Cours électronique. Chapitre 2: Dipôles en. Abdenour Lounis 1
|
|
|
- Anaïs Chagnon
- il y a 7 ans
- Total affichages :
Transcription
1 Cours élecronique Chapire : Dipôles en régimes ransioires Abdenour Lounis 1
2 I- Rappels Relaions Couran-ension pour les dipôle passifs usuels: Resisance : Loi d Ohm U()=R. I() Inducances : U()= L.(dI/d) I()= Condensaeurs : U().d L dq()=c.du() dq du() I()= =C. d d 1 U()= I().d C Abdenour Lounis
3 II-Sysèmes du 1 er Ordre: A- Circui passe bas : Charge d un condensaeur : Loi des mailles : V ( ) + Ri + V ( ) = i R. i = V ( ) V ( ) i Vi ( ) V ( ) i = R Abdenour Lounis 3
4 on sai que : dv ( ) i Vi ( ) V ( ) = = d C R. C si = RC dv ( ). + V ( ) = Vi ( ) d Equaion différenielle du 1er Ordre es nommée consane de emps du circui Abdenour Lounis 4
5 -décharge d un condensaeur : a- Résoluion de l équaion différenielle sans second membre: dv ( ) d dv ( ) 1 =. V ( ) d dv ( ) 1 =. d V ( ). + V ( ) = LogV ( ) = + A' avec A consane Abdenour Lounis 5
6 Log( V ( )) V ( ) = e + C = + on sai que e.e e a b a+b C V ( ) = e. e = A. e = La soluion sans second membre es alors : C V ( ) A. = e Abdenour Lounis 6
7 b-équaion pariculière avec second membre : dv ( ) + = d. V ( ) Vi ( ) Si V () es consan; En régime permane V ()=E (dv ()/d)= Alors la soluion complèe es la somme des deux soluions b) e b) ce qui donne : ( ). V = A e + E Abdenour Lounis 7
8 V = e. e V. e = e + C a b a + b C V ( ) = e. e = A. e C es une consane donc e c =A consane: ( ). V = A e Abdenour Lounis 8
9 c) soluions physiques avec condiions iniiales : i-charge du condensaeur : V () A = V ()= donc V ( ) = = A. e + E = A. e + E = A + E A = E V ( ) = E. e + E V ( ) = E(1 e ) <<T Abdenour Lounis 9 C es la charge du condensaeur
10 ii-décharge du condensaeur :. + V ( ) = dv ( ) d V ( ) = A. e à = V ( ) donc V ( ) = E. e = E c es la décharge du condensaeur Abdenour Lounis 1
11 schéma de la charge e la décharge du condensaeur Abdenour Lounis 11
12 B- Circui passe hau: i) circui: condiions iniiales : e()= T e()=v T Aux bornes de la capacié : U()=Q()/C or Loi des mailles : U()=e()-Ri() i dq = = d du ( ) C. d du ( ) e( ) = U ( ) + R. C. d Abdenour Lounis 1
13 du( ) R. C. + U( ) = e( ) d Alors pour <<T e()=v donc: du( ) R. C. + U( ) = V d Résoluion de l équaion différenielle sans second membre: du( ) R. C. + U( ) = d soluion : U( ) = Ae. Abdenour Lounis 13
14 soluion pariculière avec second membre du( ) RC.. + U( ) = V d En régime permanen : du()/d= e U()=V soluion globale: U( ) = Ae. + V Condiions aux limies : a) = condensaeur déchargé : =A+ V A=-V donc la soluion finale es : U( ) = -V e -. + V U V e - ( ) =.( 1- ) Abdenour Lounis 14
15 b) >T e()= du( ) R. C. + U( ) = d soluion : U( ) = A. e 1 calculons A? on sai que lorsque =T, on a la soluion : [ ] Si on égalise les soluions [1] e [], on obien : - T T RC V.(1- e ) = A. e T RC A = V. e 1 - T = [] U ( ) V e ).(1- Abdenour Lounis 15
16 soluion générale : T.( 1 U( ) = V e ). e RC A. e -/RC Expression de la ension en foncion du emps pour un filre passe hau. Abdenour Lounis 16
17 ii) Eablissemen d un couran dans une inducance: a) Régime libre régime libre en régime forcé en 1 ( ) E( ) = RI( ) + L. di d Supposons qu on soi en régime libre : E= di( ) = RI( ) + L. d di( ) R +. I ( ) = d L di( ) R d L =. d = avec = I L R I( ) = A. e La soluion au régime libre Abdenour es donnée Lounispar : 17
18 Si on considère les condiions iniiales : I( = ) = I() = = I donc I( ) = I. e U cherchons la ension aux bornes de l inducance : R di( ) LI VL = L. =. e = RI. e d V ( ) = R. I. e L Abdenour Lounis 18
19 Schéma I() e V() en régime libre =L/R V L V =-RI Abdenour Lounis 19
20 b) régime forcé avec ension E non nulle Si I = on obien : (inverseur en posiion 1) V() V ( = ) = R. I. e L V ( ) = RI + V = RI RI. e L V ( ) = RI.(1 e ) = E.(1 V ( ) E I( ) = =.(1 e ) R R E I( ) =.( 1 e ) e VL = E. e R = RI Le couran dans le circui end vers E/R ; la ension aux bornes de l inducance end vers. e ) Abdenour Lounis
21 III-Sysèmes du ème Ordre: Le condensaeur C du circui RLC suivan es chargé par un généraeur auxilliaire qui es ensuie déconnecé par K1 La charge iniiale du condensaeur : Q =C.E Si K es fermé, K1 ouver, nous avons : V c + V L + V R = On obien donc l équaion différenielle : q C I di + L. + RI = d dq di d q = ; = on a donc : d d d d q dq q L. + R. + = (1) d d C Abdenour Lounis 1
22 on pose : R LCω = 1; λ = ; Q = L (1) devien : d q d ω dq Q d + + ω q = () Lω R on cherchera les soluions du ype dq d q q( ) = A. e ; ==> = Ar. e ; = A. r. e d d L équaion () devien : Polynomes du second degré: r r r r ω A. e ( r +. r + ω ) = Q Ax Bx C + + = Abdenour Lounis
23 Les racines du polynôme du second degré s ecriven : En ce qui concerne nore polynôme : r r 1, ω ω = ± Q Q 1 4. Q ω ω = ± Q Q 1, Comme on a posé : Les deux racine s écriven : r 1, ω R LCω = 1; λ = ; Q = L R = ± α = λ ± α L Lω R La soluion générale de l équaion prend alors la forme suivane : q A e A e r1 r ( ) =. +. ; 1 q( ) = A. e + A. e ; ( λ + α ) ( λ α ) 1 Abdenour Lounis 3
24 q A e A e r1 r ( ) =. +. ; 1 q( ) = A. e + A. e ; ( λ + α ) ( λ α ) 1 q( ) = e A. e + A. e λ. α. α. 1 On a dans ce cas consane de emps =1/λ Selon le signe de a sous la racine, les soluions diffèren : cas où α es posiif : α > r 1, ω Q ω = ± 1 4. Q = α > 1 4. Q ω Q Q 1 4. Q > Q < Q <1/ Amorissemen Abdenour for Lounis 4 1
25 Les deux racines son réelles. Si on pose : ω ω Ω = α = 1 4Q = ω = λ ω Q Q Les condiions iniiales son : q()=q I(=)= q A e A e r1 r ( ) =. +. ; 1 dq ( = ) = A 1. r 1 + A r = d Rappel: donc ω ω r1, = ± 1 4. Q r 1, Q Q = λ ± α = λ ± Ω ii q( ) q A A ; = = = 1 + i A r + A r = = A.( λ + Ω ) + A.( λ Ω ) = Abdenour Lounis 5
26 On aboui au sysème d équaion suivan: A.( λ + Ω ) = A.( λ + Ω ) 1 A + A = q 1 rappel : soluion cherchée q( ) = e A. e + A. e on en ire : λ. α. α. 1 q q A1 = ( λ + Ω ) A = ( λ + Ω ) donc : Ω Ω q q q( ) = ( λ + Ω ) e e + ( λ + Ω ) e e Ω Ω λ. Ω. λ. Ω. q λ q q( ) = e ( λ + Ω ) e + ( λ + Ω ) e Ω Ω. Ω. Ω. Abdenour Lounis 6
27 on uilise les relaions suivanes : ( ) Ω λ = α λ = λ ω λ donc Ω λ = ω on obien la soluion suivane pour le couran I(): dq( ) d ω λ Ω Ω... I( ) = = q. e e e Ω Régime apériodique q() COURANT CHARGE Abdenour Lounis 7
28 b) cas où α es nul α = : r r ω Q Ω = α = 1 4Q = 4Q = 1 Q = 1/ Amorissemen criique Nous avons des racines doubles : 1, 1, R = ± α = λ ± α = L = λ La soluion générale es de la forme : r q( ) = ( A. + A ). e ; 1 Avec les même condiions iniiales que précédemen, on obien les soluions: λ q( ) = (1 + λ ). e ; I q e ( ) =. λ.. λ Régime apériodique e criique Abdenour Lounis 8
29 c) cas où α es négaif α < : Q > 1 L R< C amorissemen faible Les deux racines son imaginaires : r = λ ± j ω λ = λ ± jω 1, avec ω = ω λ En prenan les même condiions iniiales : q(=)=q e i(=)= On obien la soluion suivane : λ e ω q( ) = q ( λ + jω ) e + ( λ + jω ) e jω j jω on pose gφ = λ/ω e cos φ=ω/ω on obien la soluion : λ e q( ) = q cos( ω ϕ ) jω Régime oscillan amori pseudopériodique T=π/ω ; λ amorissemen Abdenour Lounis 9
30 Abdenour Lounis 3
31 Si R= ; nous avpns un amorissemen nul! d q + ω q = d Soluion : q( ) = q.cosω Régime sinusoïdal périodique e non amori: Période T=π/ω Abdenour Lounis 31
Les circuits électriques en régime transitoire
Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc
Caractéristiques des signaux électriques
Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme
Oscillations forcées en régime sinusoïdal.
Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -
Exemples de résolutions d équations différentielles
Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................
TD/TP : Taux d un emprunt (méthode de Newton)
TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel
Cours d électrocinétique :
Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS
Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL
Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l
CHAPITRE I : Cinématique du point matériel
I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons
AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE
AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V
CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3
Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
Recueil d'exercices de logique séquentielle
Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d
TB 352 TB 352. Entrée 1. Entrée 2
enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur
Sciences Industrielles pour l Ingénieur
Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage
F 2 = - T p K 0. ... F T = - T p K 0 - K 0
Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance
Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET
Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple
Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION
2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le
2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.
1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%
MATHEMATIQUES FINANCIERES
MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial
Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.
Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par
Cahier technique n 114
Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés
VA(1+r) = C 1. VA = C 1 v 1
Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)
Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)
Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Charges électriques - Courant électrique
Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Fonction dont la variable est borne d intégration
[hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes
CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté
CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons
Mathématiques financières. Peter Tankov
Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de
B34 - Modulation & Modems
G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky
Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t
Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés
Intégration de Net2 avec un système d alarme intrusion
Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera
NUMERISATION ET TRANSMISSION DE L INFORMATION
, Chapire rminale S NUMERISATION ET TRANSMISSION DE L INFORMATION I TRANSMISSION DE L'INFORMATION ) Signal e informaion ) Chaîne de ransmission de l informaion La chaîne de ransmission d informaions es
La rentabilité des investissements
La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles
Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites
CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»
PHY2723 Hiver 2015. Champs magnétiques statiques. [email protected]. Notes partielles accompagnant le cours.
PHY2723 Hiver 2015 Champs magnétiques statiques [email protected] otes partielles accompagnant le cours. Champs magnétiques statiques (Chapitre 5) Charges électriques statiques ρ v créent champ électrique
Texte Ruine d une compagnie d assurance
Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose
SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE
SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE Le seul ballon hybride solaire-hermodynamique cerifié NF Elecricié Performance Ballon hermodynamique 223 lires inox 316L Plaque évaporarice
CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.
XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Chapitre 2 L investissement. . Les principales caractéristiques de l investissement
Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée
Cahier technique n 141
Collecion Technique... Cahier echnique n 141 Les perurbaions élecriques en BT R. Calvas Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés à l inenion des ingénieurs e echniciens
CANAUX DE TRANSMISSION BRUITES
Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle
Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1
Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre
Exercices de révision
Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi
Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2
Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
1.1.1 Signaux à variation temporelle continue-discrète
Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues
Analyse des Systèmes Asservis
Analyse des Systèmes Asservis Après quelques rappels, nous verrons comment évaluer deux des caractéristiques principales d'un système asservi : Stabilité et Précision. Si ces caractéristiques ne sont pas
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
DE L'ÉVALUATION DU RISQUE DE CRÉDIT
DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd
MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés
MATHEMATIQUES APPLIQUEES Equations aux dérivées partielles Cours et exercices corrigés Département GPI 1ère année Avril 2005 INPT-ENSIACET 118 route de Narbonne 31077 Toulouse cedex 4 Mail : [email protected]
CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT
TP CIRCUITS ELECTRIQUES R.DUPERRAY Lycée F.BUISSON PTSI CARACTERISTIQUE D UNE DIODE ET POINT DE FONCTIONNEMENT OBJECTIFS Savoir utiliser le multimètre pour mesurer des grandeurs électriques Obtenir expérimentalement
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Applications en imagerie cérébrale (MEG/EEG)
EEG : mesure du potentiel électrique Ordre de grandeur : qq µ-volts Capteurs : électrodes MEG : mesure du champ magnétique Ordre de grandeur : 10 13 Tesla Capteurs SQUID couplés à des bobines VI. Applications
Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite
DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte
I) Cinématique du point matériel: 1) Référentiel: MECANIQUE DU POINT L ensemble de tous les systèmes d axes de coordonnées liés à un même solide de référence S constitue un repère Soit une horloge permettant
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Cours de Systèmes Asservis
Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention
Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité
Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
CARACTERISTIQUES STATIQUES D'UN SYSTEME
CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
CONCOURS COMMUN 2010 PHYSIQUE
CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :
MIDI F-35. Canal MIDI 1 Mélodie Canal MIDI 2 Basse Canal MIDI 10 Batterie MIDI IN. Réception du canal MIDI = 1 Reproduit la mélodie.
/ VARIATION/ ACCOMP PLAY/PAUSE REW TUNE/MIDI 3- LESSON 1 2 3 MIDI Qu es-ce que MIDI? MIDI es l acronyme de Musical Insrumen Digial Inerface, une norme inernaionale pour l échange de données musicales enre
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Chapitre 3: TESTS DE SPECIFICATION
Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o
Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G.
Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004 Cours de Génie Electrique G. CHAGNON 2 Table des matières Introduction 11 1 Quelques mathématiques...
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Les Mesures Électriques
Les Mesures Électriques Sommaire 1- La mesure de tension 2- La mesure de courant 3- La mesure de résistance 4- La mesure de puissance en monophasé 5- La mesure de puissance en triphasé 6- La mesure de
IUT DE NÎMES DÉPARTEMENT GEII ÉLECTRONIQUE DE PUISSANCE CONVERSION AC/DC AMÉLIORATION DU FACTEUR DE PUISSANCE
IU DE NÎMES DÉPAREMEN GEII ÉLECRONIQUE DE PUISSANCE AMÉLIORAION DU FACEUR DE PUISSANCE Yaël hiaux [email protected] 13 septembre 013 able des matières 1 Généralités 3 1.1 Historique........................................
Sub CalculAnnuite() Const TITRE As String = "Calcul d'annuité de remboursement d'un emprunt"
TD1 : traduction en Visual BASIC des exemples du cours sur les structures de contrôle de l'exécution page 1 'TRADUCTION EN VBA DES EXEMPLES ALGORITHMIQUES SUR LES STRUCTURES 'DE CONTROLE DE L'EXECUTION
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
N 1 2 1 L a R e v u e F r a n c o p h o n e d u M a n a g e m e n t d e P r o j e t 2 è m e t r i m e s t r e 2 0 1 3
Du côté de la Recherche > Managemen t de projet : p1 L intégration des systèmes de management Qualité -Sécurité- Environnement : résultats d une étude empirique au Maroc Le co ntex te d es p roj et s a
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement
Les deux déficis, budgéaire e du compe couran, sonils jumeaux? Une éude empirique dans le cas d une peie économie en développemen (Version préliminaire) Aueur: Wissem AJILI Docorane CREFED Universié Paris
BILAN EN ELECTRICITE : RC, RL ET RLC
IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux
Présentation du langage et premières fonctions
1 Présentation de l interface logicielle Si les langages de haut niveau sont nombreux, nous allons travaillé cette année avec le langage Python, un langage de programmation très en vue sur internet en
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
