CORRECTION BAC BLANC TS

Dimension: px
Commencer à balayer dès la page:

Download "CORRECTION BAC BLANC TS"

Transcription

1 CORRECTION BAC BLANC TS 00 (Ensegnement oblgatore) Exercce : Queston : a Faux Contre-exemple : z = Alors z 0 et donc z b Vra Cette égalté exprme que le pont M d affxe z est à égale dstance des ponts O (0) et A () ; ce qu sgnfe que M est sur la médatrce du segment OA d équaton x =, et donc que Re( z ) = Autre méthode : Sot M d affxe z x y avec x et y réels Alors l égalté z z z z, ce qu est auss équvalent à : x y x y x 0 x est équvalente à Re z Queston : a Faux En écrvant a et b sous forme exponentelle, on obtent : a e et b e D où le produt : ab e b Faux Le pont A d affxe a n est pas l mage du pont B d affxe b par une rotaton de centre O car les complexes a et b n ont pas le même module Queston : a Vra Z e e b Vra Pour tout 0;, Z e e Z c Vra Pour tout 0; d Vra Z e e e e e cos, L ensemble des ponts M d affxe Z e et donc Z est le cercle de centre A d affxe et de rayon est un réel En effet, M d affxe Z appartent au cercle de centre A d affxe et de rayon équvaut à AM, c est-à-dre à : 0, tel que : Z e ou tel que : Z e Z, ce qu sgnfe qu l exste un réel dans Queston : a Vra zm zn N symétrque de M par rapport à A sgnfe que za, c est-à-dre que zn za zm z m m m D où : N

2 b Vra Les affxes de NK et de JM sont égales à : m Exercce : Parte A : Resttuton organsée des connassances : Queston de cours : une démonstraton est donnée dans le lvre p 8 Parte B : On transforme l'équaton de S : x + y + z x + y z + = 0, en utlsant les formes canonques On obtent : x + y + z x + y z + = (x y + ) z Donc l'équaton de S est auss (x + (y + ) + (z = Ce qu ndque que S est une sphère de centre ( ; Les coordonnées de I vérfent l'équaton de S pusque : ( + + ( = Cela sgnfe que I est sur S Par contre, les coordonnées de A ne vérfent pas l'équaton de S pusque (5 ) + ( + ) + ( = 5 On en dédut que A n'appartent pas à S On a I( - ; ; -) Ce vecteur étant normal à P, une équaton de P est du type : x y + z + d = 0 Comme I est sur P, les coordonnées de I dovent vérfer cette équaton, autrement dt + d = 0 sot d = Une équaton de P est : x y + z Un rayon de S est perpendculare au plan P en un pont I de S : P est donc le plan tangent à S en I a Pusque Q est parallèle à P, une équaton de Q est du type x y + z + d = 0 Comme B Q, on obtent + + d = 0 sot d = Une équaton de Q est donc x y + z b La dstance de au plan Q est, d'après la Parte A, égale à : = = < La dstance de à S étant strctement nféreur au rayon de S, le plan Q est sécant à S c On sat que l'ntersecton du plan Q et de la sphère S est un cercle de centre J projecton orthogonale de sur Q On cherche donc JN où N est un pont quelconque du cercle d ntersecton Le trangle JN est alors rectangle en J Or N étant un pont quelconque de ce cercle, alors N = rayon de la sphère = De plus J = dstance de au plan Q = Le trangle NJ est rectangle en J Le théorème de Pythagore permet donc d'écrre que : N = J + JN Par conséquent JN = = 5 Le cercle secton de la sphère S par le plan Q a donc pour rayon 5 a Un vecteur normal de R est n ' ( ; ; ) 5 = 5 P et R ont donc des vecteurs normaux I ( ; n' qu ne sont pas colnéares car les coordonnées ne sont pas proportonnelles P et R ne sont donc pas parallèles : ls sont donc sécants suvant une drote (d ) b Un pont stué sur (d) a des coordonnées (x ; y ; z) vérfant les équatons de P et R, autrement dt vérfant le x y + z x = z système, ce qu donne en exprmant x et y en foncton de z : x + y + z = 5 y = En posant z = t, t paramètre réel, on obtent un système d'équatons paramétrques de (d) sous la forme : x = t y = t z = t Remarque: cette drote est stuée dans le plan d'équaton y =, plan parallèle au plan de base (x O z)

3 6 a Un vecteur drecteur de (d) est par exemple u ( Un vecteur normal de Q est n ( ; On remarque que u n = les vecteurs u et n sont donc orthogonaux : on en dédut que le drote (d) et le plan Q sont parallèles et ne sont donc pas sécants b M étant un pont quelconque de (d), ses coordonnées sont de la forme ( t ; ; t ) et la dstance de M à Q t t est donc = = Pour tout M de (d), la dstance de M à Q est ndépendante de M et vaut Exercce : A H P B M N O a S a 0, la tangente TM à C en M est confondue avec Oy Dans ce cas, l are de BNP est nulle Par la sute, on consdèrera a 0 Equatons des tangentes et ordonnées des ponts B et N : En utlsant la formule permettant de détermner l équaton d une tangente à une courbe, on obtent : Une équaton de la tangente que l on a : N 0; a D où en consdérant que T à M C au pont M d abscsse a 0 est : a, on obtent une équaton de la tangente y x, ce qu mplque que l on a : 0; B T à a y x, ce qu mplque a C au pont A d abscsse qu est

4 Coordonnées du pont P, ntersecton des tangentes : a x x La résoluton du système a nous donne comme unque soluton a; y x a Donc on obtent P a; Are du trangle BNP H étant le projeté orthogonal de P sur BN ou sur Oy, l are est donnée par la formule : a HP x P = a BN y y B N = BN HP S, HP étant la hauteur relatve à la basebn dans BNP a car comme a, on a : a 0 On en dédut que : a a a a S Etude des varatons de la foncton f défne sur [0 ;] par f ( x) f n est pas dérvable en 0 et est dérvable sur ]0 ;] Pour tout réel 0; x, on a : f '( x) x x 8 Pour tout réel x 0;, on a : 8 x 0 Donc le sgne de '( ) f '( x) 0 x x et 0; crossante sur D où le tableau des varatons de f suvant : x x x f x est celu de x f '( x) 0 x x car la foncton carré est strctement x 0 f '( x ) f ( x ) Concluson : L are du trangle BNP est maxmale pour a et cette are est égale à (en untés d are) 6

5 Exercce : a f(x) = x e x ; donc pour tout x de [0 ; + [, on a f ' (x) = x e x x x ( x) e x = x e + x x x e = x e x (+ x ) = x ( x e x qu est ben l'expresson donnée dans l'énoncé Le sens de varaton de f sur [0 ; + [ est donné par le sgne de sa dérvée Or pour tout x de [0 ; + x 0, e x 0 Par conséquent f ' (x) est du sgne de x à dre négatve sur [0 ; ] et postve sur [ ; + [ On peut donc conclure que f est strctement décrossante sur [0 ; ] ( pusque sa dérvée ne s'annule qu'en des valeurs solées 0 et sur cet ntervalle) et strctement décrossante sur [ ; + [ b Pour tout x réel donc pour tout x postf, on a : e x = e e x et par conséquent f (x) = x e e x = e x e x Comme lm x + x = +, en posant X = x, on a lm Mas on sat ( résultats de cours ) que x e X lm X + X x + x e x = = + donc lm lm X + X + X X e X e X = 0 Par conséquent lm = 0 d'où lm x + e e x = 0 et enfn lm f (x) = x x + e x x + On peut dresser un tableau de varatons résumant les résultats des questons précédentes et tenant compte de f(0) = et f() = 0 x 0 + Sgne de f '(x) 0 Varatons de f 0 a Sur l'ntervalle [0 ; ], la foncton f est contnue comme somme, produt et composée de fonctons contnues ( fonctons polynômes et exponentelle): elle est donc elle-même contnue De plus d'après l'étude précédente, elle est strctement décrossante On peut donc lu applquer le théorème des valeurs ntermédares à savor : Quel que sot le nombre réel k dans f( [0 ; ]), l'équaton f(x) = k a une unque soluton dans [0 ; ] Or c f ([0 ; ]) = [0 ; ] et pour n, appartent à [0 ; ] donc à f ([0 ; ]) n Autrement dt l'équaton f(x) = n a une unque soluton qu'on appellera u n dans [0 ; ] et même dans ]0 ; [ pusque n 0 ( donc f ( u n ) 0 sot u n ), et n (qu donnera u n 0) En rasonnant de la même façon sur [ ; + [ ntervalle sur lequel f est contnue et strctement crossante : pusque f ([ ; + [ ) = [0 ; [ alors, comme n [ 0 ; [, l'équaton f (x) = a également une unque soluton n appelée v n appartenant à [ ; + [ et même à ] ; + [ En résumé sur [ 0 ; + [, pour n, l'équaton f(x) = a deux solutons dstnctes ( pusque dans des ntervalles n dsjonts), l'une u n appartenant à ] 0 ; [ ( donc à [0 ; ]) et l'autre v n appartenant à ] ; + [ (donc à [ ; + [ )

6 b C-dessous la représentaton graphque demandée : c Pour détermner le sens de varaton de la sute (u n ), nous allons comparer, pour tout n, u n et u n + Par défnton de la sute (u n ), on a u n et u n + dans l'ntervalle [0 ; ], avec f (u n ) = n et f (u n + ) = n + c Pour détermner le sens de varaton de la sute (u n ), nous allons comparer, pour tout n, u n et u n + Par défnton de la sute (u n ), on a u n et u n + dans l'ntervalle [0 ; ], avec f (u n ) = n et f (u n + ) = n + c Pour détermner le sens de varaton de la sute (u n ), nous allons comparer, pour tout n, u n et u n + Par défnton de la sute (u n ), on a u n et u n + dans l'ntervalle [0 ; ], avec f (u n ) = n et f (u n + ) = n + Or n > n + donc f (u n) > f (u n + ) Mas sur [0 ; ], f est strctement décrossante donc nombres et leurs mages sont classés en ordre contrare Pour tout n, l'négalté f (u n ) > f (u n + ) mplque donc u n < u n + ce qu sgnfe que la sute (u n ), n, est une sute crossante En rasonnant de la même façon pusque v n et v n + sont dans [ ; + [, ntervalle où f est strctement crossante et pusque f (v n ) = n et f(v n + ) = n +, l'négalté f (v n) > f (v n + ) va donner v n > v n +, ce qu ndque que la sute (v n ), n, est une sute décrossante C'est ben ce que lassat conjecturer la représentaton graphque précédente d La sute (u n ) est une sute crossante, et comme pour tout n, u n [ 0 ; ], on a u n ce qu prouve que la sute (u n ) est majorée Or on sat que toute sute crossante et majorée est une sute convergente La sute (u n ) est donc ben convergente Sot sa lmte Pusque pour tout n, u n [0 ; ], on a donc [0 ; ] De plus, on a f( u n ) = n Or lm n + n = 0 Et lm u n = donc lm f (u n) = f ( ) car f est contnue sur [0 ; ] donc en qu est dans [0 ; ] n + n + On a donc f ( ) = 0 et donc est soluton sur [0 ; ] de l'équaton f(x) = 0 Or l'étude de f fate à la queston montre que, dans cet ntervalle, cette équaton a une unque soluton qu est Donc = et par conséquent, la sute (u n ) converge vers

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Exercices d Électrocinétique

Exercices d Électrocinétique ercces d Électrocnétque Intensté et densté de courant -1.1 Vtesse des porteurs de charges : On dssout une masse m = 20g de chlorure de sodum NaCl dans un bac électrolytque de longueur l = 20cm et de secton

Plus en détail

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0.

Corrigé du problème de Mathématiques générales 2010. - Partie I - 0 0 0. 0. Corrgé du problème de Mathématques générales 2010 - Parte I - 1(a. Sot X S A. La matrce A est un polynôme en X donc commute avec X. 1(b. On a : 0 = m A (A = m A (X n ; le polynôme m A (x n est annulateur

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire

Assurance maladie et aléa de moralité ex-ante : L incidence de l hétérogénéité de la perte sanitaire Assurance malade et aléa de moralté ex-ante : L ncdence de l hétérogénété de la perte santare Davd Alary 1 et Franck Ben 2 Cet artcle examne l ncdence de l hétérogénété de la perte santare sur les contrats

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS.

ÉLÉMENTS DE THÉORIE DE L INFORMATION POUR LES COMMUNICATIONS. ÉLÉMETS DE THÉORIE DE L IFORMATIO POUR LES COMMUICATIOS. L a théore de l nformaton est une dscplne qu s appue non seulement sur les (télé-) communcatons, mas auss sur l nformatque, la statstque, la physque

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University

Économétrie. Annexes : exercices et corrigés. 5 e édition. William Greene New York University Économétre 5 e édton Annexes : exercces et corrgés Wllam Greene New York Unversty Édton françase drgée par Dder Schlacther, IEP Pars, unversté Pars II Traducton : Stéphane Monjon, unversté Pars I Panthéon-Sorbonne

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks

Plan. Gestion des stocks. Les opérations de gestions des stocks. Les opérations de gestions des stocks Plan Geston des stocks Abdellah El Fallah Ensa de Tétouan 2011 Les opératons de gestons des stocks Les coûts assocés à la geston des stocks Le rôle des stocks Modèle de la quantté économque Geston calendare

Plus en détail

Page 5 TABLE DES MATIÈRES

Page 5 TABLE DES MATIÈRES Page 5 TABLE DES MATIÈRES CHAPITRE I LES POURCENTAGES 1. LES OBJECTIFS 12 2. LES DÉFINITIONS 14 1. La varaton absolue d'une grandeur 2. La varaton moyenne d'une grandeur (par unté de temps) 3. Le coeffcent

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures

IDEI Report # 18. Transport. December 2010. Elasticités de la demande de transport ferroviaire: définitions et mesures IDEI Report # 18 Transport December 2010 Elastctés de la demande de transport ferrovare: défntons et mesures Elastctés de la demande de transport ferrovare : Défntons et mesures Marc Ivald Toulouse School

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

Dirigeant de SAS : Laisser le choix du statut social

Dirigeant de SAS : Laisser le choix du statut social Drgeant de SAS : Lasser le chox du statut socal Résumé de notre proposton : Ouvrr le chox du statut socal du drgeant de SAS avec 2 solutons possbles : apprécer la stuaton socale des drgeants de SAS comme

Plus en détail

Dynamique du point matériel

Dynamique du point matériel Chaptre III Dynaqe d pont atérel I Généraltés La cnéatqe a por objet l étde des oveents des corps en foncton d teps, sans tenr copte des cases q les provoqent La dynaqe est la scence q étde (o déterne)

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre?

COMPTE-RENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Claire FORGACZ Marion GALLART Hasnia GOUDJILI COMPTERENDU «MATHS EN JEANS» LYCEE OZENNE Groupe 1 : Comment faire une carte juste de la Terre? Si l on se pose la question de savoir comment on peut faire

Plus en détail

CHAPITRE DEUX : FORMALISME GEOMETRIQUE

CHAPITRE DEUX : FORMALISME GEOMETRIQUE CHPITRE DEUX FORMLISME GEOMETRIQUE. CHPITRE DEUX : FORMLISME GEOMETRIQUE verson.3, -8 I. GEOMETRIE DNS L ESPCE-TEMPS ) Prncpe de relatvté Le prncpe de relatvté peut s exprmer ans : toutes les los physques

Plus en détail

Prêt de groupe et sanction sociale Group lending and social fine

Prêt de groupe et sanction sociale Group lending and social fine Prêt de roupe et sancton socale Group lendn and socal fne Davd Alary Résumé Dans cet artcle, nous présentons un modèle d antsélecton sur un marché concurrentel du crédt. Nous consdérons l ntroducton de

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations

Contrats prévoyance des TNS : Clarifier les règles pour sécuriser les prestations Contrats prévoyance des TNS : Clarfer les règles pour sécurser les prestatons Résumé de notre proposton : A - Amélorer l nformaton des souscrpteurs B Prévor plus de souplesse dans l apprécaton des revenus

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

GATE Groupe d Analyse et de Théorie Économique DOCUMENTS DE TRAVAIL - WORKING PAPERS W.P. 08-24. Préférences temporelles et recherche d emploi

GATE Groupe d Analyse et de Théorie Économique DOCUMENTS DE TRAVAIL - WORKING PAPERS W.P. 08-24. Préférences temporelles et recherche d emploi GATE Groupe d Analyse et de Théore Économque UMR 5824 du CNRS DOCUMENTS DE TRAVAIL - WORKING PAPERS W.P. 08-24 Préférences temporelles et recherche d emplo «Applcatons économétrques sur le panel Européen

Plus en détail

Paris et New-York sont-ils les sommets d'un carré?

Paris et New-York sont-ils les sommets d'un carré? page 95 Paris et New-York sont-ils les sommets d'un carré? par othi Mok (3 ), Michel Vongsavanh (3 ), Eric hin (3 ), iek-hor Lim ( ), Eric kbaraly ( ), élèves et anciens élèves du ollège Victor Hugo (2

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE?

CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? CREATION DE VALEUR EN ASSURANCE NON VIE : COMMENT FRANCHIR UNE NOUVELLE ETAPE? Boulanger Frédérc Avanssur, Groupe AXA 163-167, Avenue Georges Clémenceau 92742 Nanterre Cedex France Tel: +33 1 46 14 43

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

MODÈLE D ISING À UNE ET DEUX DIMENSIONS.

MODÈLE D ISING À UNE ET DEUX DIMENSIONS. Chapter MODÈLE DISIG À UE ET DEUX DIMESIOS.. ITRODUCTIO. ous commençons, dans ce chaptre, létude dun problème de mécanque statstque de la matère condensée où leffet des nteractons est mportant. Le modèle

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Chapitre 1.5a Le champ électrique généré par plusieurs particules

Chapitre 1.5a Le champ électrique généré par plusieurs particules hapte.5a Le chap électque généé pa pluseus patcules Le chap électque généé pa pluseus chages fxes Le odule de chap électque d une chage ponctuelle est adal, popotonnel à la chage électque et neseent popotonnel

Plus en détail

Chapitre 2 : Caractéristiques du mouvement d un solide

Chapitre 2 : Caractéristiques du mouvement d un solide Chapitre 2 : Caractéristiques du mouvement d un solide I Rappels : Référentiel : Le mouvement d un corps est décris par rapport à un corps de référence et dépend du choix de ce corps. Ce corps de référence

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema

Dérivation. 1. Nombre dérivé, tangente 2. Fonction dérivée 3. Fonction dérivée et variations 4. Fonction dérivée et extrema «À l utomne 97 le présdent Non nnoncé que le tu d ugmentton de l nflton dmnué C étt l premère fos qu un présdent en eercce utlst l dérvée terce pour ssurer s réélecton» Hugo Ross, mtémtcen, à propos d

Plus en détail

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot

Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les

Plus en détail

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria.

Calculer le coût amorti d une obligation sur chaque exercice et présenter les écritures dans les comptes individuels de la société Plumeria. 1 CAS nédt d applcaton sur les normes IAS/IFRS Coût amort sur oblgatons à taux varable ou révsable La socété Plumera présente ses comptes annuels dans le référentel IFRS. Elle détent dans son portefeulle

Plus en détail

Deux disques dans un carré

Deux disques dans un carré Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48

Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48 Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

PROBLEME(12) Première partie : Peinture des murs et du plafond.

PROBLEME(12) Première partie : Peinture des murs et du plafond. PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Exercice numéro 1 - L'escalier

Exercice numéro 1 - L'escalier Exercice numéro 1 - L'escalier On peut monter un escalier une ou deux marches à la fois. La figure de droite montre un exemple. 1. De combien de façons différentes peut-on monter un escalier de une marche?

Plus en détail

CONSERVATOIRE NATIONAL DES ARTS ET METIERS

CONSERVATOIRE NATIONAL DES ARTS ET METIERS ONSEVAOIE NAIONAL DES AS E MEIES ELEONIQUE ANALOGIQUE PH / ELE 4 / DU GEII ere année ------------------------- ------------------------- Dder LE UYE / Perre POVEN Janer ABLE DES MAIEES APPELS D ELEOINEIQUE...5.

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à

REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE. MEMOIRE Présentée à REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE MEMOIRE Présentée à L Unversté de Batna Faculté des Scences Département de Physque

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

PREMIERS PAS en REGRESSION LINEAIRE avec SAS. Josiane Confais (UPMC-ISUP) - Monique Le Guen (CNRS-CES-MATISSE- UMR8174)

PREMIERS PAS en REGRESSION LINEAIRE avec SAS. Josiane Confais (UPMC-ISUP) - Monique Le Guen (CNRS-CES-MATISSE- UMR8174) PREMIERS PAS en REGRESSION LINEAIRE avec SAS Josane Confas (UPMC-ISUP) - Monque Le Guen (CNRS-CES-MATISSE- UMR874) e-mal : confas@ccr.jusseu.fr e-mal : monque.leguen@unv-pars.fr Résumé Ce tutorel accessble

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4

VIELLE Marc. CEA-IDEI Janvier 1998. 1 La nomenclature retenue 3. 2 Vue d ensemble du modèle 4 GEMINI-E3 XL France Un outl destné à l étude des mpacts ndustrels de poltques énergétques et envronnementales VIELLE Marc CEA-IDEI Janver 1998 I LA STRUCTURE DU MODELE GEMINI-E3 XL FRANCE 3 1 La nomenclature

Plus en détail

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF 1 LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régme») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF AVIS AUX RETRAITÉS ET AUX PARTICIPANTS AVEC DROITS ACQUIS DIFFÉRÉS Expédteurs

Plus en détail

Calcul de tableaux d amortissement

Calcul de tableaux d amortissement Calcul de tableaux d amortssement 1 Tableau d amortssement Un emprunt est caractérsé par : une somme empruntée notée ; un taux annuel, en %, noté ; une pérodcté qu correspond à la fréquence de remboursement,

Plus en détail

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2

1.0 Probabilité vs statistique...1. 1.1 Expérience aléatoire et espace échantillonnal...1. 1.2 Événement...2 - robabltés - haptre : Introducton à la théore des probabltés.0 robablté vs statstque.... Expérence aléatore et espace échantllonnal.... Événement.... xomes défnton de probablté..... Quelques théorèmes

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Cours de. Point et système de points matériels

Cours de. Point et système de points matériels Abdellah BENYOUSSEF Amal BERRADA Pofesseus à la Faculté des Scences Unvesté Mohammed V Rabat Cous de Pont et système de ponts matéels A L USAGE DES ETUDIANTS DU 1 ER CYCLE UNIVERSITAIRE FACULTES DES SCIENCES,

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS

AVERTISSEMENT. D'autre part, toute contrefaçon, plagiat, reproduction encourt une poursuite pénale. LIENS AVETISSEMENT Ce docuent est le frut d'un long traval approuvé par le jury de soutenance et s à dsposton de l'enseble de la counauté unverstare élarge. Il est sous à la proprété ntellectuelle de l'auteur.

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU DAPPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BAMSI REPRINT 04/2003 Introducton à l analyse des données Samuel AMBAPOUR BAMSSI I BAMSI B.P. 13734 Brazzavlle BAMSI REPRINT 04/2003 Introducton

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait

Editions ENI. Project 2010. Collection Référence Bureautique. Extrait Edtons ENI Project 2010 Collecton Référence Bureautque Extrat Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf

Plus en détail

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE

DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de

Plus en détail

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O. ycé Clnca PCS - Physq ycé Clnca PCS (O.Granr) ég snsoïdal forcé pédancs os fondantals - Pssanc ycé Clnca PCS - Physq ntérêt ds corants snsoïdax : Expl d tnsons snsoïdals : tnson d sctr (50 H 0 V) s lgns

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail