES» DOCUMENT PRÉPARÉ PAR LYNE DESRANLEAU Commission scolaire des Hautes-Rivières Les services de l enseignement Éducation des adultes et Formation professionnelle PHY-5041-2 L OPTIQUE EXERCICES SUPPLÉMENTAIRES «LES LENTILLES» QUESTIONNAIRE (Ne

Plus en détail

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20

MR, 2007 Optique 1/20 MR, 2007 Optique 2/20 Sources de lumière Sources naturelles Soleil Étoiles Sources artificielles Bougie Ampoule MR, 2007 Optique 1/20 Origine de la lumière Incandescence La lumière provient d un corps chauffé à température

Plus en détail

P5 Ondes acoustiques ; acoustique musicale

P5 Ondes acoustiques ; acoustique musicale Ondes acoustiques ; acoustique musicale On appelle onde mécanique le phénomène de propagation d une perturbation dans un milieu élastique, sans transport de matière mais avec transport d énergie. L exemple

Plus en détail

Majeure d informatique

Majeure d informatique Nicolas Sendrier Majeure d informatique Introduction la théorie de l information Cours n 1 Une mesure de l information Espace probabilisé discret L alphabet est X (fini en pratique) Variable aléatoire

Plus en détail

Mesure de Température par Caméra Infrarouge

Mesure de Température par Caméra Infrarouge Mesure de Température par Caméra Infrarouge INTRODUCTION La caméra infrarouge capte au travers d un milieu transmetteur (ex : l atmosphère) les rayonnements émis par une scène thermique. Le système radiométrique

Plus en détail

Chapitre I PHENOMENE DE FLUORESCENCE ORIGINE ET PROCESSUS. * hυ hυ

Chapitre I PHENOMENE DE FLUORESCENCE ORIGINE ET PROCESSUS. * hυ hυ Rayons Rayons X Ultra-violets Infra-rouges Micro-ondes Ondes radio 1 Chapitre I PHENOMENE DE FLUORESCENCE ORIGINE ET PROCESSUS Définitions * hυ hυ La fluorescence ou luminescence est l émission d énergie

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Le principe de moindre action

Le principe de moindre action Le principe de moindre action F. Hérau Laboratoire de Mathématiques Université de Reims Fete de la science novembre 2008 Définition Principe de moindre action : en physique, hypothèse selon laquelle la

Plus en détail

Année de préparation : 2014-2015

Année de préparation : 2014-2015 Centre Régional des Métiers de l Education et de Formation du Grand Casablanca Centre de Préparation à l Agrégation de Physique Organisation des cours, TP, leçons, montages et Devoirs surveillés dans le

Plus en détail

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015

TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 TUTORAT UE 3 2015-2016 Biophysique CORRECTION Séance n 3 Semaine du 28/09/2015 Optique 2 Mariano-Goulart QCM n 1 : A, C A. Vrai. Hz.m -1.s => B. Faux.. C. Vrai. L'équation donnée montre que l onde électrique

Plus en détail

intrication quantique corrélations à distance et instantanées

intrication quantique corrélations à distance et instantanées intrication quantique corrélations à distance et instantanées 1 Les corrélations quantiques à distance et instantanées Il existe des corrélations quantiques à distance et instantanées dans un système quantique

Plus en détail

TP spécialité N 3 La Lunette Astronomique 1 / 7

TP spécialité N 3 La Lunette Astronomique 1 / 7 TP spécialité N 3 La Lunette Astronomique / 7 I- Matériel disponible. - Un banc d optique avec accessoires : Une lanterne avec la lettre «F», deux supports pour lentille, un porte écran, un miroir plan,

Plus en détail

Propagation des ondes électromagnétiques dans le vide

Propagation des ondes électromagnétiques dans le vide Chapitre 5 Propagation des ondes électromagnétiques dans le vide 5.1 Equations de propagation pour E et B Dans le vide, au voisinage de tout point où les charges et les courants sont nuls, les équations

Plus en détail

Problème IPhO : Diode électroluminescente et lampe de poche

Problème IPhO : Diode électroluminescente et lampe de poche IPhO : Diode électroluminescente et lampe de poche Les diodes électroluminescentes (DEL ou LED en anglais) sont de plus en plus utilisées pour l éclairage : affichages colorés, lampes de poche, éclairage

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

A1.- Le décibel et le bruit les unités acoustiques

A1.- Le décibel et le bruit les unités acoustiques A1.- Le décibel et le bruit les unités acoustiques A1.1.- Définition du bruit : A1.1.1.- Production et caractéristiques d un son Tout corps qui se déplace ou qui vibre émet un son. Il transmet sa vibration

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Cours de spécialité mathématiques en Terminale ES

Cours de spécialité mathématiques en Terminale ES Cours de spécialité mathématiques en Terminale ES O. Lader 2014/2015 Lycée Jean Vilar Spé math terminale ES 2014/2015 1 / 51 Systèmes linéaires Deux exemples de systèmes linéaires à deux équations et deux

Plus en détail

Session de Juillet 2001. Durée 2 H Documents interdits.

Session de Juillet 2001. Durée 2 H Documents interdits. Session de Juillet 2001 Durée 2 H Documents interdits. Exercice 1 : Oscillations forcées de dipôles électriques Lors d une séance de travaux pratiques, les élèves sont conduits à étudier les dipôles en

Plus en détail

6.1 Méthode des champs de potentiel

6.1 Méthode des champs de potentiel Chapitre 6 Évitement d obstacles L évitement d obstacles est un comportement de base présent dans quasiment tous les robots mobiles. Il est indispensable pour permettre au robot de fonctionner dans un

Plus en détail

Propriétés ondulatoires du son

Propriétés ondulatoires du son Propriétés ondulatoires du son But de la manipulation : Illustrer le caractère ondulatoire du son. Introduction : Pour se convaincre que le son est une onde, il suffit de montrer que son comportement est

Plus en détail

EXAMEN #1. ONDES ET PHYSIQUE MODERNE 25 % de la note finale

EXAMEN #1. ONDES ET PHYSIQUE MODERNE 25 % de la note finale EXAMEN #1 ONDES ET PHYSIQUE MODERNE 25 % de la note finale Automne 2014 Nom : Chaque question à choix multiples vaut 3 points 1. Pendant qu une onde se propage sur une corde, on quadruple la tension de

Plus en détail

INTERFÉROMÈTRE DE MICHELSON

INTERFÉROMÈTRE DE MICHELSON INTERFÉROMÈTRE DE MICHELSON ATTENTION! LASER ET LAMPE À MERCURE : DANGER! - Ne jamais regarder directement le faisceau Laser, sous peine de brûlures irréversibles de la rétine. - Ne jamais regarder directement

Plus en détail

L expérience de Stern et Gerlach. ~ k3. Chapitre 8

L expérience de Stern et Gerlach. ~ k3. Chapitre 8 L expérience de Stern et Gerlach ~ k3 Chapitre 8 Quiz de bienvenue Si vous avez changé de canal, tapez: [Ch]-[4]-[1]-[Ch] ou [Go]-[4]-[1]-[Go] On considère un aimant placé dans un champ magnétique homogène.

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

Communications Numériques par Fibre Optique

Communications Numériques par Fibre Optique Université Mohammed Premier École Nationale des Sciences Appliquées d Oujda Cours de la 5 ème Année : Cycle d Ingénieurs Module 5M4 Version 1.0 (Septembre 2009) Communications Numériques par Fibre Optique

Plus en détail

TRAVAUX PRATIQUES DE PHYSIQUE

TRAVAUX PRATIQUES DE PHYSIQUE TRAVAUX PRATIQUES DE PHYSIQUE DÉPARTEMENT DE PHYSIQUE DOSSIER POUR RAPPORT D EXPÉRIENCE Date : 26 mars 2009 Section : Physique Groupe No : 7 Nom : Jérôme Dufour Sascha Jörg Manipulation : F4 - Instrument

Plus en détail

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures

ÉCOLE POLYTECHNIQUE Promotion 2009. CONTRÔLE DU COURS DE PHYSIQUE PHY311 Lundi 12 juillet 2010, durée : 2 heures ÉCOE POYTECHNIQUE Promotion 2009 CONTRÔE DU COURS DE PHYSIQUE PHY311 undi 12 juillet 2010, durée : 2 heures Documents autorisés : cours, recueil de problèmes, copies des diapositives, notes de PC Indiquer

Plus en détail

Cours de physique: sixième. Yves Delhaye

Cours de physique: sixième. Yves Delhaye Cours de physique: sixième Yves Delhaye 13 septembre 2006 Copyright (c) 2004-2006 Yves Delhaye. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation

Plus en détail

Cours S6. Formation d une image

Cours S6. Formation d une image Cours S6 Formation d une image David Malka MPSI 2015-2016 Lycée Saint-Exupéry http://www.mpsi-lycee-saint-exupery.fr Table des matières 1 Le miroir plan 1 1.1 Le miroir plan...............................................

Plus en détail

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques.

Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Thème : Énergie, matière et rayonnement Type de ressources : séquence sur le Laser utilisant des ressources numériques. Notions et contenus : Transferts quantiques d énergie Émission et absorption quantiques.

Plus en détail

Chapitre 18 : Transmettre et stocker de l information

Chapitre 18 : Transmettre et stocker de l information Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

ONDES : LA PROPAGATION DES SIGNAUX

ONDES : LA PROPAGATION DES SIGNAUX ONDES MECANIQUE : PROPAGATION R.DUPERRAY Lycée F.BUISSON PTSI ONDES : LA PROPAGATION DES SIGNAUX «J'allai au bord de la rivière, j'ai toujours aimé l'eau et le doux mouvement des vagues qui se poussent;

Plus en détail

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts

1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts 1L : Représentation visuelle du monde Chapitre 2 : L œil et ses défauts Cours I. Modélisation d un œil : 1. Schéma de l œil et vision : L œil est un récepteur de lumière sensible aux radiations lumineuses

Plus en détail

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN

PHYSIQUE. 5 e secondaire. Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Quebec PHYSIQUE 5 e secondaire Optique PHY-5041-2 DÉFINITION DU DOMAINE D EXAMEN MAI 1999 Direction de la formation générale

Plus en détail

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1 Hélium superfluide Applications aux procédés de Cryogénie Physique des solides - 22 mai 2006 1 Introduction L Hélium Z = 2. Point de fusion très bas. Chimiquement inerte. Deux isotopes naturels Physique

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

THEORIE CLASSIQUE DES CHAMPS

THEORIE CLASSIQUE DES CHAMPS Paris 7 QA 421-422 1992 93 THEORIE CLASSIQUE DES CHAMPS EXAMEN, t 0 = mardi 7 septembre 1993, 8h 30 t = 4 heures Il n est pas totalement inutile de lire l énoncé : les questions sont en principe, et parfois

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Étude théorique et expérimentale des lasers solides bi-fréquences dans les domaines GHz à THz,

Étude théorique et expérimentale des lasers solides bi-fréquences dans les domaines GHz à THz, Étude théorique et expérimentale des lasers solides bi-fréquences dans les domaines GHz à THz, en régime continu ou impulsionnel. Applications opto-microondes. NGOC DIEPLAI Laboratoire d Electronique Quantique

Plus en détail

Optique : applications Introduction

Optique : applications Introduction Optique : applications Introduction I. Introduction Au premier semestre nous avons abordés l'optique géométrique, nous avons vu les lois de Snell Descartes qui décrivent comment la lumière est réfléchie

Plus en détail

RAPPORT DE LABORATOIRE DE PHYSIQUE Focométrie

RAPPORT DE LABORATOIRE DE PHYSIQUE Focométrie RAPPORT DE LABORATOIRE DE PHYSIQUE Focométrie Benjamin Frere & Pierre-Xavier Marique 2ème candidature en sciences physiques, Université de Liège Année académique 2003-2004 But de l expérience Nous devions

Plus en détail

Chap.3 Lentilles minces sphériques

Chap.3 Lentilles minces sphériques Chap.3 Lentilles minces sphériques 1. Les différents types de lentilles minces sphériques 1.1. Les différentes formes de lentilles sphériques 1.2. Lentilles minces Centre optique 1.3. Lentille convergente

Plus en détail

SUPRACONDUCTIVITE Louis Dumoulin CSNSM Orsay

SUPRACONDUCTIVITE Louis Dumoulin CSNSM Orsay SUPRACONDUCTIVITE Louis Dumoulin CSNSM Orsay Introduction -Phénomène spectaculaire qui a marqué profondément la Physique des Solides -Une propriété incontournable des très basses Températures -Une place

Plus en détail

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction

Au programme. Vision par ordinateur: Formation d image et Photographie. Formation de l image. Introduction Au programme Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal

Plus en détail

Vision par ordinateur: Formation d image et Photographie

Vision par ordinateur: Formation d image et Photographie Vision par ordinateur: Formation d image et Photographie Sébastien Roy Jean-Philippe Tardif Marc-Antoine Drouin Département d Informatique et de recherche opérationnelle Université de Montréal Hiver 2007

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Les phases de la Lune Description de la face visible de la Lune dans le ciel

Les phases de la Lune Description de la face visible de la Lune dans le ciel Les phases de la Lune Description de la face visible de la Lune dans le ciel Nicolas Rambaux Nicolas.Rambaux@imcce.fr (Crédit : Antonio Cidadao) 1 Résumé Ce document décrit le mouvement de la Lune autour

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Théorie de l information : historique

Théorie de l information : historique Théorie de l information : historique Développée dans les années quarante par Claude Shannon. Objectif : maximiser la quantité d information pouvant être transmise par un canal de communication imparfait.

Plus en détail

P11B1 - PHYSIQUE - Semestre 1

P11B1 - PHYSIQUE - Semestre 1 P11B1 - PHYSIQUE - Semestre 1 Outils de la Physique 1 Jacques LEQUIN Nombre heures Cours 4,5 Nombre heures TD 6 Grandeurs scalaires et vectorielles. Calcul différentiel, systèmes de coordonnées. Définir

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif - POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Cours n 15 : Champ magnétique

Cours n 15 : Champ magnétique Cours n 15 : Champ magnétique 1) Champ magnétique 1.1) Définition et caractérisation 1.1.1) Définition Comme nous l avons fait en électrostatique en introduisant la notion de champ électrique, on introduit

Plus en détail

Complément : les gaz à effet de serre (GES)

Complément : les gaz à effet de serre (GES) Complément : les gaz à effet de serre (GES) n appel «gaz à effet de serre» un gaz dont les molécules absorbent une partie du spectre du rayonnement solaire réfléchi (dans le domaine des infrarouges) Pour

Plus en détail

Quantification de l énergie pour les systèmes simples

Quantification de l énergie pour les systèmes simples Les buts de cet amphi Quantification de l énergie pour les systèmes simples Chapitre 4 Utiliser le formalisme de la physique ondulatoire pour aborder des problèmes de physique d une grande importance pratique

Plus en détail

Séquence 1 L œil et l appareil photographique (15 exercices corrigés)

Séquence 1 L œil et l appareil photographique (15 exercices corrigés) Séquence L œil et l appareil photographique (5 exercices corrigés) Exercice 8 page 24 Schématiser une lentille : La lentille est convergente. n la symbolise donc par un segment vertical avec deux flèches

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant

1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant CHABOU Moulley Charaf Ecole Nationale Polytechnique Département Génie Minier Cours - - 1- Propriétés de la lumière et indice de réfraction. Le microscope polarisant 1.1. Généralités sur la lumière La lumière

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

Signal et propagation

Signal et propagation SP1 Signal et propagation Exercice 1 Communication à distance Identifier des types de signaux et les grandeurs physiques correspondantes Déterminer comment changer la nature d un signal On considère deux

Plus en détail