Mécanique du point. Mécanique du point. Mécanique du point. 22 fiches Résumés de cours 107 exercices corrigés Méthodologie et conseils.

Documents pareils
Chapitre 0 Introduction à la cinématique

Chapitre 1 Cinématique du point matériel

Cours de Mécanique du point matériel

Michel Henry Nicolas Delorme

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

F411 - Courbes Paramétrées, Polaires

Calcul intégral élémentaire en plusieurs variables

Plan du cours : électricité 1

Repérage d un point - Vitesse et

Fonctions de plusieurs variables

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, m 3 kg 1 s 2

Cours d Analyse. Fonctions de plusieurs variables

Oscillations libres des systèmes à deux degrés de liberté

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

Représentation géométrique d un nombre complexe

Angles orientés et trigonométrie

Angles orientés et fonctions circulaires ( En première S )

Chapitre 2 : Caractéristiques du mouvement d un solide

M6 MOMENT CINÉTIQUE D UN POINT MATÉRIEL

Travaux dirigés de mécanique du point

1S Modèles de rédaction Enoncés

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

Interaction milieux dilués rayonnement Travaux dirigés n 2. Résonance magnétique : approche classique

Mesure d angles et trigonométrie

Chapitre 5: Oscillations d un pendule élastique horizontal

Géométrie dans l espace Produit scalaire et équations

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

DYNAMIQUE DE FORMATION DES ÉTOILES

TD de Physique n o 1 : Mécanique du point

Utilisation des intégrales premières en mécanique. Exemples et applications.

LE PRODUIT SCALAIRE ( En première S )

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

Propriétés électriques de la matière

Correction du Baccalauréat S Amérique du Nord mai 2007

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 5. Le ressort. F ext. F ressort

SYSTEME DE PARTICULES. DYNAMIQUE DU SOLIDE (suite) Table des matières

MECANIQUE DU POINT. y e y. z e z. ] est le trièdre de référence. e z. où [O, e r. r est la distance à l'axe, θ l'angle polaire et z la côte

Cours Fonctions de deux variables

Continuité et dérivabilité d une fonction

Enseignement de la physique en Licence

Fonctions de plusieurs variables

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

OM 1 Outils mathématiques : fonction de plusieurs variables

Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire

La Mesure du Temps. et Temps Solaire Moyen H m.

DM n o 8 TS Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

Mécanique : Cinématique du point. Chapitre 1 : Position. Vitesse. Accélération

Construction d un cercle tangent à deux cercles donnés.

C est un mouvement plan dont la trajectoire est un cercle ou une portion de cercle. Le module du vecteur position OM est constant et il est égal au

Système formé de deux points

I - Quelques propriétés des étoiles à neutrons

Développements limités, équivalents et calculs de limites

OLYMPIADES ACADEMIQUES DE MATHEMATIQUES. 15 mars 2006 CLASSE DE PREMIERE ES, GMF

TS Physique Satellite à la recherche de sa planète Exercice résolu

Mécanique du Point Matériel

Intégrales doubles et triples - M

TP 7 : oscillateur de torsion

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Résolution d équations non linéaires

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Q6 : Comment calcule t-on l intensité sonore à partir du niveau d intensité?

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

Chapitre 2 Le problème de l unicité des solutions

I. Polynômes de Tchebychev

= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m

OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES

Caractéristiques des ondes

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX

Mathématiques I Section Architecture, EPFL

Cours et Exercices de Mécanique :

Quantité de mouvement et moment cinétique

Ce cours introduit l'électrodynamique classique. Les chapitres principaux sont :

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Correction du baccalauréat S Liban juin 2007

LES LOIS PHYSIQUES APPLIQUÉES AUX DEUX-ROUES : 1. LA FORCE DE GUIDAGE

TD 9 Problème à deux corps

POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Audioprothésiste / stage i-prépa intensif -

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Les correcteurs accorderont une importance particulière à la rigueur des raisonnements et aux représentations graphiques demandées.

Cours IV Mise en orbite

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Manuel d utilisation 26 juin Tâche à effectuer : écrire un algorithme 2

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

Mécanique. Chapitre 4. Mécanique en référentiel non galiléen

Introduction à la relativité générale

Les travaux doivent être remis sous forme papier.

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)

Cabri et le programme de géométrie au secondaire au Québec

CONCOURS COMMUN 2010 PHYSIQUE

CABLECAM de HYMATOM. Figure 1 : Schéma du système câblecam et détail du moufle vu de dessus.

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Différentiabilité ; Fonctions de plusieurs variables réelles

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Transcription:

L1 L2 Mécanique du point Chaque fiche contient : > des rappels de cours : définitions, propriétés, formules importantes. > des points de méthodologie et des conseils. > des exemples détaillés pour illustrer les notions ou apprendre à résoudre les questions. > des exercices et leurs corrigés détaillés. Mécanique du point Cet ouvrage propose une synthèse de l apprentissage de la mécanique newtonienne du point grâce à des fiches de cours suivies d exercices corrigés en détail. Toutes les étapes des calculs et des raisonnements sont explicitées, plusieurs exercices étant illustrés et faisant référence les uns aux autres de manière à donner une cohérence globale à la présentation. Divers outils méthodologiques sont également exposés et mis en œuvre pour aider à la résolution des exercices. Loïc Villain DANS LA MÊME COLLECTION L1 L2 Mécanique du point Loïc Villain 22 fiches Résumés de cours 107 exercices corrigés Méthodologie et conseils Conception graphique : Primo&Primo est enseignant-chercheur en physique à l Université François-Rabelais de Tours où il effectue son activité de recherche en astrophysique relativiste au Laboratoire de Mathématiques et Physique Théorique. Il est impliqué dans de nombreuses activités de diffusion de la connaissance, au niveau universitaire et vers le grand public. Il a publié plusieurs ouvrages en physique chez De Boeck Supérieur. PHYSIQUE PHYSIQUE L1 L2 ISBN : 978-2-8073-0766-7 www.deboecksuperieur.com Prix TTC : 16 SP_SC_MECA.indd 1 20/07/2017 11:34

Mécanique du point

DANS LA MÊME COLLECTION Sup en poche est une collection destinée aux étudiants du 1 er cycle, essentiellement en Licence 1 et 2. Son objectif est de permettre à l étudiant de réviser et s entraîner en vue de réussir ses examens. Chaque ouvrage est composé de fiches proposant des cours résumés suivis d exercices corrigés pas à pas. Optique géométrique R. Taillet Toutes les maths pour bien commencer sa licence F. Cottet-Émard

PHYSIQUE L1 L2 Mécanique du point Loïc Villain

Pour toute information sur notre fonds et les nouveautés dans votre domaine de spécialisation, consultez notre site web : www.deboecksuperieur.com De Boeck Supérieur s.a., 2017 Rue du Bosquet, 7 B-1348 Louvain-la-Neuve Tous droits réservés pour tous pays. Il est interdit, sauf accord préalable et écrit de l éditeur, de reproduire (notamment par photocopie) partiellement ou totalement le présent ouvrage, de le stocker dans une banque de données ou de le communiquer au public, sous quelque forme et de quelque manière que ce soit. Imprimé aux Pays-Bas Dépôt légal : Bibliothèque Nationale, Paris : septembre 2017 ISSN 2566-2724 Bibliothèque royale de Belgique, Bruxelles : 2017/13647/141 ISBN 978-2-8073-0766-7

Sommaire Introduction.... VI Partie 1 Cinématique 1 Référentiel, repère et coordonnées... 2 2 Coordonnées cartésiennes... 10 3 Coordonnées polaires.... 20 4 Principaux systèmes de coordonnées curvilignes tridimensionnels.... 26 5 Vecteur position et base cartésienne.... 33 6 Base polaire.... 40 7 Bases cylindrique et sphérique.... 50 8 Déplacement élémentaire, vitesse et accélération.... 58 9 Vitesse et accélération dans les systèmes de coordonnées et bases curvilignes.... 70 10 Abscisse curviligne et base de Frenet.... 80 11 Propriétés générales des mouvements et cas particuliers.... 93 12 Composition des vitesses et accélérations.... 107 Partie 2 Dynamique, énergétique et applications 13 Forces, lois de Newton et référentiels inertiels.... 124 14 Principaux exemples de forces.... 137 15 Moment cinétique.... 149 16 Travail et énergie cinétique... 157 17 Forces conservatives, énergie potentielle et énergie mécanique. 166 18 Mécanique du point en référentiel non-inertiel.... 179 19 Frottements............................................... 191 20 Forces centrales et newtoniennes... 202 21 Oscillateur harmonique libre.... 224 22 Oscillateur harmonique forcé.... 238 Sommaire V

Introduction Ce livre expose une synthèse des notions de base de la mécanique du point dans son formalisme newtonien, c est-à-dire à l aide du concept de force. Il est composé de courtes fiches de rappels de cours, suivies d exercices corrigés qui les mettent en œuvre et représentent le cœur de cet ouvrage. La mécanique repose notamment sur la cinématique, domaine qui s occupe de la description des mouvements, indépendamment de leur contexte physique. Pour cette raison, l ouvrage a été construit en deux parties. La première, qui peut sembler plus formelle, reprend la cinématique depuis les notions fondamentales (référentiel, repère, etc.) et revient sur certains «outils mathématiques», introduits peu à peu. Tous les exercices de la partie cinématique ont une motivation physique, même si elle n a pas toujours été explicitement mentionnée. Il est notamment fait référence à plusieurs d entre eux dans la seconde partie qui traite de la dynamique du point proprement dite et de ses principales applications. Quiconque souhaiterait se concentrer sur les principes physiques peut donc, dans un premier temps, parfaitememnt ignorer la partie cinématique et n y revenir qu en cas de besoin. D une manière générale, les fiches ont été conçues pour être auto-suffisantes, ou, quand tel n est pas le cas, pour ne jamais faire appel à des notions qui n ont pas déjà été abordées dans une fiche antérieure. Il en est en particulier ainsi pour les exercices qui représentent la majeure partie de l ouvrage et sont considérés ici comme des outils pédagogiques, et non seulement comme des tests pour voir si le cours a été compris. Certains d entre eux sont des applications très directes du cours, d autres sont des grands classiques, d autres encore servent de prétexte pour introduire une technique mathématique ou un concept intéressants. Chaque exercice est accompagné d un corrigé détaillé, parfois de remarques méthodologiques, et toujours d une indication de niveau (,, ). Celle-ci se réfère non pas à la difficulté conceptuelle, mais au temps nécessaire pour faire l exercice. Un niveau peut ne pas être difficile, tout en requérant de s y plonger pendant plusieurs dizaines de minutes. Dans tous les cas, la présence d un corrigé détaillé ne doit pas être une tentation pour ne pas chercher à résoudre soi-même l exercice. Le lire n a d intérêt pédagogique qu après avoir effectivement pris le temps de réfléchir activement. VI Introduction

Partie 1 Cinématique

1 COURS Référentiel, repère et coordonnées [ MOTS-CLÉS : référentiel, repère, système de coordonnées, trajectoire, équations horaires ] 1 Résumé de cours u udéfinition : Un référentiel est un ensemble de points, fictifs ou matériels, immobiles les uns par rapport aux autres et qui servent à repérer le système dont on étudie le mouvement. On peut en quelque sorte se représenter un référentiel comme un solide rigide, idéalisé ou réel. u upropriété : À tout observateur, on peut associer un unique référentiel dans lequel il est immobile à chaque instant. On assimile en général l observateur et le référentiel qui lui correspond. Attention En raison du caractère relatif du mouvement (voir la notion de relativité dans la fiche 13), il est nécessaire de préciser dans quel référentiel est observée l évolution d un système pour pouvoir la décrire. En effet, un objet n est pas en soi immobile ou mobile. Il ne l est que par rapport à quelque chose d autre. u udéfinition : On nomme référentiel absolu, le référentiel associé à l espace, lequel est supposé être, en physique newtonienne, une scène immuable dans laquelle se déroulent les phénomènes. u udéfinition : À un référentiel, on joint implicitement un repère temporel, ou un temps, défini par une origine temporelle et une unité de temps. Il permet de doter chaque phénomène d une date, voire d une durée. u udéfinition : Un événement est un phénomène qui a lieu en un endroit ponctuel donné à un instant précis. u upropriété : En mécanique classique, on considère qu il existe un temps universel et absolu, c est-à-dire qu il est possible d utiliser le même repère temporel pour tous les référentiels, sans que n apparaissent de désaccords sur la date des événements ou la durée des phénomènes. u upropriété : Dans le Système international, les dates et les durées s expriment en secondes (symbole s). 2 Cours

u udéfinition : Un repère (spatial) est l ensemble formé d un point géométrique, nommé origine et souvent noté O, et de trois axes orthogonaux. u upropriété : Il existe un unique référentiel par rapport auquel l origine et les axes d un repère particulier sont immobiles à chaque instant. En revanche, à un référentiel donné peuvent naturellement être associés une infinité de repères distincts qui diffèrent par la position de leur origine ou l orientation de leurs axes. 1. Cinématique Figure 1.1. Deux repères de l espace, d origine et d axes distincts. Si, à chaque instant, les deux repères gardent la même position l un par rapport à l autre, ils peuvent correspondre au même référentiel. En revanche, si la distance OO ou l orientation relative des axes varient, ils sont associés à des référentiels différents. Attention Par abus de langage, on désigne fréquemment un référentiel par un repère qui le définit. u udéfinition : Dans un référentiel, et étant donné un repère, la position d un point peut être repérée à l aide de 3 nombres, dits coordonnées, qui l identifient de manière unique. Les coordonnées correspondent par exemple à des distances et ont alors la dimension physique de longueurs ou à des angles, et sont dans ce cas sans dimension physique. u upropriété : Dans le Système international, les distances s expriment en mètres (symbole m) et les angles en radians (symbole rad, unité sans dimension). u udéfinition : Une convention qui attribue à chaque point de l espace ou d un référentiel un et un seul triplet de coordonnées est un système de coordonnées. On construit d ordinaire tout système de manière à Fiche 1 : Référentiel, repère et coordonnées 3

ce que l origine du repère associé au référentiel y ait des coordonnées simples (valant 0 par exemple). u udéfinition : Dans un système de coordonnées, une ligne de coordonnées est une courbe le long de laquelle une seule coordonnée varie. Attention Dans certains système de coordonnées, l origine est un point particulier auquel on ne peut pas associer trois coordonnées. C est par exemple le cas dans le système de coordonnées polaire, défini dans la fiche 3, où l on ne peut pas lui attribuer de coordonnée angulaire unique. u udéfinition : Un point matériel est la modélisation idéalisée d un système physique considéré comme un point géométrique doté de certaines propriétés physiques (une masse, une charge électrique, etc.), mais sans volume ni superficie. Dans un système de coordonnées donné et à une date fixée, il est repéré de manière unique par 3 coordonnées spatiales. u udéfinition : Dans un référentiel, la trajectoire d un point matériel est l ensemble des positions qu il occupe au cours du temps. Attention S il existe des restrictions sur les déplacements possibles d un point matériel, le nombre de coordonnées utiles pour décrire sa position et sa trajectoire peut être inférieur à 3. Par exemple, si le système ponctuel étudié est assujetti à se déplacer dans un plan, il suffit de deux coordonnées pour le répérer. u udéfinition : Dans un système de coordonnées, une trajectoire peut être caractérisée par des équations horaires, qui décrivent les coordonnées en fonction du temps, ou, pour certains mouvements simples, par une (ou plusieurs) équation(s) qui relie(nt) ou détermine(nt) explicitement les coordonnées du point. Cependant, certaines informations cinématiques, comme la vitesse, ne sont incluses que dans les équations horaires. 4 Cours

6 EXERCICES Exercice 1 Coordonnées et composantes polaires Un point M a pour coordonnées cartésiennes (5, -2). Déterminer : 1. ses coordonnées polaires ; 2. les composantes polaires de son vecteur position. Exercice 2 Composantes des vecteurs de base Soit un point de coordonnées polaires (½, µ) et de coordonnées cartésiennes (x, y). 1. Déterminer, en fonction de ½ et µ, les composantes des vecteurs r r ( e½, eµ ) qui lui correspondent dans la base cartésienne, ainsi que celles des vecteurs de la base cartésienne dans la base polaire. 2. Montrer qu il existe des matrices R(µ) et R (µ) telles que r r r r e½ ex ex e½ r = R r et r = R eµ ey e r y eµ où désigne le produit matriciel, puis calculer leur produit R(µ) R (µ) et commenter le résultat. Exercice 3 Dérivées de vecteurs mobiles 1. À partir des composantes cartésiennes, exprimées en fonction de µ, r r r r des vecteurs ( e½, eµ ) déterminer les expressions de de½ / dµ et deµ / dµ rappelées dans le résumé de cours. r 2. Soit une fonction vectorielle e ( ) qui associe à chaque valeur du réel r un vecteur de l espace. Montrer que si e ( ) a une norme indépendante de, alors, pour une même valeur de ce paramètre, e r r et de / d sont orthogonaux, puis vérifier cette propriété avec les vecteurs e r ½ et e r µ. Exercice 4 Spirale On considère un point M dont les équations horaires cartésiennes, pour t 0, sont 2 ¼t xt ( ) = tcos 2 2 ¼t yt ( ) = tsin 2 où les distances sont en centimètres et le temps en secondes. 42 Exercices

1. Déterminer les équations horaires polaires du point. 2. À l aide des équations polaires, faire une figure sur laquelle sont représentées les positions occupées à t 1 = 2/2, t 2 = 1, t 3 = 2, t 4 = 7/2 et t 5 = 2, ainsi que les vecteurs de la base polaire en chacune de ces positions. 3. Exprimer le vecteur e r y dans chacune des bases polaires obtenues. 1. Cinématique Exercice 5 Ellipse On considère une courbe dont l équation polaire est 20 ½µ () = 10-7 cos( µ ) 1. Justifier que la courbe est symétrique par rapport à l axe Ox et en déduire qu il suffit d étudier son comportement pour µ [0, ¼[ afin d avoir une idée de son allure. 2. Sur une figure, placer les points correspondants à µ = 0, µ = ¼/6, µ = ¼/4, µ = ¼/2 et µ = ¼ (ainsi que toutes les valeurs opposées) puis, en chacun de ces points, représenter la base polaire. Fiche 6 : Base polaire 43

15 CORRIGÉS Exercice 1 Expression en coordonnées polaires 1. Par définition, on a r uuuur r LO = OM p avec, ici, la restriction que le mouvement est contenu dans le plan z = 0. uuuur r r r On a donc (voir fiche 9) OM = ½ e½ et v = ½ e½ + ½µ & r r r & eµ. Puisque e½ e½ = 0 r et que e r ½ e r µ = e r, on en déduit z r 2 LO = m½ µ & r ez où m est la masse de la particule. 2. Pour obtenir L Ox, il faut calculer le produit scalaire entre le moment cinétique en un point de cet axe et son vecteur directeur unitaire. Or, par construction, le point O appartient à Ox et e r x en est le vecteur directeur unitaire. Ainsi, r r L = L e = 0 Ox O x Méthodologie De manière générale, le moment cinétique par rapport à un axe contenu dans le plan du mouvement est toujours nul. 3. De manière analogue, on a r r 2 L = L e = m½ µ & Exercice 2 Oz O z Méthodologie Lorsqu un mouvement est plan, le moment cinétique par rapport à un axe orthogonal au plan est la composante du moment cinétique par rapport au point d intersection de l axe et du plan. Équations du pendule Dans le référentiel terrestre supposé galiléen, le moment cinétique du uuuur r r r point matériel de masse m par rapport au point O est OM p, où p = mv est sa quantité de mouvement. Puisque, dans le système de coordonnées polaire d origine O, OM = ` e½ et v = `µ & r uuuur r r eµ, on a r 2 L = m` µ & r e O z 152 Corrigés

où e r z est le vecteur unitaire qui complète la base cylindrique et est orthogonal au plan du mouvement. Les deux forces qui agissent sur le point matériel sont la tension du fil T r et son poids P r. Le point O étant fixe, on peut y appliquer le théorème du moment cinétique pour écrire r dl uuuur r uuuur r O = MO( T) + MO( P) dt Cependant, par définition, Muuuur O( T r ) = OM uuuur T r, avec OM uuuur et T r qui sont tous deux colinéaires à e r ½. Ainsi, le moment de la tension est nul et seul r r r celui du poids importe. Puisque P = mg ( cos µe ½ - sin µeµ ), on a 2 m` µ && e r z = M uuuur O( P r ) = -`mg sin µ e r z soit µ && + ( g/ ` )sin µ = 0, qui était l équation obtenue en projetant le principe fondamental de la dynamique selon e r µ. 2. Dynamique Exercice 3 Force centrale et lois de Kepler 1. Le moment cinétique de la masse par rapport à O s écrit r uuuur r r LO = m OM v, où v est la vitesse du point. En dérivant cette expression par rapport au temps, on obtient r dl O r r uuuur r = m ( v v + OM a) dt puisque O est fixe. Le premier terme est nul par définition du produit vectoriel, et, à l aide de la deuxième loi de Newton, on peut écrire r dl O uuuur r = OM F dt si F r est la force qui agit sur le point matériel. Or, dans la situation considérée, F r est à chaque instant colinéaire à OM uuuur. Ainsi, le moment cinétique L r O est une constante du mouvement, c est-à-dire une grandeur dont la valeur reste constante au cours de l évolution du système. Remarque : Le résultat obtenu est l une des particularités des «forces centrales» qui sont abordées dans la fiche 20. 2. De la conservation du moment cinétique par rapport à O, on déduit le caractère plan du mouvement de la façon suivante : par construction, L r O est orthogonal à OM uuuur et à la vitesse. Il a donc une direction fixée par les conditions initiales, qu il garde par la suite. Si l on définit un repère cylin- Fiche 15 : Moment cinétique 153

drique dont l axe Oz est parallèle à L r O, il n y a ni force ni vitesse initiale selon Oz. Le mouvement reste par conséquent confiné dans le plan orthogonal. En ce qui concerne le fait que pendant des intervalles de temps égaux, le rayon vecteur balaie des surfaces égales, on le comprend en se rappelant que le produit vectoriel entre deux vecteurs a pour valeur absolue la surface du parallélogramme qu ils définissent. Or, en regardant la figure r ci-dessous, on constate que l aire balayée par = OM uuuur pendant une durée infinitésimale dt est r dr r r vdt r da = = 2 2 r r r r r où dr = ( t + dt) - () t. Puisque v = L r O / m, la constance de L r O est équivalente à celle de l aire balayée par r pendant des temps égaux. Exercice 4 Équilibre d un ensemble masses + fils + poulie On s intéresse au système «anneau» dans le référentiel terrestre supposé galiléen. Puisque l ensemble est au repos, le théorème du moment cinétique indique que la somme des moments, par rapport à un point donné, des forces qui agissent sur l anneau doit être nulle. Celui-ci est soumis à 3 forces : les tensions des fils, notées T r, Tr m et Tr M, dont il nous faut a priori connaître à la fois la norme et l orientation pour calculer leurs moments. Néanmoins, le moment par rapport à O de T r, de norme inconnue, est nul, étant donné que cette force est colinéaire à OA uuur, où O est le point par rapport auquel on calcule les moments et A le point d action. La condition d équilibre se réduit par conséquent à uuuur r uuuur r r M ( T ) + M ( T ) = 0 O M O m 154 Corrigés

Par ailleurs, les fils étant sans masse et la poulie parfaite, la norme de la tension Tr m est mg, c est-à-dire le poids de la masse que soutient le fil. Par le même raisonnement, on conclut que celle de Tr M est Mg. D autre part, le produit vectoriel de deux vecteurs A r et B r r r r est A B = AB sin( AB) u, où A et B sont les normes des vecteurs, où AB est l angle entre eux, et où u r est un vecteur unitaire orthogonal au plan qu ils définissent et tel que le trièdre ( A r, B r, u r ) soit direct. Les trois vecteurs OA uuur, Tr M et Tr m appartenant au plan de la figure ci-dessous, les deux moments seront orthogonaux à ce plan et l on peut donc les projeter selon la normale pour ne garder que des grandeurs algébriques, autrement dit des moments par rapport à l axe passant par O et orthogonal au plan de la figure. Si l on note L la distance OA, la condition d équilibre projetée selon prend la forme Lmg sin( m) + LMg sin( M) = 0 où les deux sont des angles algébriques à exprimer en fonction des données du problème et de l inconnue µ. L énoncé indiquant que les distances OA et AB sont égales, le triangle OAB est isocèle en A et l angle µ, celui qu il est demandé de déterminer, est présent à deux endroits (voir la figure). On en déduit que l angle Á, qui complète le triangle, vérifie 2µ + Á = ¼, soit Á = ¼ - 2µ, avec 2µ, le complémentaire de Á, qui est également l angle M entre OA uuur et T r M. D autre part, puisque la tension Tr m est verticale, l angle qu elle fait avec OA uuur, noté ci-dessus m, est tel que µ + m = ¼/2. Il convient cependant de prendre en compte l orientation de cet angle : les deux tensions Tr m et T r M ont des orientations opposées par rapport à OA uuur, car l une va dans le sens direct, et l autre dans le sens indirect. Leurs moments sont donc eux aussi de signe opposé et l on a finalement -Lmg sin( ¼ / 2 - µ ) + LMg sin(2 µ ) = 0 ce qui, en utilisant les relations sin(¼/2 - µ) = cos µ et sin(2µ) = 2 sin(µ) cos(µ), se simplifie en sin µ = m / (2M). 2. Dynamique Fiche 15 : Moment cinétique 155

Vérification : On constate que lorsque M 1, l équilibre correspond à µ = 0, c est-à-dire à une configuration dans laquelle les deux fils supérieurs sont collés contre le plafond. 156 Corrigés

L1 L2 Mécanique du point Chaque fiche contient : > des rappels de cours : définitions, propriétés, formules importantes. > des points de méthodologie et des conseils. > des exemples détaillés pour illustrer les notions ou apprendre à résoudre les questions. > des exercices et leurs corrigés détaillés. Mécanique du point Cet ouvrage propose une synthèse de l apprentissage de la mécanique newtonienne du point grâce à des fiches de cours suivies d exercices corrigés en détail. Toutes les étapes des calculs et des raisonnements sont explicitées, plusieurs exercices étant illustrés et faisant référence les uns aux autres de manière à donner une cohérence globale à la présentation. Divers outils méthodologiques sont également exposés et mis en œuvre pour aider à la résolution des exercices. Loïc Villain DANS LA MÊME COLLECTION L1 L2 Mécanique du point Loïc Villain 22 fiches Résumés de cours 107 exercices corrigés Méthodologie et conseils Conception graphique : Primo&Primo est enseignant-chercheur en physique à l Université François-Rabelais de Tours où il effectue son activité de recherche en astrophysique relativiste au Laboratoire de Mathématiques et Physique Théorique. Il est impliqué dans de nombreuses activités de diffusion de la connaissance, au niveau universitaire et vers le grand public. Il a publié plusieurs ouvrages en physique chez De Boeck Supérieur. PHYSIQUE PHYSIQUE L1 L2 ISBN : 978-2-8073-0766-7 www.deboecksuperieur.com Prix TTC : 16 SP_SC_MECA.indd 1 20/07/2017 11:34