Propagation d ondes en milieu chaotique
|
|
|
- Timothée Labrie
- il y a 10 ans
- Total affichages :
Transcription
1 Propagation d ondes en milieu chaotique Stéphane Nonnenmacher DSM/IPhT Forum de la théorie Saclay, 7 Février 2008
2 Ondes en cavité Divers phénomènes physiques peuvent être décrits en termes d onde en cavité quasibidimensionnelle ondes acoustiques ondes sismiques
3 cavités micro-ondes cavité optiques (ex: fibre optique) y k x
4 Modes stationnaires de vibration Dans toutes ces situations, les modes stationnaires de vibration (discrets) sont décrits par la même équation de Helmholtz {( 2 x )ψ y 2 n (x, y) + k 2 n ψ n (x, y) = 0 ψ n (x, y) = 0 sur le bord de la cavité.
5 Importance de la forme de la cavité Pour certaines géométries (cercle, rectangle), on connaît précisément la forme des modes stationnaires (ψ n, k n ). Pour une cavité générique, on ne sait pas dire grand-chose. Ex: cavité en forme de limaçon et de cardioïde
6 Des ondes aux rayons lumineux/particules ponctuelles Lorsque la longueur d onde est petite (k 1 L), on peut construire des paquets d onde localisés en espace et en vitesse. Pendant un certain temps, le paquet d onde évolue comme une particule ponctuelle: il décrit un rayon lumineux. On est dans le cadre de l optique géométrique limite semiclassique de la mécanique quantique (la longueur d onde k 1 eff ). Pour comprendre les modes stationnaires de haute fréquence, il faut d abord analyser la dynamique des rayons ( billard classique ). Celle-ci dépend fortement de la forme du billard.
7 Cercle: dynamique régulière Symétrie = toutes les trajectoires sont régulières, et occupent une petite zone de l espace des phases. Conservation du moment orbital: dynamique intégrable. Correspondance simple trajectoires moment orbital modes vibratoires. On a des formules explicites pour les modes stationnaires.
8 Billard stade : dynamique chaotique Opposé du cercle: la dynamique classique dans le stade est totalement chaotique: instabilité par rapport aux conditions initiales ergodicité: la trajectoire visite toute la cavité de façon homogène
9 Modes vibratoires chaotiques description statistique: ψ n ressemble à une onde aléatoire [Voros 77,Berry 77] les fréquences de vibration (k n ) ressemblent statistiquement aux valeurs propres de matrices aléatoires [Bohigas-Giannoni-Schmit 84] ergodicité = presque tous les modes de haute fréquence sont macroscopiquement équidistribués [Schnirelman 74, Zelditch 87, Zelditch-Zworski 93]
10 Tous les modes sont-ils équidistribués? Correspondance ondes-particules: une onde stationnaire de haute fréquence doit ressembler (macroscopiquement) à une certaine distribution de points dans l espace des phases, invariante par la dynamique classique (distribution semiclassique). [Heller 84]: observation de cicatrices d orbites périodiques sur certains modes. Ces cicatrices sont-elles visibles dans la distribution semiclassique? ( ont-elles un poids positif lorsque k n?) Plus généralement, parmi la grande variété de distributions invariantes, lesquelles peuvent apparaître comme limites de modes vibratoires stationnaires? [Rudnick-Sarnak 93] ont conjecturé que la seule distribution semiclassique serait la distribution homogène.
11 Un résultat récent Plutôt qu un billard plat, il est plus simple d étudier les surface riemanniennes M de courbure 1: leur flot géodésique est naturellement chaotique [Poincaré]. M [Lindenstrauss 06]: pour une surface M ayant des propriétés arithmétiques, il n existe effectivement qu une seule distribution semiclassique. [Anantharaman-N 07]: pour toute mesure semiclassique sur M (non arithmétique, courbure < 0 variable), le poids des orbites périodiques est au plus 1/2: les modes de haute fréquence sont au moins à moitié délocalisés. On a pu exhiber des mesures semiclassiques nonhomogènes uniquement sur des systèmes chaotiques à temps discret [Faure-N-DeBièvre 03,Anantharaman-N 06]. La conjecture de [Rudnick-Sarnak 93] reste d actualité pour les flots géodésiques et les billards chaotiques.
12 Description thermodynamique d un système chaotique En partitionnant M, on associe à chaque trajectoire une suite infinie d indices, c est-à-dire une configuration d une chaîne de spins 1D. 1 t=0 6 t= t=4 t=1 5 t=2 time: La limite t correspond à la limite thermodynamique. Distribution invariante µ sur M mesure invariante par translation sur la chaîne de spins. H entropie par site H(µ) = lim t (µ) t t. Mesure la complexité de µ par rapport au flot, mais aussi sa concentration spatiale: µ OP localisée sur une orbite périodique est d entropie nulle H(µ OP ) = 0. la distribution homogène a l entropie maximale, H(µ homog ) = λ (Liapounov exp.).
13 Entropie des modes stationnaires L entropie H t (µ) est donnée par les poids µ([ɛ 0 ɛ t ]) des points ayant la même histoire entre 0 et t. L entropie sera grande si ces poids sont petits. Instabilité du flot ces points forment un rectangle de largeur e λt. e λt 0 t Correspondance classique-quantique = pour un temps t < T E = log eff /λ (temps d Ehrenfest), le poids µ([ɛ 0 ɛ t ]) P ɛ0 ɛ t ψ 2, où P ɛ0 ɛ t = U t P ɛt U P ɛ1 UP ɛ0 est le projecteur quantique sur le rectangle [ɛ 0 ɛ t ]. Principe d incertitude un mode de longueur d onde eff ne peut être localisé dans un rectangle de taille < eff = P ɛ0 ɛ t ψ min ( 1, 1/2 eff e λt/2) (intéressant pour t > T E )
14 Entropie des modes stationnaires Pour relier les deux régions t T E, on utilise un principe d incertitude entropique, basé sur l unitarité du propagateur U. toute distribution semiclassique µ a une entropie H(µ) λ/2. Les distributions semiclassiques non-homogènes obtenues pour le chat d Arnold quantique peuvent saturer cette inégalité: l entropie de la mesure semiclassique µ = 1 2 (µ OP + µ homog ) vaut exactement λ/2. p q
15 Entropie des modes stationnaires C est aussi le cas pour certaines distributions semiclassiques fractales du boulanger quantique.
16 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
17 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
18 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
19 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
20 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
21 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
22 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
23 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
24 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
25 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
26 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
27 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
28 Rôle des interférences La construction d un mode semi-localisé du chat d Arnold quantique utilise l évolution d un paquet d onde localisé sur un point fixe. La semi-localisation résulte de la compétition entre l instabilité dynamique qui délocalise le paquet d onde des interférences constructives qui permettent une re-localisation.
29 Un intérêt technologique: pompage d énergie dans une fibre optique chaotique R c n cl R p=3 p=4 n co p=6 p=10 Tous les 100km, il faut pomper de l énergie à travers un coeur actif. Le pompage fonctionne bien si le mode de vibration est assez intense au niveau du coeur. = une pompe circulaire n est pas efficace.
G.P. DNS02 Septembre 2012. Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3. Réfraction
DNS Sujet Réfraction...1 I.Préliminaires...1 II.Première partie...1 III.Deuxième partie...3 Réfraction I. Préliminaires 1. Rappeler la valeur et l'unité de la perméabilité magnétique du vide µ 0. Donner
intrication quantique corrélations à distance et instantanées
intrication quantique corrélations à distance et instantanées 1 Les corrélations quantiques à distance et instantanées Il existe des corrélations quantiques à distance et instantanées dans un système quantique
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
On ne peut pas entendre la forme d un tambour
On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position
Une fréquence peut-elle être instantanée?
Fréquence? Variable? Instantané vs. local? Conclure? Une fréquence peut-elle être instantanée? Patrick Flandrin CNRS & École Normale Supérieure de Lyon, France Produire le temps, IRCAM, Paris, juin 2012
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
ACTIVITES JUSQU AU 30/11/2013 Les principaux résultats obtenus ont donné lieu à 10 articles publiés ou soumis en 2013 dans des revues
1 P0110: Chaos quantique, interaction et désordre, ordinateur quantique: localisation d Anderson avec interaction, effets des imperfections sur le calcul quantique, simulation du chaos 30 novembre 2013
Les mathématiques du XXe siècle
Itinéraire de visite Les mathématiques du XXe siècle Tous publics de culture scientifique et technique à partir des classes de 1ères Temps de visite : 1 heure 30 Cet itinéraire de visite dans l exposition
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.
Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées. 1 Ce sujet aborde le phénomène d instabilité dans des systèmes dynamiques
Chapitre 2 Caractéristiques des ondes
Chapitre Caractéristiques des ondes Manuel pages 31 à 50 Choix pédagogiques Le cours de ce chapitre débute par l étude de la propagation des ondes progressives. La description de ce phénomène est illustrée
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)
Modèles à Événements Discrets. Réseaux de Petri Stochastiques
Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
Physique quantique et physique statistique
Physique quantique et physique statistique 7 blocs 11 blocs Manuel Joffre Jean-Philippe Bouchaud, Gilles Montambaux et Rémi Monasson nist.gov Crédits : J. Bobroff, F. Bouquet, J. Quilliam www.orolia.com
Le Bon Accueil Lieu d art contemporain - Sound Art INTERFÉRENCES ATELIERS / EXPOSITION / CONCERT
Le Bon Accueil Lieu d art contemporain - Sound Art INTERFÉRENCES ATELIERS / EXPOSITION / CONCERT 4 ATELIERS TOUT PUBLIC / 1 INSTALLATION SONORE ET CINETIQUE / 1 PERFORMANCE AUDIOVISUELLE - REVISITER DES
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Maîtrise universitaire ès sciences en mathématiques 2012-2013
1 / 6 Remarques liminaires : Ce master à (3 semestres) permet 2 orientations distinctes : - Un master général : "Mathématiques, Systèmes dynamiques et phénomènes d'évolution" - Un master qui permet de
Quelleestlavaleurdel intensitéiaupointm?
Optique Ondulatoire Plan du cours [1] Aspect ondulatoire de la lumière [2] Interférences à deux ondes [3] Division du front d onde [4] Division d amplitude [5] Diffraction [6] Polarisation [7] Interférences
TP 03 B : Mesure d une vitesse par effet Doppler
TP 03 B : Mesure d une vitesse par effet Doppler Compétences exigibles : - Mettre en œuvre une démarche expérimentale pour mesurer une vitesse en utilisant l effet Doppler. - Exploiter l expression du
Sujet. calculatrice: autorisée durée: 4 heures
DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Approche d'un projecteur de diapositives...2 I.Questions préliminaires...2 A.Lentille divergente...2 B.Lentille convergente et
Chapitre 2 Les ondes progressives périodiques
DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?
EXERCICE 1 : QUESTION DE COURS Q1 : Qu est ce qu une onde progressive? Q2 : Qu est ce qu une onde mécanique? Q3 : Qu elle est la condition pour qu une onde soit diffractée? Q4 : Quelles sont les différentes
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
Etrangeté et paradoxe du monde quantique
Etrangeté et paradoxe du monde quantique Serge Haroche La physique quantique nous a donné les clés du monde microscopique des atomes et a conduit au développement de la technologie moderne qui a révolutionné
GELE5222 Chapitre 9 : Antennes microruban
GELE5222 Chapitre 9 : Antennes microruban Gabriel Cormier, Ph.D., ing. Université de Moncton Hiver 2012 Gabriel Cormier (UdeM) GELE5222 Chapitre 9 Hiver 2012 1 / 51 Introduction Gabriel Cormier (UdeM)
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE
TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique
PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200
UNIVERSITÉ LIBRE DE BRUXELLES Faculté des sciences appliquées Bachelier en sciences de l ingénieur, orientation ingénieur civil Deuxième année PHYSIQUE QUANTIQUE ET STATISTIQUE PHYS-H-200 Daniel Baye revu
DIFFRACTion des ondes
DIFFRACTion des ondes I DIFFRACTION DES ONDES PAR LA CUVE À ONDES Lorsqu'une onde plane traverse un trou, elle se transforme en onde circulaire. On dit que l'onde plane est diffractée par le trou. Ce phénomène
Repérage de l artillerie par le son.
Repérage de l artillerie par le son. Le repérage par le son permet de situer avec précision une batterie ennemie, qu elle soit ou non bien dissimulée. Le son se propage avec une vitesse sensiblement constante,
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au
1 2 C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position est constant et il est égal au rayon du cercle. = 3 A- ouvement circulaire non uniforme
PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome
PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations
Master of Science en mathématiques 2013-2014
Remarques liminaires : 1 Ce master à (3 semestres) permet 2 orientations distinctes : 1) Un master général en mathématiques 2) Un master qui permet de choisir des mineurs en finance, statistique, informatique
OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS
OPTIQUE GEOMETRIQUE POLYCOPIE DE COURS PR. MUSTAPHA ABARKAN EDITION 014-015 Université Sidi Mohamed Ben Abdallah de Fès - Faculté Polydisciplinaire de Taza Département Mathématiques, Physique et Informatique
Chapitre 18 : Transmettre et stocker de l information
Chapitre 18 : Transmettre et stocker de l information Connaissances et compétences : - Identifier les éléments d une chaîne de transmission d informations. - Recueillir et exploiter des informations concernant
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?
exposé UE SCI, Valence Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés Université
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
Cours IV Mise en orbite
Introduction au vol spatial Cours IV Mise en orbite If you don t know where you re going, you ll probably end up somewhere else. Yogi Berra, NY Yankees catcher v1.2.8 by-sa Olivier Cleynen Introduction
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
La physique quantique couvre plus de 60 ordres de grandeur!
La physique quantique couvre plus de 60 ordres de grandeur! 10-35 Mètre Super cordes (constituants élémentaires hypothétiques de l univers) 10 +26 Mètre Carte des fluctuations du rayonnement thermique
Photons, expériences de pensée et chat de Schrödinger: une promenade quantique
Photons, expériences de pensée et chat de Schrödinger: une promenade quantique J.M. Raimond Université Pierre et Marie Curie Institut Universitaire de France Laboratoire Kastler Brossel Département de
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Sur les vols en formation.
Sur les vols en formation. Grasse, 8 Février 2006 Plan de l exposé 1. Missions en cours et prévues 2. Le problème du mouvement relatif 2.1 Positionnement du problème 2.2 Les équations de Hill 2.2 Les changements
Chapitre 2 : Caractéristiques du mouvement d un solide
Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence
Champ électromagnétique?
Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques
Les impulsions laser sont passées en quarante ans de la
Toujours plus court : des impulsions lumineuses attosecondes Les impulsions laser «femtoseconde» sont devenues routinières dans de nombreux domaines de la physique. Elles sont exploitées en particulier
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance
Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette
Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé
Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H
L Évolution de la théorie d élasticité au XIX e siècle
Kaouthar Messaoudi L Évolution de la théorie d élasticité au XIX e siècle Publibook Retrouvez notre catalogue sur le site des Éditions Publibook : http://www.publibook.com Ce texte publié par les Éditions
COLLOQUE NATIONAL de la PERFORMANCE INDUSTRIELLE
COLLOQUE NATIONAL de la PERFORMANCE INDUSTRIELLE Analyse vibratoire expérimentale : outil de surveillance et de diagnostic Dr Roger SERRA ENIVL / LMR 1 Contexte (1/2) Première publication de la charte
Caractéristiques des ondes
Caractéristiques des ondes Chapitre Activités 1 Ondes progressives à une dimension (p 38) A Analyse qualitative d une onde b Fin de la Début de la 1 L onde est progressive puisque la perturbation se déplace
3. Artefacts permettant la mesure indirecte du débit
P-14V1 MÉTHODE DE MESURE DU DÉBIT D UN EFFLUENT INDUSTRIEL EN CANALISATIONS OUVERTES OU NON EN CHARGE 1. Domaine d application Cette méthode réglemente la mesure du débit d un effluent industriel en canalisations
Master of Science en mathématiques 2015-2016
Remarques liminaires : 1/9 Ce master à 90 ECTS (3 semestres) permet 2 orientations distinctes : - Un master général en mathématiques - Un master qui permet de choisir des mineurs en finance, statistique
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Module 7: Chaînes de Markov à temps continu
Module 7: Chaînes de Markov à temps continu Patrick Thiran 1 Introduction aux chaînes de Markov à temps continu 1.1 (Première) définition Ce module est consacré aux processus à temps continu {X(t), t R
ÉNERGIE : DÉFINITIONS ET PRINCIPES
DÉFINITION DE L ÉNERGIE FORMES D ÉNERGIE LES GRANDS PRINCIPES DE L ÉNERGIE DÉCLINAISONS DE L ÉNERGIE RENDEMENT ET EFFICACITÉ DÉFINITION DE L ÉNERGIE L énergie (du grec : force en action) est ce qui permet
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Mathématiques et physique (MP) Discipline : Physique-chimie Seconde année Programme de physique-chimie de la voie MP
Quelques liens entre. l'infiniment petit et l'infiniment grand
Quelques liens entre l'infiniment petit et l'infiniment grand Séminaire sur «les 2» au CNPE (Centre Nucléaire de Production d'électricité) de Golfech Sophie Kerhoas-Cavata - Irfu, CEA Saclay, 91191 Gif
De la sphère de Poincaré aux bits quantiques :! le contrôle de la polarisation de la lumière!
De la sphère de Poincaré aux bits quantiques :! le contrôle de la polarisation de la lumière! 1. Description classique de la polarisation de la lumière!! Biréfringence, pouvoir rotatoire et sphère de Poincaré!
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre
Comment réaliser physiquement un ordinateur quantique. Yves LEROYER
Comment réaliser physiquement un ordinateur quantique Yves LEROYER Enjeu: réaliser physiquement -un système quantique à deux états 0 > ou 1 > -une porte à un qubitconduisant à l état générique α 0 > +
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
1 Mise en application
Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau
Chapitre 13 Numérisation de l information
DERNIÈRE IMPRESSION LE 2 septembre 2013 à 17:33 Chapitre 13 Numérisation de l information Table des matières 1 Transmission des informations 2 2 La numérisation 2 2.1 L échantillonage..............................
Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE. E-MAIL : dataelouardi@yahoo.
Mécanique Quantique EL OUARDI EL MOKHTAR LABORATOIRE MÉCANIQUE & ÉNERGÉTIQUE SPÉCIALITÉ : PROCÈDES & ÉNERGÉTIQUE E-MAIL : [email protected] Site Web : dataelouardi.jimdo.com La physique en deux mots
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
2. Couche physique (Couche 1 OSI et TCP/IP)
2. Couche physique (Couche 1 OSI et TCP/IP) 2.1 Introduction 2.2 Signal 2.3 Support de transmission 2.4 Adaptation du signal aux supports de transmission 2.5 Accès WAN 2.1 Introduction Introduction Rôle
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris)
Puissance et étrangeté du quantique Serge Haroche Collège de France et Ecole Normale Supérieure (Paris) La physique quantique nous a donné les clés du monde microscopique des atomes et a conduit au développement
Introduction à la relativité générale
Introduction à la relativité générale Bartolomé Coll Systèmes de référence relativistes SYRTE - CNRS Observatoire de Paris Introduction à la Relativité Générale Préliminaires Caractère théorique (formation)
8 Ensemble grand-canonique
Physique Statistique I, 007-008 8 Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique,
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN
Nombres, mesures et incertitudes en sciences physiques et chimiques. Groupe des Sciences physiques et chimiques de l IGEN Table des matières. Introduction....3 Mesures et incertitudes en sciences physiques
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE
LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE 2. L EFFET GYROSCOPIQUE Les lois physiques qui régissent le mouvement des véhicules terrestres sont des lois universelles qui s appliquent
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
Quels polygones sont formés par les milieux des côtés d un autre polygone?
La recherche à l'école page 13 Quels polygones sont formés par les milieux des côtés d un autre polygone? par d es co llèg es n dré o ucet de Nanterre et Victor ugo de Noisy-le-rand enseignants : Martine
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
I Stabilité, Commandabilité et Observabilité 11. 1 Introduction 13 1.1 Un exemple emprunté à la robotique... 13 1.2 Le plan... 18 1.3 Problème...
TABLE DES MATIÈRES 5 Table des matières I Stabilité, Commandabilité et Observabilité 11 1 Introduction 13 1.1 Un exemple emprunté à la robotique................... 13 1.2 Le plan...................................
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information
Chapitre 22 : (Cours) Numérisation, transmission, et stockage de l information I. Nature du signal I.1. Définition Un signal est la représentation physique d une information (température, pression, absorbance,
Les interférences lumineuses
Les interférences lumineuses Intérêt de l étude des interférences et de la diffraction : Les interférences sont utiles pour la métrologie, la spectrométrie par transformée de Fourier (largeur de raie),
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
SDLV120 - Absorption d'une onde de compression dans un barreau élastique
Titre : SDLV120 - Absorption d'une onde de compression dan[...] Date : 09/11/2011 Page : 1/9 SDLV120 - Absorption d'une onde de compression dans un barreau élastique Résumé On teste les éléments paraxiaux
Les Prix Nobel de Physique
Revue des Questions Scientifiques, 2013, 184 (3) : 231-258 Les Prix Nobel de Physique Plongée au cœur du monde quantique Bernard Piraux et André Nauts Institut de la Matière Condensée et des Nanosciences
SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières
Physique Générale SYSTEME DE PARTICULES DYNAMIQUE DU SOLIDE (suite) TRAN Minh Tâm Table des matières Applications de la loi de Newton pour la rotation 93 Le gyroscope........................ 93 L orbite
14. Introduction aux files d attente
14. Introduction aux files d attente MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: Files d attente 1/24 Plan 1. Introduction 2. Modèle M/M/1 3. Modèle M/M/1/K MTH2302D: Files
