Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose que la compagnie a un capial iniial c e on noe R la réserve de la compagnie d assurance à l insan. La compagnie d assurance perçoi des coisaions de ces cliens que l on supposera mensualisées e uniformémen réparies sur l année : les recees de la compagnie pendan un emps son donc égales à p où p es le aux de coisaions par unié de emps. verse des primes à ses assurés sinisrés en foncion du dommage qu ils subissen. On modélise l appariion e les coûs des sinisres de la manière suivane : les coûs des sinisres (X k k 1 son des variables indépendanes, de même loi ν e d espérance commune λ, les inervalles de emps enre deux sinisres (τ k k 1 (τ 1 éan l insan du premier sinisre son indépendans enre eux e indépendans des sinisres. On suppose qu ils suiven ous la loi exponenielle E(µ. On noe N le nombre de sinisres pendan l inervalle [0, ]. Le processus (N 0 es un processus de Poisson. La réserve de la compagnie d assurance à l insan es par conséquen : N R = c + p X k. La ruine survien lorsque les réserves descenden sous 0. On peu donc écrire sa probabilié de ruine de la façon suivane : ( ψ(c = P inf R < 0 R 0 = c. 0 On inrodui les variables suivanes S = c R 0, k=1 τ(c = inf{ 0 : R < 0} = inf{ 0 : S > c}. La probabilié de ruine peu alors êre vue comme ψ(c = P(τ(c <. Janvier 2009. Copyrigh c H. Guérin e F. Malrieu. GNU FDL Copylef. Page n 1.
Page n 2. 1 Processus de Poisson simple e composé Définiion 1.1. Le processus de compage (N 0 défini de la manière suivane : N 0 = 0, pour > 0, N = n 1 1 Tn = sup{k 1 : T k }, où T 0 = 0 e les variables (τ k k 1 = (T k T k 1 k 1 son des variables indépendanes e de loi exponenielle E(µ es appelé processus de Poisson (simple d inensié µ. Proposiion 1.2. Le processus (N 0 vérifie les propriéés suivanes : 1. presque sûremen, la rajecoire N es croissane avec des saus de haueur 1, 2. pour ou > 0, N sui une loi de Poisson de paramère µ, 3. p N e 0 = 0 1... p, les variables N 1 N 0,..., N p N p 1 son indépendanes. De plus, on a l égalié en loi suivane : L(N k N k 1 = L(N k k 1 pour ou k {1,...p}. On di que les accroissemens de (N 0 son indépendans e saionnaires. 4. Sachan que N = k, la loi joine de (T 1, T 2,..., T k es la loi d un échanillon ordonné de variables aléaoires i.d.d. de loi uniforme sur [0, ]. Il es possible d esimer l inensié d un processus de Poisson à parir d une de ses rajecoires comme le monre le résula suivan. Proposiion 1.3. Soi N un processus de Poisson d inensié µ alors ( N p.s. µ e N µ L N (0, µ, Démonsraion. Pour ou i N, posons Y i = N i N i 1. La variable Y i représene le nombre de saus du processus de Poisson dans l inervalle de emps [i 1, i[. D après la proposiion 1.2, les variables aléaoires (Y i i 1 son indépendanes de même loi de Poisson de paramère µ. Donc, en veru de la loi des grands nombres, N [] /[] µ p.s. On remarque ensuie l encadremen suivan N [] [] [] N N []+1 [] + 1 [] + 1 qui perme de conclure que N / end vers µ presque sûremen. La convergence en loi se dédui du calcul explicie, puisque N sui la loi P(µ, de la foncion caracérisique de (N / µ. Janvier 2009. Copyrigh c H. Guérin e F. Malrieu. GNU FDL Copylef. Page n 2.
Page n 3. Définiion 1.4. Soi (N 0 un processus de Poisson (simple d inensié µ e (X n n 1 une suie de variables aléaoires i.d.d. de loi ν indépendane de N. Le processus C défini par N 0, C = X k, es appelé processus de Poisson composé de paramère µ e de loi de sau ν. Proposiion 1.5. La foncion caracérisique de C es donnée par k=1 ϕ C (u = exp(µ(ϕ(u 1, où ϕ es la foncion caracérisique de ν. Si ν adme un momen d ordre 2 e que l on noe λ e a ses deux premiers momens alors C adme un momen d ordre 2, E(C = µλ, V(C = µa, C ( p.s. µλ e C µλ L N (0, µa. Démonsraion. L expression des momens de C e le résula de convergence en loi découlen de l expression de la foncion caracérisique de C. La convergence presque sûre s obien en uilisan la proprosiion 1.3 e la loi des grands nombres. 2 La ruine es-elle presque sûre? Le coefficien α = λµ es inerpréé comme le monan moyen des sinisres par unié de emps. Il paraî pruden que l assureur fixe un paramère p supérieur à α pour que, en moyenne, les recees soien supérieures aux dépenses. La ruine ne pouvan inervenir qu à un insan de sau T n, il nous suffi de considérer la suie de variables aléaoires ( S n n représenan S à ses emps de sau : S 0 = 0 e n 1, Sn = S Tn = n X k pt n. k=1 Proposiion 2.1. Les posiions relaives de α e p déerminen la survie de la compagnie : Si p < α alors lim S n = + p.s., par conséquen ψ(c = 1 pour ou c 0. Si p = α alors lim inf S n = p.s. e lim sup S n = + p.s., d où ψ(c = 1 pour ou c 0. Si p > α alors lim S n = p.s., e donc ψ(c < 1 pour ou c 0. Démonsraion. Si p < α, le résula découle de la loi des grands nombres. Si p = α, on remarque que S n es la somme des n variables aléaoires (X k pτ k 1 k n qui son i.i.d. e Janvier 2009. Copyrigh c H. Guérin e F. Malrieu. GNU FDL Copylef. Page n 3.
Page n 4. cenrées... Lorsque p > α, on a clairemen lim S n = p.s. On raisonne ensuie par l absurde. On inrodui le emps d arrê τ 1 = inf{n > 0 : Sn > c} qui es fini p.s. La marche aléaoire ( S n+τ1 S τ1 n 0 es de même loi que ( S n n 0. Par conséquen, le emps d arrê τ 2 = inf{n > 0 : S n+τ1 S τ1 > c} es lui aussi fini p.s. En iéran le procédé, on monre que lim sup S n c, d où la conradicion. Remarque 2.2. De façon évidene, la compagnie doi s assurer que p > α. La proposiion 1.5 perme, à parir d un hisorique des sinisres, d esimer le paramère α. Ceci fournira des informaions sur la façon de choisir p. Sous cee hypohèse, on peu quanifier la probabilié de ruine. 3 Expression générique de la probabilié de ruine On supposera dans la suie que p > α. On considère la pere nee en cas de ruine Y (c = S τ(c c : c es le découver de la compagnie à l insan de ruine. Comme le monre le résula suivan, la probabilié de ruine s exprime en foncion de la ransformée de Laplace de Y (c définie par H(x = E(e xx 1. Théorème 3.1. Supposons que la ransformée de Laplace de ν vérifie la propriéé suivane : il exise u > 0 el que H(u pu/µ 1 = 0. Alors ψ(c = e uc E[e uy (c τ(c < + ]. Démonsraion. Si un el réel u exise, alors (e u S n n 0 es une maringale. En pariculier, pour ou n 0, E[e u S n ] = 1. Soi n > 0, alors τ(c n es un emps d arrê borné e 1 = E (e u S τ(c n = E (e u S τ(c 1 {τ(c<n} + E (e u S n 1 {τ(c n}. Par convergence dominée (sur {τ(c n}, on a S n c, la seconde espérance converge vers 0 lorsque n +. Par conséquen, 1 = E (e u S τ(c 1 {τ(c<+ } = e uc E ( e uy (c τ(c < + P(τ(c < +, ce qui fourni le résula annoncé. Remarque 3.2. Comme conséquence direce du héorème, on a ψ(c e uc. Remarque 3.3. Puisque H es convexe, la condiion sur H dans le héorème 3.1 es saisfaie dès qu il exise u ]0, + ] el que H soi finie sur [0, u [ e lim H(u = +. u u Janvier 2009. Copyrigh c H. Guérin e F. Malrieu. GNU FDL Copylef. Page n 4.
Page n 5. 4 Cas où les sinisres suiven une loi exponenielle On suppose dans cee parie que les coûs des sinisres (X k k 1 son des variables indépendanes, de même loi exponenielle d espérance λ. Dans ces condiions, on connai la loi de la pere nee en cas de ruine : Lemme 4.1. Sachan que τ(c < +, la variable Y (c = S τ(c c sui la loi exponenielle d espérance λ. Démonsraion. Soi n N, > 0 e x R. En uilisan l indépendance des (X n n e les propriéés de la loi exponenielle, on obien le résula : P(Y (c > y τ(c = n, S τ(c 1 = x, T τ(c T τ(c 1 = = P(S n > y + c S 0 < c,, S n 1 < c, S n > c, S n 1 = x, T n T n 1 = = P(X n > y + c x + p S 0 < c,, S n 1 < c, S n 1 = x, T n T n 1 =, X n > c x + p = P(X n > y + c x + p X n > c x + p = P(X n > y = e λy, ce qui assure le résula annoncé. On dédui facilemen du héorème 3.1 e du lemme 4.1, l expression de la probabilié de ruine lorsque les sinisres suiven la loi exponenielle d espérance λ : Théorème 4.2. Pour ou c 0, on a ψ(c = λµ ( p exp p λµ pλ c. 5 Muualisaion des risques On souhaie à présen déerminer si deux personnes désireuses d invesir dans une compagnie d assurance on inérê à mere leurs mises de dépar en commun ou au conraire à fonder deux compagnies différenes. Le héorème 4.2 perme de vérifier, dans un cas pariculier, que les assureurs on inérê à se regrouper pour muualiser les risques. Dans le cas général, les simulaions suggèren aussi que la muualisaion du risque es une bonne idée... 6 Suggesions On admera les Propriées 1.2 sur le processus de Poisson. Pour raier le suje, on suggère de répondre à ceraines des quesions suivanes : 1. Commener les hypohèses du modèle. Son-elles réalises? Janvier 2009. Copyrigh c H. Guérin e F. Malrieu. GNU FDL Copylef. Page n 5.
Page n 6. 2. Quelle es l évoluion en emps de R? 3. Que représenen les variables S e τ(c? Simuler une rajecoire de S n. 4. Regarder les preuves des proposiions 1.5 e 2.1. 5. Démonrer les héorèmes 3.1 e 4.2. 6. Implémener un algorihme de simulaion afin d observer l évoluion en c de la probabilié de ruine. Vérifier numériquemen la décroissance exponenielle du héorème 4.2. 7. On pourra développer les idées ébauchées dans la secion 5. Janvier 2009. Copyrigh c H. Guérin e F. Malrieu. GNU FDL Copylef. Page n 6.