8 Ensemble grand-canonique

Dimension: px
Commencer à balayer dès la page:

Download "8 Ensemble grand-canonique"

Transcription

1 Physique Statistique I, Ensemble grand-canonique 8.1 Calcul de la densité de probabilité On adopte la même approche par laquelle on a établi la densité de probabilité de l ensemble canonique, mais cette fois, on considère un système Σ ouvert qui peut échanger de l énergie mais aussi de la matière), en équilibre avec un réservoir R de particules et de température. Ce dernier est par définition très grand, donc les échanges de chaleur et de particules avec le système ne changent pas sa température ni son potentiel chimique µ, par conséquent, le potentiel chimique et la température du système Σ sont fixés. Le nombre de particules par contre devient une variable aléatoire. On procède de la même manière, en considérant le système total du réservoir R et du système Σ dans l ensemble microcanonique : E tot = E Σ + E R = const tot = Σ + R = const Comme pour l ensemble canonique, la probabilité de trouver le système dans un état particulier est proportionnelle au nombre d états du réservoir correspondant : p E Σ, Σ )=cte ρ R E tot E Σ, tot Σ ) ln ρ R est une grandeur extensive l entropie S). E tot, tot ): ln ρ R E tot E Σ, tot Σ )) ln ρ 0 R E Σ U On peut la linéariser en E Σ, Σ ) Σ, U, or du = ds pd + µd U = 1, = µ U, et on retrouve la distribution de Gibbs pour l ensemble grand-canonique p E,)=const e µ E 8. Fonction de partition grand-canonique Comme auparavant, on note la constante 1 Z gc l ensemble grand-canonique : Z gc,µ)= toutes les valeurs de E et de où Z gc,µ) est la fonction de partition de exp E µ ) 1

2 Z gc,µ)= e βµ 1 d pi d q i e βhp,q)! h } 3 {{ } Z c,) =0 où Z c,) est la fonction de partition de l ensemble canonique, et le facteur 1! est introduit pour les particules indiscernables. 8.3 Grand potentiel On remarque qu on a un potentiel thermodynamique qui joue le même rôle que l énergie libre F dans l esemble canonique; c est le grand potentiel : Φ,µ)=E S µ Z gc contient à nouveau toute l information sur la thermodynamique du système : On en tire E µ = β ln Z gc = ln Z gc S = p i ln p i = p i [ ln Z gc + E i µ i ] =lnz gc + E µ Φ,,µ)= ln Z gc comparer avec F,,)= ln Z c ) outes les grandeurs thermodynamiques peuvent être exprimées à partir de Φ : = = Φ E = + µ =Φ Φ β µ Φ = Φ S = Φ 1 β on retrouve les relations thermodynamiques standard. 8.4 Equivalence avec l ensemble canonique Dans la limite thermodynamique, les fluctuations du nombre de particules sont petites, et l ensemble grand-canonique est équivalent à l ensemble canonique de la même mainıère que l ensemble canonique est équivalent à l ensemble microcanonique).

3 Si on note P ) la probabilité d avoir particules, alors P ) e µ Zc,) Or donc Le point selle 0 est donné par: F = ln Z c =énergie libre extensive µ F ) P ) e 1) µ = F,) ) 0 Cette équation établit la relation entre le potentiel chimique µ dans l ensemble grandcanonique et le nombre de particules 0 dans l ensemble canonique correspondant. On peut également reformuler la preuve dans le sens opposé similaire à la preuve d équivalence entre les ensembles microcanonique et canonique discutée dans les exercices). Dans ce cas, le potentiel chimique µ de l ensemble grand-canonique correspondant à l ensemble canonique avec particules est determiné par la condition µ = où la moyenne est calculée dans l ensemble grand-canonique. 8.5 Fluctuations du nombre de particules dans l ensemble grandcanonique D une manière similaire à notre discussion de l ensemble cnaonique, on peut calculer les fluctuations du nombre de particules dans l ensemble grand-canonique. On développe l énergie libre dans 1) : F ) = F ) F ) F = F ) µ + 1 0) 0 3

4 et on obtient immédiatement [en utilisant la relation donnant le point selle )] P ) =const e 1 0) 0 correspondant à la loi normale en accord avec le théorème de la limite centrale). L écart quadratique moyen est donc donné par On peut relier ), σ = ) 1 1 = ci-dessus à la compressibilité isothermedu système : κ := 1 ) p, qui décrit la réponse du volume ) à un) changement de pression. La relation entre et dorénavant, toutes les dérivées sont calculées à p = const, et on ommet l indice dans les dérivées) peut être comprise comme deux façons équivalentes de décrire une compression du gaz : 1. Garder le nombre de particules constant, et réduire le volume.. Augmenter le nombre de particule tout en gardant le volume constant. On peut dériver cette rélation à partir de l extensivité de l énergie U : voir exercices). Par conséquent, du = ds pd + µd U = S p + µ F = U S = p + µ est simultanément df = pd + µd à = const D une manière symmétrique, on obtient les deux relations : ) ) ) F p p = = p + ) ) ) F p µ = = µ + et on en tire ) ) p + Finalement, on remarque que ) =0= ) ) = F p = 4 ) p

5 et donc ) p = ) qui résulte dans deux expressions équivalentes pour κ : κ = 1 p ), = Les fluctuations du nombre de particules dans l ensemble grand-canonique sont donc : σ = κ Les fluctuations relatives sont petites : σ = 1 ρ κ 1 On trouve un résultat similaire à celui des fluctuations de l énergie dans l ensemble canonique : dans la limite thermodynamique, on tombe sur la loi normale avec les fluctuations relatives proportionnelles à1/. Ceci confirme le résultat énoncé audébut de ce paragraphe, c est à dire que dans la limite thermodynamique, l ensemble grand-canonique est équivalent à l ensemble canonique qui est àsontouréquivalent à l ensemble microcanonique). On peut par ailleurs montrer directement que les fluctuations d énergie dans l ensemble grand-canonique sont aussi proportionnelles à 1 voir exercices). 8.6 Exemple : Le gaz parfait monoatomique dans l ensemble grand-canonique Z gc,µ, )= Pour des particules indiscernables ), e βµ Z c,, ) =0 Z c,, )= 1! d pi d q i h 3 e βhp,q) p i H p, q) = m i=1 Z c,, ) = 1! h 3 1 Z gc,µ, ) =! =0 [ πm = exp e βµ ) d 3 p e p m = 1! [Z c =1,,)] e βµ h 3 πm)3 h 5 ) ] 3 )

6 Le grand potentiel : Φ= ln Z gc = e µ πm Et on peut en déduire les grandeurs thermodynamiques : h ) 3 S = Φ ) 3 = e µ πm 5 h µ ) p = Φ ) 3 = e µ πm h = Φ = e µ πm Si on réexprime S et p en fonction de à laplacedeµ), alors on retrouve les mêmes résultats que pour l ensemble canonique : 5 S = µ ) [ ) ]) 3 5 = +ln πm h p = h ) 3 6

1 Thermodynamique: première loi

1 Thermodynamique: première loi 1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction

Plus en détail

L3. Cours d introduction à la physique statistique

L3. Cours d introduction à la physique statistique L3. Cours d introduction à la physique statistique Description probabiliste d un système physique 2. Buts de la physique statistique............................ 2.2 otions de probabilité ( tutorat 2.........................

Plus en détail

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION

EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION EXERGIE ET EFFICACITÉ ÉNERGÉTIQUE EXEMPLE DE COGÉNÉRATION DÉFINITIONS L exergie d un système dans des conditions (T, S, U ) données correspond au travail utile maximal que ce système pourrait fournir en

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE 1 I.U.. de Saint-Omer Dunkerque Département Génie hermique et énergie COURS DE HERMODYNAMIQUE 4 e semestre Olivier ERRO 2009-2010 able des matières 1 Mathématiques pour la thermodynamique 4 1.1 Dérivées

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Introduction à la Physique Statistique des Systèmes à l Equilibre

Introduction à la Physique Statistique des Systèmes à l Equilibre Licence de Physique et Applications Université Paris-Sud-XI Introduction à la Physique Statistique des Systèmes à l Equilibre Jean-luc Raimbault - 2008 - 2 Première partie Introduction à la Physique Statistique

Plus en détail

Pb 1 : Gaz parfaits classique et quantiques sur réseau

Pb 1 : Gaz parfaits classique et quantiques sur réseau L3 et Magistère de physique fondamentale Université Paris-Sud Examen partiel de Physique statistique Mercredi 20 Mars 2013 Durée de l épreuve : 3 heures. L utilisation de documents, téléphones portables,...

Plus en détail

Physique générale II Examen Problème 1 Prof. Jean-Philippe Ansermet

Physique générale II Examen Problème 1 Prof. Jean-Philippe Ansermet Physique générale II Examen Problème 1 Prof. Jean-Philippe Ansermet 25 juin 2013-12h15-15h15 Nom : l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 Prénom : l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l

Plus en détail

CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ

CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ CONSTRUIRE UNE SÉQUENCE PÉDAGOGIQUE UTILISANT UN LOGICIEL DE SIMULATION DE GAZ C.1. Prise en mains rapide du logiciel Atelier Théorie Cinétique pour l'enseignant Sauver les deux fichiers Gaz.htm et gaz.jar

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

P.V = n.r.t. P.V = n.r.t Avec: n: quantité de matière (1 mole = 6,02. 10 23 molécules). R : constante des gaz parfaits. R = 8,3 J.K -1.

P.V = n.r.t. P.V = n.r.t Avec: n: quantité de matière (1 mole = 6,02. 10 23 molécules). R : constante des gaz parfaits. R = 8,3 J.K -1. CHALEUR, TRAVAIL & ENERGIE INTERNE DES GAZ PARFAITS LES 4 TRANSFORMATIONS THERMODYNAMIQUES DE BASE EQUATION CARACTERISTIQUE DES GAZ PARFAITS GAZ PARFAITS L'état d'un gaz parfait est décrit par ses trois

Plus en détail

II - ENTROPIE STATISTIQUE

II - ENTROPIE STATISTIQUE II - ROPI AIIQU 8 ntropie thermodynamique : ) pourquoi l entropie? Le premier principe de la thermodynamique assure la conservation de l énergie (travail et chaleur) lors d un transfert entre deux systèmes

Plus en détail

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations

4 THÉORIE CINÉTIQUE DES GAZ. 4.1 Échelles d observations et fluctuations 4 THÉORIE CINÉTIQUE DES GAZ 4.1 Échelles d observations et fluctuations On s intéresse à un volume V de gaz très grand : qq m 3 dans les conditions normales de température et de pression. Au sein de ce

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

Notes de cours : Physique statistique. Jean-Baptiste Théou

Notes de cours : Physique statistique. Jean-Baptiste Théou otes de cours : Physique statistique Jean-Baptiste Théou 17 novembre 009 Table des matières 1 Introduction 3 Rappel de thermodynamique classique 4.1 Vocabulaire de la thermodynamique................ 4.1.1

Plus en détail

3.1 Circulation du champ d une charge ponctuelle A(Γ)

3.1 Circulation du champ d une charge ponctuelle A(Γ) Chapitre 3 Le potentiel électrostatique Le champ électrostatique peut être caractérisé simplement à l aide d une fonction que nous appellerons potentiel électrostatique. Cette fonction scalaire est souvent

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques

Définition La thermodynamique est la description macroscopique des propriétés de la matière en termes de grandeurs physiques spécifiques Thermodynamique du grec Thermos: chaud du grec Dunamis: puissance Pr. Alfonso San Miguel Laboratoire de Physique de la Matière Condensée et Nanostructures Bât L. Brillouin Définition La thermodynamique

Plus en détail

ORDRE DE RÉACTION : MÉTHODES DE

ORDRE DE RÉACTION : MÉTHODES DE ORDRE DE RÉACTION : MÉTHODES DE RÉSOLUTION Table des matières 1 Méthodes expérimentales 2 1.1 Position du problème..................................... 2 1.2 Dégénérescence de l ordre...................................

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail

Échange d énergie 1 er principe de la thermodynamique

Échange d énergie 1 er principe de la thermodynamique Échange d énergie 1 er principe de la thermodynamique Table des matières 1) MISE EN PLACE DU PREMIER PRINCIPE 2 1.1) ENERGIE INTERNE D UN SYSTEME 2 1.2) CADRE DU PROGRAMME 2 1.3) ENONCE DU PREMIER PRINCIPE

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Concours Centrale-Supélec 2005 7/12

Concours Centrale-Supélec 2005 7/12 Problème - type centrale Partie - Couplage des phénomènes de conduction thermique et électrique en régime linéaire. Étude d un réfrigérateur à effet Peltier Le but de cette partie est de montrer que, dans

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Loi normale ou loi de Laplace-Gauss

Loi normale ou loi de Laplace-Gauss LivreSansTitre1.book Page 44 Mardi, 22. juin 2010 10:40 10 Loi normale ou loi de Laplace-Gauss I. Définition de la loi normale II. Tables de la loi normale centrée réduite S il y avait une seule loi de

Plus en détail

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+ Chapitre 22 Sciences Physiques - BTS Transfert thermique 1 Généralités 1.1 Température La température absolue est mesuré en Kelvin [K]. La relation de passage entre C et K est : T [K] = [ C ]+ 273,15 Remarque

Plus en détail

Méthode de détermination des énergies livrées aux PCE raccordés au réseau de GrDF, à partir des volumes mesurés par les compteurs

Méthode de détermination des énergies livrées aux PCE raccordés au réseau de GrDF, à partir des volumes mesurés par les compteurs RÉFÉRENCE : Méthode de détermination des énergies livrées aux PCE raccordés au réseau de GrDF, à partir des volumes mesurés par les compteurs Ce document a pour objet de décrire la méthode de détermination

Plus en détail

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie

TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Lycée François Arago Perpignan M.P.S.I. 2012-2013 TD de thermodynamique n o 3 Le premier principe de la thermodynamique Bilans d énergie Exercice 1 - Influence du chemin de transformation. Une mole de

Plus en détail

THEORIE CLASSIQUE DES CHAMPS

THEORIE CLASSIQUE DES CHAMPS Paris 7 QA 421-422 1992 93 THEORIE CLASSIQUE DES CHAMPS EXAMEN, t 0 = mardi 7 septembre 1993, 8h 30 t = 4 heures Il n est pas totalement inutile de lire l énoncé : les questions sont en principe, et parfois

Plus en détail

La simulation Monte Carlo

La simulation Monte Carlo La simulation Monte Carlo Pascal Boulet pascal.boulet@univ-provence.fr Réseau français de chimie théorique 2011 Outline Introduction à la simulation numérique et au calcul Historique et méthodes Introduction

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Simulation de variables aléatoires S. Robin INA PG, Biométrie Décembre 1997 Table des matières 1 Introduction Variables aléatoires discrètes 3.1 Pile ou face................................... 3. Loi de

Plus en détail

Gestion de projet - calcul probabiliste

Gestion de projet - calcul probabiliste Gestion de projet - calcul probabiliste GÉRARD CASANOVA - DENIS ABÉCASSIS Paternité - Pas d'utilisation Commerciale - Pas de Modification : http://creativecommons.org/licenses/by-nc-nd/2.0/fr/ Table des

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

5 Définition statistique de l entropie

5 Définition statistique de l entropie 5 Définition statistique de l entropie 5. ntropie de Boltzmann Le principe ergodique stipule que la condition d équilibre d un système est que toutes les configurations classiques permises par les lois

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

( ) ( ) U. c,e. Remarque : On s intéressera quasiment systématiquement à un système au repos dans le référentiel d étude. tot

( ) ( ) U. c,e. Remarque : On s intéressera quasiment systématiquement à un système au repos dans le référentiel d étude. tot herodnaique Le paragraphe I. est consacré à l introduction (d une partie) du vocabulaire de base de la therodnaique. Dans le paragraphe II., l étude d un sstèe particulier, le gaz parfait, peret une preière

Plus en détail

La Condensation de Bose-Einstein : Introduction

La Condensation de Bose-Einstein : Introduction Séminaire Poincaré (2003) 0 Séminaire Poincaré La Condensation de Bose-Einstein : Introduction C. Cohen-Tannoudji Résumé. Le but de ce premier exposé est d introduire la notion de condensation de Bose-Einstein

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Table des matières. Chapitre 1- Atomistique... 17. Chapitre 2- Liaisons chimiques... 47

Table des matières. Chapitre 1- Atomistique... 17. Chapitre 2- Liaisons chimiques... 47 Table des matières Chapitre 1- Atomistique... 17 1. Structure de l atome... 17 2. Modèle corpusculaire : cas de l atome H... 19 2.1 Objectif... 19 2.2 Modèle de Rutherford... 19 2.3 Modèle de Bohr... 20

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1

Hélium superfluide. Applications aux procédés de Cryogénie. Physique des solides - 22 mai 2006 1 Hélium superfluide Applications aux procédés de Cryogénie Physique des solides - 22 mai 2006 1 Introduction L Hélium Z = 2. Point de fusion très bas. Chimiquement inerte. Deux isotopes naturels Physique

Plus en détail

Statistiques quantiques. Limite classique

Statistiques quantiques. Limite classique Statistiques quantiques. Limite classique 1 Statistiques quantiques 1.1 Particules identiques discernables et indiscernables Dans cette partie, nous considérons des particules identiques sans interactions.

Plus en détail

sciences sup Cours et exercices corrigés écoles d ingénieurs Masters Physique statistique Introduction 3 e édition Christian Ngô Hélène Ngô

sciences sup Cours et exercices corrigés écoles d ingénieurs Masters Physique statistique Introduction 3 e édition Christian Ngô Hélène Ngô sciences sup Cours et exercices corrigés écoles d ingénieurs Masters Physique statistique Introduction 3 e édition Christian Ngô Hélène Ngô Physique statistique Introduction Cours et exercices corrigés

Plus en détail

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures

U 315 J. 5008 SESSION 2003. Filière MP PHYSIQUE. ENS de Paris. Durée : 6 heures U 315 J. 5008 SESSION 2003 Filière MP PHYSIQUE ENS de Paris Durée : 6 heures L usage de calculatrices électroniques de poche à alimentation autonome, non imprimantes et sans document d accompagnement,

Plus en détail

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation

Compte rendu de LA37 B, TP numéro 1. Evolution de la température et du degrée d'hydratation 4 6 8 2 4 8 22 26 3 34 38 42 46 5 54 58 62 66 7 74 78 83 89 96 8 44 Bertin Morgan Compte rendu de LA37 B, TP numéro. Les essais effectués par le laboratoire des ponts et chaussés nous ont fournis la température

Plus en détail

Variables aléatoires continues

Variables aléatoires continues IUT Aix-en-Provence Année 204-205 DUT Informatique TD Probabilités feuille n 6 Variables aléatoires continues Exercice (La station-service) Dans une station-service, la demande hebdomadaire en essence,

Plus en détail

Physique statistique (PHY433) Amphi 2. Gilles Montambaux. S({p m })= k X p m ln p m. S(E) =k ln W δe (E) Rappels. Le contact thermique - température

Physique statistique (PHY433) Amphi 2. Gilles Montambaux. S({p m })= k X p m ln p m. S(E) =k ln W δe (E) Rappels. Le contact thermique - température Rappels Physique statistique (PHY433) Amphi 2 Le contact thermique - température Le postulat fondamental de la physique statistique Pour un système isolé à l équilibre, tous les microétats accessibles

Plus en détail

Physique : Thermodynamique

Physique : Thermodynamique Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une

Plus en détail

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320

12 Mélanges de gaz. m = m 1 + m 2 +... + m ns = m i. n = n 1 + n 2 +... + n ns = n i. 20 mars 2003 Généralités et mélanges de gaz parfaits 320 20 mars 2003 Généralités et mélanges de gaz parfaits 320 12 On s est principalement limité jusqu à présent à l étude des substances pures. Or, bon nombre de problèmes thermodynamiques font intervenir des

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

- cas d une charge isolée en mouvement et par extension d un ensemble de

- cas d une charge isolée en mouvement et par extension d un ensemble de Notion de courant de particule ; conservation du courant = expression du courant de particules chargées ; charges; j = q k k - cas d une charge isolée en mouvement et par extension d un ensemble de v k

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

Précision d un résultat et calculs d incertitudes

Précision d un résultat et calculs d incertitudes Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................

Plus en détail

Introduction à la description des systèmes thermodynamiques

Introduction à la description des systèmes thermodynamiques Introduction à la description des systèmes thermodynamiques 1. Définitions et généralités : La Thermodynamique est l étude des échanges d énergie ou de matière. La thermodynamique ne délimite a priori

Plus en détail

LE DIAGRAMME ENTHALPIQUE

LE DIAGRAMME ENTHALPIQUE LE DIAGRAMME ENTHALPIQUE L expression cycle vient de la thermodynamique. En effet lorsqu une masse de fluide se retrouve après diverses transformations dans le même état (pression, volume, température)

Plus en détail

CCP Chimie MP 2011 Énoncé 1/5 6(66,21 03&+ (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz

CCP Chimie MP 2011 Énoncé 1/5 6(66,21 03&+ (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz CCP Chimie MP 20 Énoncé /5 6(66,2 03&+ C O N C O U R S C O M M U N S P O LY T E C H N I Q U E S (35(89(63(&,),48(),/,(5(03 zzzzzzzzzzzzzzzzzzzz &+,0,( 'XUpHKHXUHV zzzzzzzzzzzzzzzzzzzz %/HFDQGLGDWDWWDFKHUDODSOXVJUDQGHLPSRUWDQFHjODFODUWpjODSUpFLVLRQHWjODFRQFLVLRQGH

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

Un modèle simple de formation d étoiles

Un modèle simple de formation d étoiles Un modèle simple de formation d étoiles [Exercice classique] Un modèle simple d étoile consiste à supposer que celle-ci est constituée d une masse M d atomes d hydrogène, adoptant une configuration sphérique

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

DIAGRAMMES BINAIRES. Sommaire. G.P. Diagrammes binaires 2013

DIAGRAMMES BINAIRES. Sommaire. G.P. Diagrammes binaires 2013 DIAGRAMMES BINAIRES Sommaire I.Éléments de thermochimie maths spé...2 A.Introduction de la notion d'enthalpie libre...2 B.Évolution d'une même espèce chimique sous deux phases à P et constants...2 C.Expression

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

Physique statistique

Physique statistique 1 Cours Sciences Physiques MP Physique statistique La Thermodynamique statistique a pour ambition de considérer les entités microscopiques qui constituent la matière comme les atomes, les molécules, les

Plus en détail

MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT

MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT MAINTENANCE D UNE CHAÎNE DE BAINS DE TRAITEMENT Une entreprise est spécialisée dans le traitement de surface par trempage de pièces métalliques de tailles diverses. Un pont roulant permet de faire progresser

Plus en détail

Administration unique par voie IV et sous la forme d'un bolus du principe actif. Analyse des données urinaires du principe actif

Administration unique par voie IV et sous la forme d'un bolus du principe actif. Analyse des données urinaires du principe actif Diplôme Universitaire de Pharmacocinétique de Toulouse *** Année 2007 *** Le modèle monocompartimental : Administration unique par voie IV et sous la forme d'un bolus du principe actif Analyse des données

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

M2 IAD UE MODE Notes de cours (3)

M2 IAD UE MODE Notes de cours (3) M2 IAD UE MODE Notes de cours (3) Jean-Yves Jaffray Patrice Perny 16 mars 2006 ATTITUDE PAR RAPPORT AU RISQUE 1 Attitude par rapport au risque Nousn avons pas encore fait d hypothèse sur la structure de

Plus en détail

MODULE 4. Performances-seuils. Loi d Ohm Puissance Energie Effet Joule. L élève sera capable

MODULE 4. Performances-seuils. Loi d Ohm Puissance Energie Effet Joule. L élève sera capable MODLE 4 MODLE 4. Loi d Ohm. uissance. Energie. Effet Joule erformances-seuils. L élève sera capable 1. de calculer une des grandeurs physiques intervenant sur un circuit électrique élémentaire ; 2. de

Plus en détail

Obligation : transfert dans le temps

Obligation : transfert dans le temps Obligation : transfert dans le temps Dans ce premier chapitre nous introduirons les principales notions concernant les obligations. Les principes élémentaires de la notion d arbitrage y sont décrits. Une

Plus en détail

M1/UE CSy - module P8 1

M1/UE CSy - module P8 1 M1/UE CSy - module P8 1 PROJET DE SIMULATION AVEC MATLAB RÉGULATION DU NIVEAU ET DE LA TEMPÉRATURE DANS UN BAC En vue de disposer d un volume constant de fluide à une température désirée, un processus

Plus en détail

Essais de charge sur plaque

Essais de charge sur plaque Page No.: 1 L essai de charge sur plaque est exécuté entre autres dans des galeries d exploration ou dans des puits, mais il peut aussi être exécuté à la surface en appliquant un poids mort ou en chargeant

Plus en détail

Transformations de phase Séance d'exercices 3 - Diagramme de phases binaires et ternaires (corrigé) 29.03.2006 - D. Favez, M. Felberbaum, F.

Transformations de phase Séance d'exercices 3 - Diagramme de phases binaires et ternaires (corrigé) 29.03.2006 - D. Favez, M. Felberbaum, F. Transformations de phase Séance d'exercices 3 - Diagramme de phases binaires et ternaires (corrigé) 29.03.2006 - D. Favez, M. Felberbaum, F. Kohler Exercice 1 Diagramme de phase Fe-C 1) En considérant

Plus en détail

ECHANGE DE CHALEUR: LA CONDUCTION

ECHANGE DE CHALEUR: LA CONDUCTION ECHANGE DE CHALEUR: LA CONDUCTION Nous n étudierons dans ce chapitre que la conduction en régime permanent, c'est-à-dire lorsque l équilibre thermique est atteint ce qui se caractérise par des températures

Plus en détail

4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES

4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES 4 COMPOSANTS ET TRANSFORMATIONS ÉLÉMENTAIRES Dans l'introduction de cet ouvrage, nous avons montré que les technologies énergétiques se présentent comme des assemblages de composants traversés par des

Plus en détail

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI

MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET. Le Formulaire MPSI MPSI FORMULAIRE LIONEL PORCHERON DANIEL PORCHERON MAGALI DÉCOMBE VASSET Le Formulaire MPSI Conception et création de couverture : Atelier 3+ Collaboration technique : Thomas Fredon, ingénieur Télécom Bretagne

Plus en détail

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités Cogmaster, Probabilités discrètes Feuille de TD n o 1 - Événements et probabilités Exercice 1 Parmi les ensembles suivants, lesquels sont égaux entre eux? A = {n + 4, n N}, B = {n, n = k + 4, k N}, C =

Plus en détail

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule

Thermodynamique. Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression. Température et Energie. Dégrés de liberté d'une molécule Thermodynamique Plan du cours 3. Théorie cinétique des gaz : Calcul de la pression Ludwig Boltzmann (1844-1906), Température et Energie Dégrés de liberté d'une molécule Equation d'état du gaz parfait Théorie

Plus en détail

G.P. DS 07 6 février 2008

G.P. DS 07 6 février 2008 DS SCIENCES PHYSIQUES MATHSPÉ CONCOURS BLANC calculatrice: autorisée durée: 4 heures Sujet Modulateur optique... 2 I.Interférence à deux ondes...2 II.Étude d une séparatrice...2 III.Interférométre de Mach-Zehnder...

Plus en détail

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION

DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION Physique Chapitre 4 Masse, énergie, et transformations nucléaires DM 10 : La fusion nucléaire, l énergie de l avenir? CORRECTION Date :. Le 28 juin 2005, le site de Cadarache (dans les bouches du Rhône)

Plus en détail

Introduction à la thermodynamique et à la physique statistique. Clément BARUTEAU

Introduction à la thermodynamique et à la physique statistique. Clément BARUTEAU Introduction à la thermodynamique et à la physique statistique Clément BARUTEAU Ecole Normale Supérieure de Cachan 00 i Un hommage et un grand remerciement à Christian Boulet, professeur de physique statistique

Plus en détail

Calculs préliminaires.

Calculs préliminaires. MINES-PONTS 005. Filière MP. MATHÉMATIQES 1. Corrigé de JL. Lamard jean-louis.lamard@prepas.org) Calculs préliminaires. Notons que si f H alors f)e / est bien intégrable sur R car continue positive et

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

SPE PSI DL 8 Pour le 05/12/11

SPE PSI DL 8 Pour le 05/12/11 SPE PSI DL 8 Pour le 05/12/11 CONDUCTION DANS LES METAUX: L'espace est rapporté à un repère O muni d'une base cartésienne ( e, e, e ). Données numériques: - charge de l'électron: -e = - 1,6.10-19 C. -

Plus en détail

Plan de la séance du 18 septembre 2015. Cours de gestion financière (M1) Objectif pédagogiques de la séance. Risque (partie 2)

Plan de la séance du 18 septembre 2015. Cours de gestion financière (M1) Objectif pédagogiques de la séance. Risque (partie 2) Cours de gestion financière (M1) Séance du 18 septembre 015 Risque CAC 0 GR (gross return / dividendes réinvestis https://indices.nyx.com/fr/products/indices/qs001113183 XPAR/quotes Variance du taux de

Plus en détail

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires

Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Méthodes de Monte-Carlo Simulation de grandeurs aléatoires Master Modélisation et Simulation / ENSTA TD 1 2012-2013 Les méthodes dites de Monte-Carlo consistent en des simulations expérimentales de problèmes

Plus en détail

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons.

OXYDO-REDUCTION. Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. OXYDO-REDUCTION I) Définitions 1) Oxydant et Réducteur Un oxydant est une espèce capable de fixer des électrons. Un réducteur est une espèce capable de céder des électrons. 2) Couple rédox On parle de

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

5. Validité de la méta-analyse

5. Validité de la méta-analyse 5. Validité de la méta-analyse 5.1. Poids de la preuve d une méta-analyse Le poids de la preuve d un résultat scientifique quantifie le degré avec lequel ce résultat s approche de la réalité. Il ne s agit

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Existence et unicité de la fonction exponentielle 2 1.1 Deux résultats préliminaires.......................................

Plus en détail

TP 3 diffusion à travers une membrane

TP 3 diffusion à travers une membrane TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier

Plus en détail

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i

Exercice 1 QCM. 4 i. e π ou. e π, ou : 4 ( i) 1 /4. e π. e π Réponse d. 1. Le carré de z est : ce qui donne : soit : , soit 4i TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page /5 Terminale STI2D - Bac 203 - Polynésie - Corrigé. TSTI2D - Bac 203 - Polynésie STI2D -.0 - Corrigé.doc - Page 2/5 Exercice QCM. Le carré de

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

MATHÉMATIQUES ET SCIENCES HUMAINES

MATHÉMATIQUES ET SCIENCES HUMAINES MATHÉMATIQUES ET SCIENCES HUMAINES B. MARCHADIER Dépendance et indépendance de deux aléas numériques images Mathématiques et sciences humaines, tome 25 (1969), p. 2534.

Plus en détail

IFRS 11 : Coentreprises Passage de la méthode de la consolidation proportionnelle à la méthode de la mise en équivalence

IFRS 11 : Coentreprises Passage de la méthode de la consolidation proportionnelle à la méthode de la mise en équivalence IFRS 11 : Coentreprises Passage de la méthode de la consolidation proportionnelle à la méthode de la mise en équivalence Extrait, Groupe de discussion sur les IFRS Compte rendu de la réunion du 18 octobre

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail