8 Ensemble grand-canonique

Dimension: px
Commencer à balayer dès la page:

Download "8 Ensemble grand-canonique"

Transcription

1 Physique Statistique I, Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique, mais cette fois, on considère un système Σ ouvert qui peut échanger de l énergie mais aussi de la matière), en équilibre avec un réservoir R de particules et de température. Ce dernier est par définition très grand, donc les échanges de chaleur et de particules avec le système ne changent pas sa température ni son potentiel chimique µ, par conséquent, le potentiel chimique et la température du système Σ sont fixés. Le nombre de particules par contre devient une variable aléatoire. On procède de la même manière, en considérant le système total du réservoir R et du système Σ dans l ensemble microcanonique : E tot = E Σ + E R = const tot = Σ + R = const Comme pour l ensemble canonique, la probabilité de trouver le système dans un état particulier est proportionnelle au nombre d états du réservoir correspondant : p E Σ, Σ )=cte ρ R E tot E Σ, tot Σ ) ln ρ R est une grandeur extensive l entropie S). E tot, tot ): ln ρ R E tot E Σ, tot Σ )) ln ρ 0 R E Σ U On peut la linéariser en E Σ, Σ ) Σ, U, or du = ds pd + µd U = 1, = µ U, et on retrouve la distribution de Gibbs pour l ensemble grand-canonique p E,)=const e µ E 8. Fonction de partition grand-canonique Comme auparavant, on note la constante 1 Z gc l ensemble grand-canonique : Z gc,µ)= toutes les valeurs de E et de où Z gc,µ) est la fonction de partition de exp E µ ) 1

2 Z gc,µ)= e βµ 1 d pi d q i e βhp,q)! h } 3 {{ } Z c,) =0 où Z c,) est la fonction de partition de l ensemble canonique, et le facteur 1! est introduit pour les particules indiscernables. 8.3 Grand potentiel On remarque qu on a un potentiel thermodynamique qui joue le même rôle que l énergie libre F dans l esemble canonique; c est le grand potentiel : Φ,µ)=E S µ Z gc contient à nouveau toute l information sur la thermodynamique du système : On en tire E µ = β ln Z gc = ln Z gc S = p i ln p i = p i [ ln Z gc + E i µ i ] =lnz gc + E µ Φ,,µ)= ln Z gc comparer avec F,,)= ln Z c ) outes les grandeurs thermodynamiques peuvent être exprimées à partir de Φ : = = Φ E = + µ =Φ Φ β µ Φ = Φ S = Φ 1 β on retrouve les relations thermodynamiques standard. 8.4 Equivalence avec l ensemble canonique Dans la limite thermodynamique, les fluctuations du nombre de particules sont petites, et l ensemble grand-canonique est équivalent à l ensemble canonique de la même mainıère que l ensemble canonique est équivalent à l ensemble microcanonique).

3 Si on note P ) la probabilité d avoir particules, alors P ) e µ Zc,) Or donc Le point selle 0 est donné par: F = ln Z c =énergie libre extensive µ F ) P ) e 1) µ = F,) ) 0 Cette équation établit la relation entre le potentiel chimique µ dans l ensemble grandcanonique et le nombre de particules 0 dans l ensemble canonique correspondant. On peut également reformuler la preuve dans le sens opposé similaire à la preuve d équivalence entre les ensembles microcanonique et canonique discutée dans les exercices). Dans ce cas, le potentiel chimique µ de l ensemble grand-canonique correspondant à l ensemble canonique avec particules est determiné par la condition µ = où la moyenne est calculée dans l ensemble grand-canonique. 8.5 Fluctuations du nombre de particules dans l ensemble grandcanonique D une manière similaire à notre discussion de l ensemble cnaonique, on peut calculer les fluctuations du nombre de particules dans l ensemble grand-canonique. On développe l énergie libre dans 1) : F ) = F ) F ) F = F ) µ + 1 0) 0 3

4 et on obtient immédiatement [en utilisant la relation donnant le point selle )] P ) =const e 1 0) 0 correspondant à la loi normale en accord avec le théorème de la limite centrale). L écart quadratique moyen est donc donné par On peut relier ), σ = ) 1 1 = ci-dessus à la compressibilité isothermedu système : κ := 1 ) p, qui décrit la réponse du volume ) à un) changement de pression. La relation entre et dorénavant, toutes les dérivées sont calculées à p = const, et on ommet l indice dans les dérivées) peut être comprise comme deux façons équivalentes de décrire une compression du gaz : 1. Garder le nombre de particules constant, et réduire le volume.. Augmenter le nombre de particule tout en gardant le volume constant. On peut dériver cette rélation à partir de l extensivité de l énergie U : voir exercices). Par conséquent, du = ds pd + µd U = S p + µ F = U S = p + µ est simultanément df = pd + µd à = const D une manière symmétrique, on obtient les deux relations : ) ) ) F p p = = p + ) ) ) F p µ = = µ + et on en tire ) ) p + Finalement, on remarque que ) =0= ) ) = F p = 4 ) p

5 et donc ) p = ) qui résulte dans deux expressions équivalentes pour κ : κ = 1 p ), = Les fluctuations du nombre de particules dans l ensemble grand-canonique sont donc : σ = κ Les fluctuations relatives sont petites : σ = 1 ρ κ 1 On trouve un résultat similaire à celui des fluctuations de l énergie dans l ensemble canonique : dans la limite thermodynamique, on tombe sur la loi normale avec les fluctuations relatives proportionnelles à1/. Ceci confirme le résultat énoncé audébut de ce paragraphe, c est à dire que dans la limite thermodynamique, l ensemble grand-canonique est équivalent à l ensemble canonique qui est àsontouréquivalent à l ensemble microcanonique). On peut par ailleurs montrer directement que les fluctuations d énergie dans l ensemble grand-canonique sont aussi proportionnelles à 1 voir exercices). 8.6 Exemple : Le gaz parfait monoatomique dans l ensemble grand-canonique Z gc,µ, )= Pour des particules indiscernables ), e βµ Z c,, ) =0 Z c,, )= 1! d pi d q i h 3 e βhp,q) p i H p, q) = m i=1 Z c,, ) = 1! h 3 1 Z gc,µ, ) =! =0 [ πm = exp e βµ ) d 3 p e p m = 1! [Z c =1,,)] e βµ h 3 πm)3 h 5 ) ] 3 )

6 Le grand potentiel : Φ= ln Z gc = e µ πm Et on peut en déduire les grandeurs thermodynamiques : h ) 3 S = Φ ) 3 = e µ πm 5 h µ ) p = Φ ) 3 = e µ πm h = Φ = e µ πm Si on réexprime S et p en fonction de à laplacedeµ), alors on retrouve les mêmes résultats que pour l ensemble canonique : 5 S = µ ) [ ) ]) 3 5 = +ln πm h p = h ) 3 6

1 Thermodynamique: première loi

1 Thermodynamique: première loi 1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction

Plus en détail

L3. Cours d introduction à la physique statistique

L3. Cours d introduction à la physique statistique L3. Cours d introduction à la physique statistique Description probabiliste d un système physique 2. Buts de la physique statistique............................ 2.2 otions de probabilité ( tutorat 2.........................

Plus en détail

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION DÉFINITIONS L exergie d un système dans des conditions (T, S, U ) données correspond au travail utile maximal que ce système pourrait fournir en

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE 1 I.U.. de Saint-Omer Dunkerque Département Génie hermique et énergie COURS DE HERMODYNAMIQUE 4 e semestre Olivier ERRO 2009-2010 able des matières 1 Mathématiques pour la thermodynamique 4 1.1 Dérivées

Plus en détail

Pb 1 : Gaz parfaits classique et quantiques sur réseau

Pb 1 : Gaz parfaits classique et quantiques sur réseau L3 et Magistère de physique fondamentale Université Paris-Sud Examen partiel de Physique statistique Mercredi 20 Mars 2013 Durée de l épreuve : 3 heures. L utilisation de documents, téléphones portables,...

Plus en détail

Introduction à la Physique Statistique des Systèmes à l Equilibre

Introduction à la Physique Statistique des Systèmes à l Equilibre Licence de Physique et Applications Université Paris-Sud-XI Introduction à la Physique Statistique des Systèmes à l Equilibre Jean-luc Raimbault - 2008 - 2 Première partie Introduction à la Physique Statistique

Plus en détail

Physique générale II Examen Problème 1 Prof. Jean-Philippe Ansermet

Physique générale II Examen Problème 1 Prof. Jean-Philippe Ansermet Physique générale II Examen Problème 1 Prof. Jean-Philippe Ansermet 25 juin 2013-12h15-15h15 Nom : l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 Prénom : l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l

Plus en détail

CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ

CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ C.1. Prise en mains rapide du logiciel Atelier Théorie Cinétique pour l'enseignant Sauver les deux fichiers Gaz.htm et gaz.jar

Plus en détail

P.V = n.r.t. P.V = n.r.t Avec: n: quantité de matière (1 mole = 6,02. 10 23 molécules). R : constante des gaz parfaits. R = 8,3 J.K -1.

P.V = n.r.t. P.V = n.r.t Avec: n: quantité de matière (1 mole = 6,02. 10 23 molécules). R : constante des gaz parfaits. R = 8,3 J.K -1. CHALEUR, TRAVAIL & ENERGIE INTERNE DES GAZ PARFAITS LES 4 TRANSFORMATIONS THERMODYNAMIQUES DE BASE EQUATION CARACTERISTIQUE DES GAZ PARFAITS GAZ PARFAITS L'état d'un gaz parfait est décrit par ses trois

Plus en détail

Notes de cours : Physique statistique. Jean-Baptiste Théou

Notes de cours : Physique statistique. Jean-Baptiste Théou otes de cours : Physique statistique Jean-Baptiste Théou 17 novembre 009 Table des matières 1 Introduction 3 Rappel de thermodynamique classique 4.1 Vocabulaire de la thermodynamique................ 4.1.1

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques Thermodynamique du grec Thermos: chaud du grec Dunamis: puissance Pr. Alfonso San Miguel Laboratoire de Physique de la Matière Condensée et Nanostructures Bât L. Brillouin Définition La thermodynamique

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+ Chapitre 22 Sciences Physiques - BTS Transfert thermique 1 Généralités 1.1 Température La température absolue est mesuré en Kelvin [K]. La relation de passage entre C et K est : T [K] = [ C ]+ 273,15 Remarque

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Échange d énergie 1 er principe de la thermodynamique

Échange d énergie 1 er principe de la thermodynamique Échange d énergie 1 er principe de la thermodynamique Table des matières 1) MISE EN PLACE DU PREMIER PRINCIPE 2 1.1) ENERGIE INTERNE D UN SYSTEME 2 1.2) CADRE DU PROGRAMME 2 1.3) ENONCE DU PREMIER PRINCIPE

Plus en détail

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Lycée François Arago Perpignan M.P.S.I. 2012-2013 TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Exercice 1 - Influence du chemin de transformation. Une mole de

Plus en détail

Concours Centrale-Supélec 2005 7/12

Concours Centrale-Supélec 2005 7/12 Problème - type centrale Partie - Couplage des phénomènes de conduction thermique et électrique en régime linéaire. Étude d un réfrigérateur à effet Peltier Le but de cette partie est de montrer que, dans

Plus en détail

La simulation Monte Carlo

La simulation Monte Carlo La simulation Monte Carlo Pascal Boulet pascal.boulet@univ-provence.fr Réseau français de chimie théorique 2011 Outline Introduction à la simulation numérique et au calcul Historique et méthodes Introduction

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

THEORIE CLASSIQUE DES CHAMPS

THEORIE CLASSIQUE DES CHAMPS Paris 7 QA 421-422 1992 93 THEORIE CLASSIQUE DES CHAMPS EXAMEN, t 0 = mardi 7 septembre 1993, 8h 30 t = 4 heures Il n est pas totalement inutile de lire l énoncé : les questions sont en principe, et parfois

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Un modèle simple de formation d étoiles

Un modèle simple de formation d étoiles Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique

Plus en détail

Statistiques quantiques. Limite classique

Statistiques quantiques. Limite classique Statistiques quantiques. Limite classique 1 Statistiques quantiques 1.1 Particules identiques discernables et indiscernables Dans cette partie, nous considérons des particules identiques sans interactions.

Plus en détail

Table des matières. Chapitre 1- Atomistique... 17. Chapitre 2- Liaisons chimiques... 47

Table des matières. Chapitre 1- Atomistique... 17. Chapitre 2- Liaisons chimiques... 47 Table des matières Chapitre 1- Atomistique... 17 1. Structure de l atome... 17 2. Modèle corpusculaire : cas de l atome H... 19 2.1 Objectif... 19 2.2 Modèle de Rutherford... 19 2.3 Modèle de Bohr... 20

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Physique : Thermodynamique

Physique : Thermodynamique Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une

Plus en détail

Physique statistique

Physique statistique 1 Cours Sciences Physiques MP Physique statistique La Thermodynamique statistique a pour ambition de considérer les entités microscopiques qui constituent la matière comme les atomes, les molécules, les

Plus en détail

La Condensation de Bose-Einstein : Introduction

La Condensation de Bose-Einstein : Introduction Séminaire Poincaré (2003) 0 Séminaire Poincaré La Condensation de Bose-Einstein : Introduction C. Cohen-Tannoudji Résumé. Le but de ce premier exposé est d introduire la notion de condensation de Bose-Einstein

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon

Cours de Physique Statistique. Éric Brunet, Jérôme Beugnon Cours de Physique Statistique Éric Brunet, Jérôme Beugnon 7 octobre 2014 On sait en quoi consiste ce mouvement brownien. Quand on observe au microscope une particule inanimée quelconque au sein d un fluide

Plus en détail

Cours de Physique statistique

Cours de Physique statistique Licence de Physique Fondamentale et Appliquée Année 2014-2015 Parcours Physique et Applications UNIVERSITÉ PARIS-SUD mention Physique ORSAY Cours de Physique statistique Compilation de textes de A. Abada,

Plus en détail

DIAGRAMMES BINAIRES. Sommaire. G.P. Diagrammes binaires 2013

DIAGRAMMES BINAIRES. Sommaire. G.P. Diagrammes binaires 2013 DIAGRAMMES BINAIRES Sommaire I.Éléments de thermochimie maths spé...2 A.Introduction de la notion d'enthalpie libre...2 B.Évolution d'une même espèce chimique sous deux phases à P et constants...2 C.Expression

Plus en détail

Introduction à la thermodynamique et à la physique statistique. Clément BARUTEAU

Introduction à la thermodynamique et à la physique statistique. Clément BARUTEAU Introduction à la thermodynamique et à la physique statistique Clément BARUTEAU Ecole Normale Supérieure de Cachan 00 i Un hommage et un grand remerciement à Christian Boulet, professeur de physique statistique

Plus en détail

sciences sup Cours et exercices corrigés écoles d ingénieurs Masters Physique statistique Introduction 3 e édition Christian Ngô Hélène Ngô

sciences sup Cours et exercices corrigés écoles d ingénieurs Masters Physique statistique Introduction 3 e édition Christian Ngô Hélène Ngô sciences sup Cours et exercices corrigés écoles d ingénieurs Masters Physique statistique Introduction 3 e édition Christian Ngô Hélène Ngô Physique statistique Introduction Cours et exercices corrigés

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT

MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT Une entreprise est spécialisée dans le traitement de surface par trempage de pièces métalliques de tailles diverses. Un pont roulant permet de faire progresser

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

Introduction à la description des systèmes thermodynamiques

Introduction à la description des systèmes thermodynamiques Introduction à la description des systèmes thermodynamiques 1. Définitions et généralités : La Thermodynamique est l étude des échanges d énergie ou de matière. La thermodynamique ne délimite a priori

Plus en détail

( ) ( ) U. c,e. Remarque : On s intéressera quasiment systématiquement à un système au repos dans le référentiel d étude. tot

( ) ( ) U. c,e. Remarque : On s intéressera quasiment systématiquement à un système au repos dans le référentiel d étude. tot herodnaique Le paragraphe I. est consacré à l introduction (d une partie) du vocabulaire de base de la therodnaique. Dans le paragraphe II., l étude d un sstèe particulier, le gaz parfait, peret une preière

Plus en détail

Transformations de phase Séance d'exercices 3 - Diagramme de phases binaires et ternaires (corrigé) 29.03.2006 - D. Favez, M. Felberbaum, F.

Transformations de phase Séance d'exercices 3 - Diagramme de phases binaires et ternaires (corrigé) 29.03.2006 - D. Favez, M. Felberbaum, F. Transformations de phase Séance d'exercices 3 - Diagramme de phases binaires et ternaires (corrigé) 29.03.2006 - D. Favez, M. Felberbaum, F. Kohler Exercice 1 Diagramme de phase Fe-C 1) En considérant

Plus en détail

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides 1 Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides I Premier principe de la thermodynamique pour un système ouvert Certains systèmes échangent avec l extérieur, outre

Plus en détail

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons.

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. OXYDO-REDUCTION I) Définitions 1) Oxydant et Réducteur Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. 2) Couple rédox On parle de

Plus en détail

Méthode de détermination des énergies livrées aux PCE raccordés au réseau de GrDF, à partir des volumes mesurés par les compteurs

Méthode de détermination des énergies livrées aux PCE raccordés au réseau de GrDF, à partir des volumes mesurés par les compteurs RÉFÉRENCE : Méthode de détermination des énergies livrées aux PCE raccordés au réseau de GrDF, à partir des volumes mesurés par les compteurs Ce document a pour objet de décrire la méthode de détermination

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE

mini INTERROS de Prépas & Deug SUP-SPÉ Thermodynamique Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE mini INTERROS de Prépas & Deug MPSI-PCSI-PTSI SUP-SPÉ Thermodynamique MP-MP*-PC-PC*-PT-PT* Roland Bouffanais Collection dirigée par Éric MAURETTE Nassim MOKRANE pages 1. Introduction à la thermodynamique.......................

Plus en détail

RDP : Bilan carbone d une centrale électrique thermique au gaz

RDP : Bilan carbone d une centrale électrique thermique au gaz 1S Thème : AGIR RDP : Bilan carbone d une centrale électrique thermique au gaz DESCRIPTIF DE SUJET DESTINE AU PROFESSEUR Objectif Compétences exigibles du B.O. Initier les élèves de première S à la démarche

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Physique Statistique

Physique Statistique Physique Statistique Chapitre 9 Gaz idéal de Bosons et de ermions Introduction Il existe deux types de particules en physique : Les fermions ont un spin entier : e a un spin s =, He 3 a un spin s = Les

Plus en détail

5. Validité de la méta-analyse

5. Validité de la méta-analyse 5. Validité de la méta-analyse 5.1. Poids de la preuve d une méta-analyse Le poids de la preuve d un résultat scientifique quantifie le degré avec lequel ce résultat s approche de la réalité. Il ne s agit

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Sections : L1 Santé - 1 Olivier CAUDRELIER oc.polyprepas@orange.fr Chapitre 1 : Equations aux dimensions 1. Equation aux dimensions a) Dimension

Plus en détail

PHQ713 Mécanique Statistique 1

PHQ713 Mécanique Statistique 1 PHQ73 Mécanique Statistique 24 février 2009 Autiwa TABLE DES MATIÈRES 2 Table des matières Introduction 3 2 Notions de bases 3 2. Variable discrète......................................... 3 2.2 Variable

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

Modélisation et résolution du problème de transport de gaz: application au réseau principal français

Modélisation et résolution du problème de transport de gaz: application au réseau principal français Modélisation et résolution du problème de transport de gaz: application au réseau principal français Présentation des travaux de thèse GDF SUEZ - INPT - ENSIACET - LGC EMN 24 mars 2011 Le gaz en Europe

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

G.P. DS 07 6 février 2008

G.P. DS 07 6 février 2008 DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 4 heures Sujet Modulateur optique... 2 I.Interférence à deux ondes...2 II.Étude d une séparatrice...2 III.Interférométre de Mach-Zehnder...

Plus en détail

LE DIAGRAMME ENTHALPIQUE

LE DIAGRAMME ENTHALPIQUE LE DIAGRAMME ENTHALPIQUE L expression cycle vient de la thermodynamique. En effet lorsqu une masse de fluide se retrouve après diverses transformations dans le même état (pression, volume, température)

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

CCP Chimie MP 2011 Énoncé 1/5 6(66,21 03&+ (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz

CCP Chimie MP 2011 Énoncé 1/5 6(66,21 03&+ (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz CCP Chimie MP 20 Énoncé /5 6(66,2 03&+ C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz %/HFDQGLGDWDWWDFKHUDODSOXVJUDQGHLPSRUWDQFHjODFODUWpjODSUpFLVLRQHWjODFRQFLVLRQGH

Plus en détail

Préparation EPNER : thermodynamique. Philippe Ribière

Préparation EPNER : thermodynamique. Philippe Ribière Préparation EPNER : thermodynamique. Philippe Ribière Lundi 13 et mardi 14 septembre 2010 Ph. Ribière EPNER 2010 Thermodynamique 2 Le présent document n a pas pour vocation de remplacer les multiples et

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1 Hélium superfluide Applications aux procédés de Cryogénie Physique des solides - 22 mai 2006 1 Introduction L Hélium Z = 2. Point de fusion très bas. Chimiquement inerte. Deux isotopes naturels Physique

Plus en détail

TP 3 diffusion à travers une membrane

TP 3 diffusion à travers une membrane TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier

Plus en détail

Chaleur, température, pression, gaz parfait, diffusion,... v 7

Chaleur, température, pression, gaz parfait, diffusion,... v 7 9 Chaleur, température, pression, gaz parfait, diffusion,... v 7 1 La Température T Instrument de mesure type: le thermomètre à Hg. Calibration: échelle Celsius de température: 0 C l'eau gèle 100 C l'eau

Plus en détail

Obligation : transfert dans le temps

Obligation : transfert dans le temps Obligation : transfert dans le temps Dans ce premier chapitre nous introduirons les principales notions concernant les obligations. Les principes élémentaires de la notion d arbitrage y sont décrits. Une

Plus en détail

Lois normales, cours, terminale S

Lois normales, cours, terminale S Lois normales, cours, terminale S F.Gaudon 6 mai 2014 Table des matières 1 Variables centrées et réduites 2 2 Loi normale centrée et réduite 2 3 Loi normale N (µ, σ 2 ) 4 1 1 Variables centrées et réduites

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Physique Statistique

Physique Statistique Paris 7 PH 402 2002 03 Physique Statistique EXERCICES Feuille 3 : Distribution microcanonique 1 Défauts de Frenkel Les N atomes qui constituent un cristal parfait sont régulièrement disposés sur les N

Plus en détail

LES 2 PRINCIPES DE LA THERMODYNAMIQUE

LES 2 PRINCIPES DE LA THERMODYNAMIQUE PSI Brizeux Ch. T1 : Les deux principes de la thermodynamique 1 C H A P I T R E 1 LES 2 PRINCIPES DE LA THERMODYNAMIQUE APPLICATIONS 1. LES FONDEMENTS DE LA THERMODYNAMIQUE 1.1. La variable température

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été mis en ligne par le Canopé de l académie de Montpellier pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce fichier numérique ne peut être reproduit, représenté,

Plus en détail

TD : Equilibre Général. Emmanuel Duguet

TD : Equilibre Général. Emmanuel Duguet TD : Equilibre Général Emmanuel Duguet 2013-2014 Sommaire 1 Les ménages 2 1.1 Consommation et temps de travail................ 2 1.2 Prix et salaire d équilibre..................... 3 2 Equilibre avec

Plus en détail

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits.

cours n 4 : Chaleur, travail et énergie interne des gaz parfaits. 1 er cycle universitaire. BS. C. Haouy, professeur de hysique Appliquée Cours de hermodynamique n 4 : chaleur, travail et énergie interne des gaz parfaits. Mise à jour du 21-02-07. Colonne de gauche =

Plus en détail

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule Thermodynamique Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression Ludwig Boltzmann (1844-1906), Température et Energie Dégrés de liberté d'une molécule Equation d'état du gaz parfait Théorie

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier Modélisation, équations aux dérivées partielles, 16h de cours, 16h de TDs 1 er février 2013 Marie Hélène

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

Table des matières. Avant-propos... 11

Table des matières. Avant-propos... 11 Table des matières Avant-propos... 11 Chapitre 1. Transformations et équilibres physico-chimiques... 15 1.1. Grandeurs caractéristiques des transformations physico-chimiques... 15 1.1.1. Equation-bilan

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

Le modèle du gaz parfait

Le modèle du gaz parfait Table des matières 1 : énergie interne, équation d état 1.1 Hypothèses........................................... 1. Énergie interne d un GPM................................... 1.3 Équation d état du GPM....................................

Plus en détail

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique

SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des

Plus en détail

Gestion de projet - calcul probabiliste

Gestion de projet - calcul probabiliste Gestion de projet - calcul probabiliste GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Table des

Plus en détail

4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES

4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES 4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES Dans l'introduction de cet ouvrage, nous avons montré que les technologies énergétiques se présentent comme des assemblages de composants traversés par des

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

SPE PSI DL 8 Pour le 05/12/11

SPE PSI DL 8 Pour le 05/12/11 SPE PSI DL 8 Pour le 05/12/11 CONDUCTION DANS LES METAUX: L'espace est rapporté à un repère O muni d'une base cartésienne ( e, e, e ). Données numériques: - charge de l'électron: -e = - 1,6.10-19 C. -

Plus en détail

SERIE D EXERCICES 26 : THERMODYNAMIQUE : DEUXIEME PRINCIPE

SERIE D EXERCICES 26 : THERMODYNAMIQUE : DEUXIEME PRINCIPE Nathalie an de Wiele - hysique Sup CSI - Lycée les Eucalyptus - Nice Série d exercices 6 SERIE D EXERCICES 6 : HERMODYNAMIQUE : DEUXIEME RINCIE ression et température thermodynamiques. Exercice.. On se

Plus en détail