Mécanique des fluides Rappels

Dimension: px
Commencer à balayer dès la page:

Download "Mécanique des fluides Rappels"

Transcription

1 Mécanique des fluides Rappels Jean-Martial Coard Plan du cours I- GENERLITE II- RPPEL DE STTIUE 1- Principe fondamentale de la statique 2- efforts sur les parois immergées III- RPPEL D HYDRODYNMIUE 1- notion de flux conservation de la masse 2- équations intrinsèques 3- Relation de ernoulli 4- Téorème des quantités de mouvement 5- Cas des fluides réelles 6- Notion d nalse dimensionnelle IV- ECOULEMENT SURFCE LIRE REGIME PERMNENT 1- Introduction 2- Géométrie 3- Formule de Ce, V- ECOULEMENT GRDUELLEMENT VRIE 1- Carge spécifique 2- Ligne d eau 3- Le ressaut draulique 4- Passage d obstacle VI- INTRODUCTION UX ECOULEMENT EN MILIEUX POREUX 1- Loi de Darc les ga : Molécules libres (mouvement brownien) u est ce qu un fluide les fluides : État intermédiaire les solides : gencement cristalin des molécules Introduction Particule fluide Suffisamment grand pour contenir un grand nombre de molécules Suffisamment petit pour qu on ne puisse distinguer des étérogénéités.

2 Effort sur une particule fluide S : domaine matériel de masse m S : surface qui délimite S F = m f; avec f : densité massique d effort T = S t ; avec t : densité surfacique d effort T S S F P = m. g f = g Force de pesanteur L énergie potentielle massique associée e p est tel que : de p = -g dl = -g d e = g d Soit : e p = g. + cte Réciproquement : g = -grad e p = -grad(g.) S e P Vecteur contrainte Torseur des actions exercées sur : {df; dm} On défini le vecteur contrainte : t (M, e n ) = df/d Contrainte normale : σ n = t. e n Contrainte tangentielle : σ t e t = t - σ n e n df df e n dm d M σ n.e n e n d σ t.e t M Comportement des solides u est ce qu un fluide pplication d une force de cisaillement Comportement des liquides Déformation + état d équilibre Déformation

3 τ x τ 0 u est ce qu un fluide Comportement des fluides et autres. pente = μ Plastique de ingam Plastique Fluide solidifiant stable Fluide newtonien Fluide épaississant du/d Variables : ρ, P, T Compressibilité Pour un ga : Loi des ga parfaits : p/ ρ = R.T/M ; avec R = 8,32 J.K -1.kg 1 Ou équation de Van der Waals : p.m/(ρ.r.t) = 1+ ρ.c(t) + ρ 2.D(T) + L air est en général considéré comme un ga parfait incompressible si U 100 m.s -1 ρ = cte Compressibilité Pour un liquide : (ρ - ρ 0 )/ ρ 0 = - β.(t-t 0 ) + χ.(p - p 0 ) vec β est le coefficient de dilatation et χ, le coefficient de compressibilité - χ dp = dρ/ ρ 0 0 Pour l eau : β = 1/5000 K -1 ; χ = 1/22400 bar 1 ( Pa -1 ) Pourtant les ondes se propagent (coup de bélier, cant des baleines ) à la vitesse c tel que : c 2 = ( p/ ρ) T=cte Compressibilité Coef. De compressibilité Célérité du son c (m/s) ir 1,00E eau 5E Nombre de Mac : Ma = U/c Fluide incompressible pour Ma << 1 Dans le cadre de ce cours on supposera l eau et l air comme des fluides incompressibles : ρ air = 1,3 kg/m 3 ρ eau = 10 3 kg/m 3

4 Notion de Pression Contrainte normale résultant des cocs des molécules sur les parois. L intensité de cette contrainte est caractérisée par un scalaire : la pression - Défini en caque point du fluide - C est une grandeur locale - Fluide en mouvement ou pas - esoin d une surface pour être révélée df = - p e n d σ n = - p e n est la normale sortante La pression s exprime en N. m -2 = kg.s -2.m 1 Force de Pression P e n dm d M df F = -p e n d Conversion des unités de Pression Pa bar mm CE mm Hg atm Pascal 1,00E+00 1,00E-05 1,02E-01 7,50E-03 9,87E-06 bar 1,00E+05 1,00E+00 1,02E+04 7,50E+02 9,87E-01 mm C.E. 9,81E+00 9,81E-05 1,00E+00 7,35E-02 9,68E-05 mmhg = torr 1,33E+02 1,33E-03 1,36E+01 1,00E+00 1,32E-03 tmospère 1,01E+05 1,01E+00 1, ,60E+02 1,00E+00 P abs est la pression absolue P eff est la pression effective mesurée par rapport à la pression atmospérique (P atm ) Fluide parfait u() de ga parfait Viscosité Fluide réel u() Pour un fluide réel en mouvement, il a glissement et frottement entre le fluide et les parois solides mais également glissement et frottement entre les couces de fluide

5 Paroi mobile u 0 Paroi fixe Viscosité F Pour maintenir la vitesse u 0, il faut exercer sur la paroi mobile une force F tel que F = μ u 0 / μ est la viscosité dnamique Elle s exprime kg.m -1. s -1, l unité SI est le poiseuille (Pl) ou le Pa.s Le travail F*Δl fourni est dissipé en caleur Le fluide est soumis à une contrainte de cisaillement σ t e t = df / d σ t = μ u/ Viscosité; fluide Newtonien Les fluides qui vérifient cette relation linéaire entre la contrainte et le gradient de vitesse sont des fluides newtonien x df u + du u d df Viscosité On définit également la viscosité cinématique ν = μ / ρ [poise] Masse volumique (kg/m 3 ) Ordre de grandeur Viscosité dnamique (kg/(m.s)) Viscosité dnamique (m 2 /s) ir 1,29E+00 1,85E-05 1,43E-05 eau 1,00E+03 1,00E-03 1,00E-06 Statique des fluides Equation fondamentale de la statique Etude des fluides au repos; pas de mouvement relatif entre les particules fluide σ t = 0 p.dx.d - (p + dp).dx.d + ρ.f.dx.d.d = 0 dp/d - ρ.f = 0 p/ - ρ.f = 0 De même dans les autres directions, il vient grad p - ρ.f = 0 (p+dp).dx.d d x dx ρf.dv d p.dx.d

6 Si il a équilibre alors : Statique des fluides Propriété du PFS rot grad p - rot ρ.f = 0 = rot f lors il existe une fonction e p tel que : -grad e p = f e p est l énergie potentielle grad p + ρ.grad e p = 0 Les équipotentielles et les isobares sont confondues Les isobares sont des surfaces d égale masse volumique Les isobares sont aussi des surfaces isotermes Statique des fluides Cas de la pesanteur : loi de l drostatique Le fluide a une masse volumique uniforme Le seul camp de force est le camp de pesanteur f = g = - grad(g.) Léquation de la statique devient grad(p + ρ.g.) = 0 L équation de l drostatique s écrit p + ρ.g. = cte = p g p g est la pression motrice p + ρ.g. = cte = p g Statique des fluides loi de l drostatique * La différence de pression Δp entre 2 points et ne dépend que de la différence d altitude Δ = Δp = - ρ.g. Δ * Principe de Pascal : les fluides transmettent la pression = p = p F S f s F/S = f/s p + ρ.g. = cte = p g Statique des fluides loi de l drostatique * La pression augmente linéairement avec l altitude P atm P() * Pour une surface libre p = p atm. C est une surface isobare àg et plus généralement à l accélération locale P atm g Fluide au repos P atm a g U Fluide en écoulement : U = cte

7 df = - p e n d avec p( ) + ρ.g. = p atm +ρ.g. Statique des fluides p( ) = p atm +ρ.g.( ) = cte F = -p e n d = - p ( ) d = - p ( ) Force de pression df = - p e n d avec p() + ρ.g. = p atm ; vrai pour <0 p() = p atm - ρ.g. F = -p e n d = - x p () d = - (.p atm 0,5.ρ.g.l.( 2-2 )).x =0 =0 P() x P() F P atm F P atm Statique des fluides Pression effective On défini la pression effective : p eff = p p atm Elle est plus simple à mesurer On peut quasiment toujours travailler avec la pression effective plutôt qu avec la pression réelle p car la pression atmospérique est quasiment toujours présente =0 x P atm df due à p atm df due à p eff M c = CM ^ df = 0 M c = CM ^ - p e n d = 0 Statique des fluides Centre de poussée Le centre de poussé est le point C tel que le moment des forces de pression en C est nul CM ^ df = (- C ) ^ -p.x.d = -p.(- C )..d p eff () = - ρ.g. M c = -(-ρ.g. ).(- C )..d = 0 ( 2 -. C ).d = 0 [ 3 /3 c. 2 /2] = 0 C = +2.( - )/3 =0 C x P() P atm F C Hdrodnamique Notion de flux La quantité convectée pendant dt par l écoulement à travers la surface d est contenue dans un clindre dv de base d et de auteur : u.dt.cos(u.e n ) = u.e n dt Soit dv = u.e n dt.d La quantité transportée par unité de temps est appelée flux de à travers d dφ = ρ.b. u.e n dt.d u d M e n où b est la densité massique de

8 Débit masse : b = 1 dq m = ρ. u.e n.d Si u = cte sur et à alors q m = ρ. U. Flux de quantité de mouvement b = u dφ qdm Hdrodnamique = ρ.u. u.e n.d = u.dq m Notion de flux u d M e n dφ qdm s exprime en N/m 2 Ecoulement permanent non-uniforme : accélération convective ds = u.dt u u+du t M N u u+du t+dt Hdrodnamique Vitesse particulaire Ecoulement uniforme non-permanent : accélération locale u t M u+du t+dt du = u/ t. dt + u/ s. ds ds = u.dt a s = du/dt = u/ t + u/ s.ds/dt = u/ t + u. u/ s N u u+du dq m (x) = ρ. u(x).d.d dq m (x+dx) = ρ. u(x+dx).d.d Dans la direction x la variation de masse pendant le temps dt est : m/ t Hdrodnamique Conservation de la masse = (ρ.dv)/ t =dv. ρ/ t = - (ρ.u )/ x.dx.d.d = - (ρ.u)/ x.dv De même dans les autres directions u(x) d x dx ρ.dv d u(x+dx) ρ/ t = - div (ρ.u) Pour un écoulement permanent : ρ/ t = 0 = div (ρ.u) Pour un fluide incompressible : ρ = cte div u = 0 Cas d un tube de courant Hdrodnamique Conservation de la masse 1 ρ.u 1.e 1 d = 2 ρ.u 2.e 2 d = cte u 2 e 2 2 u 1 e 1 x 1

9 Hdrodnamique Dnamique des fluides parfaits Fluide parfait u() Pas de viscosité ν = μ = 0 Fluide réel u() C est une bonne approximation tant que l on ne s intéresse pas à ce qui se passe à proximité d une paroi, d un sillage, d une one de mélange Hdrodnamique Équation d Euler Le principe fondamentale de la dnamique pour un fluide parfait s écrit : ρ du/dt= -gradp + ρ.f ρ ( u/ t + u.grad u) = - grad p + ρ.f Pour f = - grad (g) ρ du/dt = - grad p g (p+dp).dx.d d x u x (t) L équation d'euler est une équation différentielle du premier ordre une seule condition à la limite est nécessaire : la condition d imperméabilité aux frontières de l écoulement. dx ρf.dv d p.dx.d Hdrodnamique Equations dnamiques intrinsèques R : raon de courbure C : centre de courbure u = u e t et du/dt = du/dt e t + u 2 /R e n = -ρ -1 grad p g = u/ t + u.grad u Il vient u/ t + u. u/ s = -ρ -1 p g / s trajectoire s 0 e n e b s e t u(s) équation tangentielle u 2 /R = -ρ -1 p g / r équation normale p g rivière u(s) R Hdrodnamique Conséquence de l équation normale p g --- ρ.u 2 /R = - p g / r arracement, creusement R = p g / r = 0 pas de variation de pression p atm p atm

10 Hdrodnamique Relation de ernoulli u u/ x + v u/ + w u/ u.grad u = u v/ x + v v/ + w v/ = grad(u 2 /2) (rot u)^u u w/ x + v w/ + w w/ ρ ( u/ t + grad(u 2 /2) (rot u)^u) + grad (p + ρ.g.) = 0 Pour un écoulement irrotationnel : rot u = 0 Sur une ligne de courant : (rot u)^u).ds = (u^ds).rot u = 0 Il vient alors : ρ. u/ t + grad(ρ u 2 /2 + p + ρ.g.) = 0 Hdrodnamique Relation de ernoulli Pour un écoulement permanent : u/ t = 0 En intégrant l équation précédente : ρ u 2 /2 + p + ρ.g. = Cte Ec Ep Ec + Ep = Et = Cte M 2 M 1 ρ u 12 /2 + p 1 + ρ.g. 1 = ρ u 22 /2 + p 2 + ρ.g. 2 Conservation de l énergie totale Hdrodnamique Hpotèse de la relation de ernoulli ρ u 2 /2 + p + ρ.g. = Cte Fluide parfait Fluide incompressible écoulement permanent Écoulement irrotationnel ou sur une ligne de courant Écoulement dans le camps de pesanteur f = ρ.g H Hdrodnamique Ligne de carge, ligne pieométrique Plan de carge U 2 /2.g Ligne piéométrique p/ρ.g

11 Hdrodnamique Cas des écoulements en conduite de fluides réelles Ecoulement laminaire r - Les lignes de courant sont rectilignes - Vitesse relative nulle à la paroi - u ne dépend que de r - u(r) = 2.U d.(1-(r/r) 2 ) - = S u.e n.ds - U d = /S = /πr 2 -U d est la vitesse débitante -U max = 2.U d 4U d 2U d u(r) U d D=2R Hdrodnamique Cas des écoulements en conduite de fluides réelles Ecoulement turbulent r - Les lignes de courant se mélangent - Vitesse relative nulle à la paroi - U d = /S = /πr 2 -U d est la vitesse débitante -U max = α.u d ; avec α 1,05 - En pratique, les écoulements en conduite sont turbulents, on prendra α = 1 U d u mo (r) D=2R Hdrodnamique ue devient la relation de ernoulli ρ grad(u 2 /2) = - grad p + ρ.f + force de frottement Profil de vitesse non uniforme dans la section viscosité ρ.α.u 2 /2 + p + ρ.g. + Δp perte = Cte S 2 S 1 Pour un écoulement turbulent : ρ u 12 /2 + p 1 + ρ.g. 1 = ρ u 22 /2 + p 2 + ρ.g. 2 + Δp perte Re = ρ V D μ Convection Termique Nombre de REYNOLDS Rapport entre les force d inertie et les force de frottement : Re petit : frottement prépondérant Re grand : inertie prépondérante ρ : masse volumique du fluide [kg/m 3 ], v : vitesse moenne du fluide [m/s], D : plus petite dimension géométrique du problème [m], μ : viscosité dnamique du fluide [Pa.s]. laminaire critique turbulent laminaire

12 D Hdrodnamique Conservation de la quantité de mouvement D e n Pour un écoulement permanent : d(m.u)/dt = d ( D ρ.u.dv) /dt = ( D (ρ.u)/ t dv + D ρ.u.grad u.dv = ( D (ρ.u)/ t dv+ D ρ.u.u.e n.ds = Σ F ext D D ρ.u.u.e n.ds = Σ F ext D D ρ.u.u.e n.ds est le flux de quantité de mouvement à travers dd Hdrodnamique Conservation de la quantité de mouvement Ex : écoulement à débit constant dans un tuau oriontal u d = u d.s e 1 P 1 S e 3 D P 2 D ρ.u.u.e n.ds = Σ F ext D e 2 u d Hdrodnamique nalse dimensionnelle Soit un sstème psique Φ décrit par n paramètres psique g i dimensionnels (grandeurs psiques) Φ(g 1,g 2,...,g n ) = 0 Soit p le nombre de grandeurs fondamentales (m, t, T, L) lors le problème peut s exprimer en fonction de n-p variables sans dimension G j de la forme : F(G 1,G 2,...,G n-p ) avec Gj = g 1 α1. g 2 α2... g n αn U Hdrodnamique nalse dimensionnelle Ex : traînée d une pile de pont D F = g( 0 = Φ (F, n = p = F

13 Hdrodnamique Cf = f(re) U = 1m/s; D = 2m; μ = 10-3 Pl Re = Cf = F= P Écoulement en carge La section de l écoulement est celle de la conduite Définition P atm Écoulement à surface libre Il existe une surface de séparation entre le liquide et l air La section de passage dépend du débit exemples doc.p.ois Distribution des vitesses u() Frottement au fond du canal Frottement à la surface u() u() Frottement sur les parois

14 χ Raon draulique : S Géométrie R H = section mouillée / périmètre mouillé = S/χ Section mouillée S : section de l écoulement moen limitée par les parois et la surface libre Périmètre mouillé χ : Contour mouillé (sans la surface libre) ; one de frottement solide D H = 4 * R H S = Χ = R H = D H = Géométrie cas du canal rectangulaire ue devient R i << b b Géométrie u() Pente de fond : i = sinθ θ θ Nombre de Froude Paramètre adimensionnel caractéristique des écoulement à surface libre Fr = U/ (g) Rapport entre énergie cinétique et énergie potentielle Ec / Ep = 0,5*m*U 2 / ρg dv = 0,5.ρ.V.U 2 /0,5.ρ.g. 2.S = Fr 2 Si Fr > 1 Ec > Ep Régime torentiel Si Fr < 1 Ec < Ep Régime fluvial Si Fr = 1 Régime critique

15 Les ronds dans l eau Propagation des ondes V = 0 V< g point d impact V V=0 + C =+ g point d impact X 0 - C =- g V> g V Les ondes peuvent remonter le courant Les ondes ne peuvent pas remonter le courant Ecoulement Uniforme et permanent Ecoulement uniforme : la section mouillée reste constante le long de l écoulement. Ecoulement permanent :./ t = 0. Exemple : pour un canal prismatique de grande longueur. S(x) = Cte = Cte Ligne de carge u() La surface libre est alors un plan parallèle au fond de pente i, U = Cte la ligne de carge // au fond θ l U g.sinθ g Formule de CHEZY (1775) θ τ paroi b S Force motrice : ρ.v.g.sinθ = ρ.l.s.g.sinθ Force résistante : - τ paroi.χ.l = 0,5.ρ.C f.u 2.χ.l (frottement) - τ air.b.l = 0,5.ρ.C f.u 2.b.l τ air Formule de CHEZY U = Cte ΣF = 0 ρ.l.s.g.sinθ = 0,5.ρ.C f.u 2.χ.l + 0,5.ρ.C f.u 2.b.l U 2 = 2.g/(C f +C f.b/χ).s/χ.i On appelle C, coefficient de Ce : 2g C= [C] = m 1/2.T -1 C +C' b χ f f lors : U=C RHi

16 Formule de CHEZY U=C RHi En général C f.b/χ << C f 30 < C < 100 (MKS) C f grand frottement grand C petit 2g C= C f C f grand frottement petit C grand Débitance d un canal U=C RHi =U.S=S.C R i H = ( S.C R ) i Par définition la débitance K d un canal est : K = S.C. R H lors : = K. i K dépend de la géométrie par S et RH et par la nature des parois par Cf K ne dépend pas de la profondeur d eau!!! H u() Coefficient de frottement En général Re est grand régime turbulent rugueux C f = Cte Profil externe : U = α Profil logartmique : U = a.ln + b a 1/κ 2,5; b 5 Sous couce visqueuse, Profil linéaire : U =.τ paroi /μ ain, Manning, Dans la littérature les formules empiriques abondent 87 Formule de ain C= γ caractérise la nature des 1+ γ R parois (cf table) Formule de Manning (Strickler) η ou K s caractérise la nature des parois (cf table) H 1 C= R =K R η 1/6 1/6 H

17 l = 4m erge revétu de béton Pente de fond : i = 0,3m/km = 1,6 m Exemple : canal trapéoïdal Calculer la débitance du canal, la vitesse et le débit pour un écoulement uniforme S = χ = R H = ain : γ = 0,16 C = K = = U = l 45 Tracer la courbe de tarage () de ce canal m3/s Exemple : canal trapéoïdal 40,00 35,00 30,00 25,00 20,00 15,00 10,00 5,00 0,00 0,00 1,00 2,00 3,00 4,00 (m) Ecoulement graduellement varié Hpotèses : les lignes de courant sont rectilignes (localement) la auteur d eau n est pas constante répartition drostatique de la pression dans une section les profils de vitesse sont identique à ceux de l écoulement uniforme U P() θ x U Ligne de carge Ligne de carge, ligne d eau, U 2 /2g (x) (x) j P atm = 0 d/dx =? θ = i En x la carge est définie par : H = p/ρg + + U 2 /2g = (x) + (x) + U 2 /2g

18 Carge Spécifique La cote du fond étant donnée, il est plus simple d étudier la carge comptée à partir du fond, c est ce qu on appelle la carge spécifique : H = + = (x) + U 2 /2g = (x) + 2 /(2gS 2 ) Ep d /d = 1 + d( 2 /(2gS 2 ) )/d = 1-2 /(gs 3 ) ds/d = 1 - Fr 2 Ec Carge Spécifique d /d = 0 = /(gs 3 )ds/d L =[ 2 /(gl 2 )] 1/3 = m S ( ) = 3. /2 m = S/L ds = L.d 2 L/(gS 3 ) = U 2 /g = Fr 2 = 1 () atteint un minimum pour = est appelée auteur critique Fonction du débit, de la section = (x) + 2 /(2gS 2 ) L n n Exemple : Passage d un seuil n + f = H 0 = Cte f C Régime fluvial : diminue Régime torrentiel : augmente D C D

19 = 3 /2 Fonction du débit, de la section = (x) + 2 /(2gS 2 ) = S.[2.g.( - (x))] 1/2 Régime fluvial Régime torrentiel Pour une section donnée, le débit est maximum pour = max Ligne de carge U 2 /2g U (x) (x) Pente de fond : i = - d/dx Perte de carge : j = - dh/dx ligne d eau j i H = + p/ρg + U 2 /2g = (x) + (x) + U 2 /2g On à donc entre 2 sections : dh/dx = d/dx + d/dx + d(u 2 /2g)/dx -j = -i + dhs/dx Or d /dx = d /d. d/dx = (1 - Fr 2 ).d/dx d/dx = (i - j)/(1 - Fr 2 ) ligne d eau d/dx = (i - j)/(1 - Fr 2 ) Profil de vitesse identique à ceux de l écoulement uniforme j = 2 /(S 2.C 2.R H ) = 2 /(S 2.K s2.r 4/3 H ) S d/dx = (i - 2 /(S 2.K s2.r H 4/3 ))/(1 - Fr 2 ) Pour la section rectangulaire : d/dx = (i - 2 /(L 2. 2.K s2. 4/3 ))/(1 - Fr 2 ) Équation différentielle en L S Profondeur normale, pente critique, d/dx = (i - j)/(1 - Fr 2 ) Si =cte = n d/dx = 0 i = j ( n est la profondeur normale) Pente critique i c : i tel que = i c = 2 /(S 2.K s2.r 4/3 H ) Fr 2 = 1 = 2 L/(gS 3 ) i < ic ( n > ) : canal de pente faible Ligne de carge U (x) i on retrouve le cas de l écoulement uniforme i = 2 /(S 2.K s2.r H 4/3 ) i > ic ( n < ) : canal de pente forte i c = gs/(l.k s2.r H 4/3 ) Ligne de carge U (x) i

20 Cas fluvial Ligne de carge U U (x) (x) Ligne de carge (x) j j i ligne d eau d/dx = (i - j)/(1 - Fr 2 ) Il faut traiter les cas Fr < 1 et Fr > 1 Cas fluvial et torrentiel Mais aussi i < j et i > j Cas torrentiel Ligne de carge j U (x) i (x) Ligne de carge U (x) j (x) i (x) i ligne d eau : canal de faible pente d/dx = (i - j)/(1 - Fr 2 ) 0 n i - j i 1 - F d/dx i n > M 3 M 2 M 1 n θ = i ligne d eau : canal de faible pente Exemples θ = i M 2 n M 1 n M 3 S 2 n θ = i ligne d eau : canal de forte pente d/dx = (i - j)/(1 - Fr 2 ) 0 n n < i - j i 1 - F d/dx i S 2 S 1 S 3 n θ = i

21 ligne d eau : canal de forte pente Exemples S 3 n S 2 θ = i S 1 n θ = i Le ressaut Le régime fluvial ou torrentiel ne dépend que d une seule condition à la limite (éq. diff. Du 1er ordre). Si au 2 extrémités d un canal les conditions sont incompatibles alors il aura un cangement de régime. Le ressaut : passage fluvial torrentiel Exemple : cas d un cangement de pente c n M 2 S 2 n La profondeur (x) diminue. L écoulement étant convergent, il n à pas de perte de carge. Le ressaut : passage torrentiel fluvial ΔH n La profondeur (x) augmente. L écoulement diverge, apparition d une très grande de perte de carge. Le ressaut est un écoulement très fortement varié M 3 n

22 Equation du ressaut n M 3 n S 1 S 2 pplication de la conservation de la quantité de mouvement entre les sections S1 et S2 forces de pesanteur négligeables potèse de fluide parfait (frottements au fond négligés) Equation du ressaut n n M 3 S 1 S 2 ρ../s 2 - ρ../s 1 = ρ.g. 1.S 1 /2 - ρ.g. 2.S 2 /2 pour une section rectangulaire S = L. 2 /g.l 2 ( ) = 0,5.( 1 2 ) près calcul, en notant que 3 = 2 /g.l 2 : Perte de carge du ressaut n M 3 n S 1 S 2 pplication de la conservation de l énergie (relation de bernoulli) entre les sections S1 et S2 forces de pesanteur négligeables prise en compte d une perte de carge singulière pas de perte de carge régulière pente de fond négligeable entre S 1 et S 2 Perte de carge du ressaut n n M 3 S 1 S 2 ρ.g ,5.ρ.(/S 1 ) 2 = ρ.g ,5.ρ.(/S 2 ) 2 + ΔH pour une section rectangulaire S = L. ΔH = ( 1 2 ).[1 ( 2 /2.g.L 2 ).( ).( 1. 2 ) -2 ] près calcul, en notant que 2.3 = 1. 2.( ):

23 Conjuguée de la torrentielle Localisation du ressaut Le ressaut se fixe de telle sorte que 1 (amont) et 2 (aval) soient conjuguées, c.a.d. qu ils vérifient tous les deux l équation du ressaut. Si on suppose que le ressaut a une longueur nulle (idéal), alors il se place à l intersection de : - la courbe fluviale et de la conjuguée torrentielle - la courbe torrentielle et de la conjuguée fluviale n M 3 n Conjuguée de la fluviale S 1 S 2 Le ressaut le jet du robinet dans l'évier divergent: le débit par u. de largeur diminue Transition réservoir canal S 2 n = 3 /2 n Régime fluvial Régime torrentiel max Régime permanent C Transition réservoir canal n M 1 M 2 n

24 Francissement d un ouvrage : section contractée En régime fluvial - abaissement de la ligne d eau entre et - accélération - érosion! En régime torentiel - élèvation de la ligne d eau entre et Section contractée Section naturelle Francissement d un ouvrage : section contractée C Il faut prendre en carge les pertes de carge singulières D u niveau du convergent : (en C) u niveau du divergent : (en D) ( Vcon Vam ) Δ Hconvergent = Kcon Kcon 0 2g ( Vcon Vav ) Section contractée Δ Hdivergent = Kdiv Kdiv 1 2g 2 Section naturelle 2 Francissement d un ouvrage : section contractée, endiguement Tracer les position relative de n et c c Placer les points,, C, D sur le grape Hs, et tracer les lignes de remous C C n Section naturelle Francissement d un ouvrage : section contractée, étranglement C c C M 3 D D n Section naturelle

25 H Les seuils ou déversoir Les seuils servent à mesurer ou à réguler le débit ou encore à contrôler les niveaux d eau Canal = = 2/3 H Le débit dépend de l excès de auteur par rapport au niveau du seuil H assin En régime dénoé : Les seuils ou déversoir = gc α c 2 c = H 3 H = = 2/3 H En régime noé : ΔH 2 V ( ) = K amont aval 2 g noé 1 = K 2 g α ( ) amont aval ( noé amont ) seuil 2 H En régime dénoé : En régime noé : Les seuils ou déversoir ( ) ( amont seuil ) = K L 2 g dénoé s s amont seuil Ks = 0, 4 + 0,05 L = L 0, 2 s seuil ( ) amont seuil Pour un déversoir triangulaire à 90 : = 2,50( ) 2,5 dénoé amont seuil 3 2 ( )( ) 1 2 = K L 2g s s noé amont seuil amont aval Les seuils ou déversoir n 1 - Calculer la auteur de seuil maximal Z fmax en dessous de laquelle on retrouvera un écoulement fluvial à la sortie du seuil. 2 - ue se passe t il si Z fmax est supérieur à H 0 - Hs(c)? montrer que l écoulement passe d un régime fluvial à un régime torrentiel en dérivant 2 fois H 0 par rapport à x. 3 - Le canal précédent rencontre un seuil de auteur 0,5 m. Calculer la auteur 0 nécessaire à l amont pour que l écoulement francissent le seuil ainsi que la auteur 1 à la sortie du seuil. 4 - La pente du canal étant identique à l amont et à l aval l écoulement va donc retrouver la auteur n = 2 m. Pour cela un ressaut draulique va apparaître en aval du ressaut. Faire un scéma représentant la ligne d eau de cet écoulement au passage du seuil et du ressaut. 5 - Calculer la perte de carge au passage du ressaut.

Objectifs du Chapitre. Initiatiaon à l Analyse Dimensionnelle. Introduction à la Théorie de Maquettes et Similitude.

Objectifs du Chapitre. Initiatiaon à l Analyse Dimensionnelle. Introduction à la Théorie de Maquettes et Similitude. Objectifs du Chapitre Initiatiaon à l Analyse Dimensionnelle. Introduction à la Théorie de Maquettes et Similitude. Adil Ridha (Université de Caen) Analyse Dimensionnelle et Similitude 2009-2010 1 / 31

Plus en détail

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI

Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides

Plus en détail

ENGEES Formation continue

ENGEES Formation continue 1 ENGEES Formation continue LES NOTIONS DE BASE D HYDRAULIQUE UTILES EN ASSAINISSEMENT Thierry ADAM, Chef de projet Rappels d hydraulique 2 Notion de «débit» (Q) : flux hydraulique à travers une section

Plus en détail

Rappels et compléments :

Rappels et compléments : CHAPITRE 6 MECANIQUE DES FLUIDES VISQUEUX Pr. M. ABD-LEFDIL Université Mohammed V- Agdal Département de Physique Année universitaire 05-06 SVI-STU Rappels et compléments : Un fluide est un milieu matériel

Plus en détail

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONVECTION - 93. [J. Brau], [2006], INSA de Lyon, tous droits réservés

INSA de LYON Dép. Génie Civil et Urbanisme 3GCU CONVECTION - 93. [J. Brau], [2006], INSA de Lyon, tous droits réservés CONVECTION - 93 Introduction Ce mode de transfert est basé sur le fait qu il y a déplacement de matière : il ne concerne donc que les fluides (liquides et gaz). Contrairement à la conduction où le transfert

Plus en détail

Concours CASTing 2011

Concours CASTing 2011 Concours CASTing 2011 Épreuve de mécanique Durée 1h30 Sans calculatrice Le candidat traitera deux exercices parmi les trois proposés dans le sujet. Dans le cas où les trois exercices seraient traités partiellement,

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

FLUIDES EN ÉCOULEMENT Méthodes et modèles

FLUIDES EN ÉCOULEMENT Méthodes et modèles FLUIDES EN ÉCOULEMENT Méthodes et modèles Jacques PADET Professeur Émérite à l Université de Reims Seconde édition revue et augmentée TABLE DES MATIÈRES PRÉSENTATION Préface de la 1 ère édition Prologue

Plus en détail

Écoulements internes et calcule de h et de température

Écoulements internes et calcule de h et de température Objectifs Écoulements internes et calcule de h et de température Objectifs Mettre en évidence les différences entre écoulements externes et internes Calcul de h local et moyen Calcul de température locale

Plus en détail

Exercices sur les écoulements compressibles

Exercices sur les écoulements compressibles Exercices sur les écoulements compressibles IUT - GTE - Marseille 2012-13 1 Exercice 1 Calculer la température et la pression d arrêt sur le bord d attaque de l aile d un avion volant à Mach Ma = 0.98

Plus en détail

Mécanique des fluides

Mécanique des fluides Mécanique des fluides Auteur : Yann MARCHESSE Département : Génie Énergétique et Mécanique Édition : Année universitaire 2011-2012 ÉCOLE CATHOLIQUE D ARTS ET MÉTIERS 40 Montée Saint-Barthélemy - 69321

Plus en détail

Relations fondamentales de la dynamique des milieux continus déformables

Relations fondamentales de la dynamique des milieux continus déformables Relations fondamentales de la dynamique des milieux continus déformables Lois universelles de la physique des milieux continus conservation de la masse bilan de quantité de mouvement bilan de moment cinétique

Plus en détail

EPFL - Travaux pratiques de physique. Hydrodynamique. Résumé

EPFL - Travaux pratiques de physique. Hydrodynamique. Résumé Hydrodynamique Résumé L étude de la dynamique des fluides (liquides et gaz) permet de déterminer les caractéristiques du fluide lui-même ainsi que celles d un objet plongé à l intérieur de celui-ci. Il

Plus en détail

Chapitre 7: Dynamique des fluides

Chapitre 7: Dynamique des fluides Chapitre 7: Dynamique des fluides But du chapitre: comprendre les principes qui permettent de décrire la circulation sanguine. Ceci revient à étudier la manière dont les fluides circulent dans les tuyaux.

Plus en détail

HYDRAULIQUE A SURFACE LIBRE

HYDRAULIQUE A SURFACE LIBRE ECOLE NATIONALE DU GENIE DE L EAU ET DE L ENVIRONNEMENT DE STRASBOURG HYDRAULIQUE A SURFACE LIBRE FORMATION INITIALE José VAZQUEZ AVANT PROPOS L ydraulique est très présente dans le domaine de l environnement.

Plus en détail

Chapitre 1 AIDE MÉMOIRE D HYDRAULIQUE À SURFACE LIBRE

Chapitre 1 AIDE MÉMOIRE D HYDRAULIQUE À SURFACE LIBRE Chapitre AIDE MÉMOIRE D YDRAULIQUE À SURFACE LIBRE - DÉFINITIONS ESSENTIELLES : LES PARAMÈTRES GÉOMÉTRIQUES... 8 - DÉFINITIONS ESSENTIELLES : LES PARAMÈTRES YDRAULIQUES... 9. - Masse volumique... 9. -

Plus en détail

UNIVERSITÉE KASDI MERBAH OUARGLA

UNIVERSITÉE KASDI MERBAH OUARGLA UNIVERSITÉE KASDI MERBAH OUARGLA FACULTE DES SCIENCES APPLIQUÉES Département de Génie des Procédés Phénomènes de transferts Travaux pratiques de mécanique des fluides CHAOUCH Noura et SAIFI Nadia 2013

Plus en détail

Quatrième partie. Hydrostatique, hydrodynamique des fluides parfaits

Quatrième partie. Hydrostatique, hydrodynamique des fluides parfaits Quatrième partie Hydrostatique, hydrodynamique des fluides parfaits 105 Chapitre 11 LE THÉORÈME DE BERNOULLI Le principe de conservation de l énergie est très général. Nous allons montrer qu il permet

Plus en détail

1 Outils mathématiques pour la Physique

1 Outils mathématiques pour la Physique Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier TUE 302 : Outil Physique et Géophysique 1 Outils mathématiques pour la Physique k Daniel.Brito@ujf-grenoble.fr

Plus en détail

CONTRÔLE du vendredi 26 mars 2010

CONTRÔLE du vendredi 26 mars 2010 Annales Corrigées du cours MEC567 : Sciences de l eau et environnement 1 CONTRÔLE du vendredi 26 mars 21 Tous documents autorisés. Durée : 3h. Sujet proposé par O. THUAL EXERCICE 1 : Un pipeline pour la

Plus en détail

Calcul des pertes de pression et dimensionnement des conduits de ventilation

Calcul des pertes de pression et dimensionnement des conduits de ventilation Calcul des pertes de pression et dimensionnement des conduits de ventilation Applications résidentielles Christophe Delmotte, ir Laboratoire Qualité de l Air et Ventilation CSTC - Centre Scientifique et

Plus en détail

Chapitre 10 : Mécanique des fluides

Chapitre 10 : Mécanique des fluides Chapitre 10 : Mécanique des fluides 1. Pression hydrostatique Les fluides regroupent gaz et liquides. En général, on considère des fluides incompressibles. Ce n est plus le cas en thermodynamique. Un objet

Plus en détail

FORMULAIRE FORMULAIRE

FORMULAIRE FORMULAIRE Ce fascicule constitue un extrait du formulaire PONT-A-MOUSSON dont la version complète est éditée aux Editions Lavoisier-TEC & DOC, 11, rue Lavoisier - F-75381 PARIS CEDEX 08 1989 Ce fascicule constitue

Plus en détail

Chapitre 4 Statique des fluides

Chapitre 4 Statique des fluides Chapitre 4 Statique des fluides Un fluide est corps liquide (état compact et désordonné) ou gazeux (état dispersé et désordonné). On ne s intéresse ici qu à une partie de la statique des fluides : la notion

Plus en détail

LES PERTES DE CHARGE J-M R. D-BTP

LES PERTES DE CHARGE J-M R. D-BTP LES PERTES DE CHARGE J-M R. D-BTP 2006 1 Définitions, généralités Détermination de tuyauteries, calcul de pertes de charge Abaques 2 Définitions, généralités Notion de perte de charge Perte de charge d

Plus en détail

On prend comme volume de contrôle l auget en translation. Ce volume de contrôle est donc en translation avec une vitesse U t. U t

On prend comme volume de contrôle l auget en translation. Ce volume de contrôle est donc en translation avec une vitesse U t. U t page 1 Problème 1 : Auget mobile (6 points) Un jet d eau, ayant une vitesse V 1 frappe un auget à une hauteur y 1 comme indiqué sur la figure 1. On considère que le jet incident a un diamètre D et que

Plus en détail

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées :

TD 8 Dynamique. 1 Nacelle à flèche téléscopique H21 TX 1. Compétences travaillées : Compétences travaillées : Déterminer tout ou partie du torseur cinétique d un solide par rapport à un autre. Déterminer tout ou partie du torseur dynamique d un solide par rapport à un autre. Déterminer

Plus en détail

HYDRAULIQUE GENERALE

HYDRAULIQUE GENERALE ECOLE NATIONALE DU GENIE DE L EAU ET DE L ENVIRONNEMENT DE STRASBOURG HYDRAULIQUE GENERALE Réservoir d eau potable de Strasbourg FORMATION CES/MASTERE Eau potable et assainissement Avant propos L hydraulique

Plus en détail

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire

2. Déplacement d une charge ponctuelle dans un champ magnétique uniforme stationnaire Chapitre VII Forces électromagnétiques VII.a. Force de Lorentz La force à laquelle est soumis, à un instant t, un point matériel de charge q, situé en M et se déplaçant à une vitesse v(t) par rapport à

Plus en détail

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2

Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2 Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page

Plus en détail

Hydraulique des cours d'eau

Hydraulique des cours d'eau Liber Égalit~ Fraternité RÉPUBLIQUE FRANÇAISE Ministère de l'equipement, des Transports et du Logement Hydraulique des cours d'eau La téorie et sa mise en pratique Département Voies Navigables et Eau Groupe

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels

3ème séance de Mécanique des fluides. Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait. 2 Écoulements potentiels 3ème séance de Mécanique des fluides Rappels sur les premières séances Aujourd hui : le modèle du fluide parfait 1 Généralités 1.1 Introduction 1.2 Équation d Euler 1.3 Premier théorème de Bernoulli 1.4

Plus en détail

OM 1 Outils mathématiques : fonction de plusieurs variables

OM 1 Outils mathématiques : fonction de plusieurs variables Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.

Plus en détail

CALCULS MULTI PHYSIQUES D UNE STRUCTURE POUR VANNE DE FOND CALCULS FLUIDES ET MECANIQUES D UNE STRUCTURE MECANOSOUDEE. Rédacteur : Sylvain THINAT

CALCULS MULTI PHYSIQUES D UNE STRUCTURE POUR VANNE DE FOND CALCULS FLUIDES ET MECANIQUES D UNE STRUCTURE MECANOSOUDEE. Rédacteur : Sylvain THINAT CALCULS MULTI PHYSIQUES D UNE STRUCTURE POUR VANNE DE FOND CALCULS FLUIDES ET MECANIQUES D UNE STRUCTURE MECANOSOUDEE POUR UNE VANNE DE FOND DE L AMENAGEMENT ROUJANEL Rédacteur : Sylvain THINAT Révision

Plus en détail

REFERENCE MODULE REFERENCE DOCUMENT DATE DE CREATION. PHY-FLU1 Livret physique des fluides 1 20/07/01 PHYSIQUE DES FLUIDES

REFERENCE MODULE REFERENCE DOCUMENT DATE DE CREATION. PHY-FLU1 Livret physique des fluides 1 20/07/01 PHYSIQUE DES FLUIDES PHYSIQUE DES FLUIDES 1 1. MASSE-UNITES DE FORCE Masse (m).la masse d un corps caractérise la quantité de matière de ce corps en Kilogrammes ( Kg - unité S.I) Le Poids (p) d un corps peut s exprimer par

Plus en détail

SPE PSI DL 8 Pour le 05/12/11

SPE PSI DL 8 Pour le 05/12/11 SPE PSI DL 8 Pour le 05/12/11 CONDUCTION DANS LES METAUX: L'espace est rapporté à un repère O muni d'une base cartésienne ( e, e, e ). Données numériques: - charge de l'électron: -e = - 1,6.10-19 C. -

Plus en détail

Point de vue "physique": caractérisation du système cardiovasculaire à partir des lois de l'hydrodynamique et des propriétés du cœur, du sang et des

Point de vue physique: caractérisation du système cardiovasculaire à partir des lois de l'hydrodynamique et des propriétés du cœur, du sang et des v fluide constante L A B Il faut une pompe pour créer une P qui compense la chute. - si fluide non-visqueux: OK - si fluide visqueux il faut dépenser de l'énergie pour compenser la perte due à et définie

Plus en détail

Université catholique de Louvain Ecole Polytechnique de Louvain MECANIQUE DES FLUIDES ET TRANSFERTS I. V. Legat, G. Winckelmans

Université catholique de Louvain Ecole Polytechnique de Louvain MECANIQUE DES FLUIDES ET TRANSFERTS I. V. Legat, G. Winckelmans Université catholique de Louvain Ecole Polytechnique de Louvain MECANIQUE DES FLUIDES ET TRANSFERTS I V. Legat, G. Winckelmans Chapitre 6 version finale corrigée :- Année académique 13-14 version 5.8 7-3-14

Plus en détail

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014

Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 DA 5 pour le 15 avril 2014 Devoir de Physique en autocorrection n 5 pour le 15 avril 2014 Problème : Essuie-vitre à détecteur de pluie Si, au cours de l épreuve, un candidat repère ce qui lui semble être

Plus en détail

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr.

COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015. Pr. COURS THERMODYNAMIQUE FILIÈRE : SMIA & SMP SEMESTRE 1 FACULTÉ POLYDISCIPLINAIRE LARACHE ANNÉE UNIVERSITAIRE 2014/2015 Pr. Aziz OUADOUD Table des matières 1 Introduction 3 1.1 Définitions générales.......................

Plus en détail

TRANSFERT DE CHALEUR

TRANSFERT DE CHALEUR TP - L3 Physique - Plate-forme TTE - C.E.S.I.R.E. - Université Joseph Fourier - Grenoble TRANSFERT DE CHALEUR Document à lire avant de commencer TOUT TP de Thermodynamique Ce document est un résumé des

Plus en détail

Notes du Cours de Mécanique 1 er semestre, année 2011/2012

Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Ecole Polytechnique de l Université de Nice - Sophia Antipolis CiP1 Notes du Cours de Mécanique 1 er semestre, année 2011/2012 Patrizia Vignolo Jean-Michel Chauveau Thibault Gayral Sommaire : Introduction

Plus en détail

Physique 2. Traitement des eaux usées

Physique 2. Traitement des eaux usées Physique 2 PC 4 heures Calculatrices autorisées 2015 Traitement des eau usées L assainissement des eau usées dans une station d épuration nécessite de débarrasser les effluents domestiques ou industriels

Plus en détail

1) Explications (Expert) :

1) Explications (Expert) : 1) Explications (Expert) : Mesures expérimentales : Dans nos conditions d expérience, nous avons obtenu les résultats suivants : Les dimensions des récipients sont : 1) bocal vide : épaisseur de verre

Plus en détail

Bilan thermique du chauffe-eau solaire

Bilan thermique du chauffe-eau solaire Introduction La modélisation des phénomènes de transfert dans un chauffe-eau solaire à circulation naturelle reste un phénomène difficile et complexe pour simplifier le problème. Le chauffeeau est divisé

Plus en détail

ÉCOULEMENT DE FLUIDE DANS UNE ROCHE

ÉCOULEMENT DE FLUIDE DANS UNE ROCHE A 2005 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Description du programme de physique et estimation horaire

Description du programme de physique et estimation horaire Description du programme de physique et estimation horaire Description du programme de physique première année et estimation horaire En italiques : les points incertains. 1. Description des états de la

Plus en détail

Techniques de mesure des débits des fluides industriels

Techniques de mesure des débits des fluides industriels Techniques de mesure des débits des fluides industriels 2 1 / Introduction : Le transport des fluides industriel dans les conduites et les mesures de leurs débit sont nécessaires pour la plus part des

Plus en détail

Justification des traitements anti-liquéfaction

Justification des traitements anti-liquéfaction GUIDE AFPS/CFMS «Procédés d amélioration et de renforcement de sols sous actions sismiques» Justification des traitements anti-liquéfaction Serge LAMBERT Keller Fondations Spéciales Journée Technique AFPS-CFMS

Plus en détail

Rupture et plasticité

Rupture et plasticité Rupture et plasticité Département de Mécanique, Ecole Polytechnique, 2009 2010 Département de Mécanique, Ecole Polytechnique, 2009 2010 25 novembre 2009 1 / 44 Rupture et plasticité : plan du cours Comportements

Plus en détail

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier

Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier Cours de Master 1ère année Filière : Ingénierie Mathématique à Toulouse Université Paul Sabatier Modélisation, équations aux dérivées partielles, 16h de cours, 16h de TDs 1 er février 2013 Marie Hélène

Plus en détail

TUTORAT UE 3b 2014-2015 Biophysique Séance d annales Semaine du 30/03/2015

TUTORAT UE 3b 2014-2015 Biophysique Séance d annales Semaine du 30/03/2015 TUTORAT UE 3b 2014-2015 Biophysique Séance d annales Semaine du 30/03/2015 Concours PACES 2012-2013 Séance préparée par les tuteurs stagiaires QCM n 1 : L'amphétamine (masse molaire égale à 135 g.mol -1

Plus en détail

Professeur Eva PEBAY-PEYROULA

Professeur Eva PEBAY-PEYROULA UE3-1 : Physique Chapitre 2 : Électrostatique Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. II- Électrostatique Finalité du chapitre

Plus en détail

Chapitre 0-2 Introduction générale au cours de BCPST1

Chapitre 0-2 Introduction générale au cours de BCPST1 Chapitre 0-2 Introduction générale au cours de BCPST Extrait du programme I. Les grandeurs en sciences physiques Définition : une grandeur est une observable du système On peut la mettre en évidence a.

Plus en détail

5.1 Équilibre électrostatique d un conducteur

5.1 Équilibre électrostatique d un conducteur 5 CONDUCTEURS À L ÉQUILIBRE 5.1 Équilibre électrostatique d un conducteur Dans un isolant, les charges restent à l endroit où elles ont été apportées (ou enlevées). Dans un conducteur, les charges sont

Plus en détail

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition

Chapitre 4. Travail et puissance. 4.1 Travail d une force. 4.1.1 Définition Chapitre 4 Travail et puissance 4.1 Travail d une force 4.1.1 Définition En physique, le travail est une notion liée aux forces et aux déplacements de leurs points d application. Considérons une force

Plus en détail

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I.

MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. 1. Modèle de voiture MODÉLISATION D UNE SUSPENSION DE VOITURE T.D. G.E.I.I. Un modèle simpli é de voiture peut être obtenu en supposant le véhicule soumis uniquement à la force de traction u dûe au moteur

Plus en détail

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY

T.P. FLUENT. Cours Mécanique des Fluides. 24 février 2006 NAZIH MARZOUQY T.P. FLUENT Cours Mécanique des Fluides 24 février 2006 NAZIH MARZOUQY 2 Table des matières 1 Choc stationnaire dans un tube à choc 7 1.1 Introduction....................................... 7 1.2 Description.......................................

Plus en détail

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S

D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S THERMODYNAMIQUE Lycée F.BUISSON PTSI D U G A Z P A R F A I T M O N O A T O M I Q U E A U X F L U I D E S R E E L S E T A U X P H A S E S C O N D E N S E E S Ce chapitre pourrait s appeler du monde moléculaire

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Cours préparatoires de physique

Cours préparatoires de physique Cours préparatoires de physique Août 2012 L. Dreesen LA DYNAMIQUE, LES LOIS DE NEWTON Août 2012 L. Dreesen 1 Table des matières Introduction Force La première loi de Newton La troisième loi de Newton La

Plus en détail

Analyse dimensionnelle

Analyse dimensionnelle Analyse dimensionnelle O. Louisnard 21 septembre 2012 1 Introduction La physique manipule des grandeurs s exprimant toutes en fonction de grandeurs de base, qui sont au nombre de 7 : Masse M kg Longueur

Plus en détail

3. Artefacts permettant la mesure indirecte du débit

3. Artefacts permettant la mesure indirecte du débit P-14V1 MÉTHODE DE MESURE DU DÉBIT D UN EFFLUENT INDUSTRIEL EN CANALISATIONS OUVERTES OU NON EN CHARGE 1. Domaine d application Cette méthode réglemente la mesure du débit d un effluent industriel en canalisations

Plus en détail

Physique. De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale

Physique. De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale Physique TSI 4 heures Calculatrices autorisées De la Terre à la Lune : Programme Apollo, 15 ans d aventure spatiale 2012 Ce problème aborde quelques aspects du Programme Apollo, qui permit à l Homme de

Plus en détail

Fascicule de Travaux Pratiques

Fascicule de Travaux Pratiques Ministère de l'enseignement Supérieur, de la Recherche Scientifique et de la Technologie Université de Sousse Institut Supérieur des Sciences Appliquées et de Technologie de Sousse Fascicule de Travaux

Plus en détail

CHAPITRE 5. BCPST. que les thèmes de TP-cours sont conçus pour être traité conjointement aux thèmes de cours correspondants.

CHAPITRE 5. BCPST. que les thèmes de TP-cours sont conçus pour être traité conjointement aux thèmes de cours correspondants. Chapitre 5 BCPST Le programme de deuxième année BCPST s inscrit dans la continuité de celui de première année dans les différentes parties de physique, afin de donner à l élève les outils de travail de

Plus en détail

Université catholique de Louvain Ecole Polytechnique de Louvain

Université catholique de Louvain Ecole Polytechnique de Louvain Université catholique de Louvain Ecole Polytechnique de Louvain MECANIQUE DES FLUIDES ET TRANSFERTS I V. Legat, G. Winckelmans Enoncés des exercices pour le cours MECA1321 (partie 1) Année académique 2009-2010

Plus en détail

Cours MF101 Contrôle de connaissances: Corrigé

Cours MF101 Contrôle de connaissances: Corrigé Cours MF101 Contrôle de connaissances: Corrigé Exercice I Nous allons déterminer par analyse dimensionnelle la relation entre la Trainée D et les autres paramètres. F D, g,, V, ρ, ν) = 0 1) où D représente

Plus en détail

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS

TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS TRANSFERT DE CHALEUR ETUDE D'UN ECHANGEUR A PLAQUES ET JOINTS Manip n 9 Avril 2014 J. ALBET P. de CARO C. SAUDEJAUD 2 ème Année ATELIER INTER UNIVERSITAIRE DE GENIE DES PROCEDES Objectifs de la manipulation

Plus en détail

ECOULEMENTS TURBULENTS

ECOULEMENTS TURBULENTS ECOULEMENTS TURBULENTS Base et modélisation Auteur: Julien Réveillon Université de Rouen Réveillon - Université de Rouen - reveillon@coria.fr p.1/188 Introduction - Généralités Observation constante des

Plus en détail

2. Ecoulements en charge, pertes de charge

2. Ecoulements en charge, pertes de charge Hydraulique des ouvrages Chapitre. Ecoulements en charge, pertes de charge Un des problèmes techniques les plus importants qui s est posé très tôt à l'humanité, est celui du transport hydraulique. Qu'il

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Hydraulique des terrains

Hydraulique des terrains Hydraulique des terrains Séance 3 : Hypothèses de l écoulement en conduite Guilhem MOLLON GEO3 2012-2013 Plan de la séance A. Cinématique d écoulement -Lignes caractéristiques -Vitesses et débits B. Hypothèse

Plus en détail

Pr. Hatem BOULAHDOUR Biophysique et Médecine Nucléaire hatem.boulahdour@univ-fcomte.fr

Pr. Hatem BOULAHDOUR Biophysique et Médecine Nucléaire hatem.boulahdour@univ-fcomte.fr Pr. Hatem BOULAHDOUR Biophysique et Médecine Nucléaire hatem.boulahdour@univ-fcomte.fr Ouvrages de base : 1- Eléments de biophysique tome 1 et tome 2 GREMY F. et LETERRIER F. FLAMMARION 2- BIOPHYSIQUE

Plus en détail

MÉCANIQUE DES FLUIDES

MÉCANIQUE DES FLUIDES 1 MÉCANIQUE DES FLUIDES I/ RAPPELS DE STATIQUE DES FLUIDES 1/ Unités de pression Plusieurs unités existent: le pascal (Pa) : unité SI, peu employée en pratique le bar (bar) et son sous multiple le millibar

Plus en détail

1 Mise en application

1 Mise en application Université Paris 7 - Denis Diderot 2013-2014 TD : Corrigé TD1 - partie 2 1 Mise en application Exercice 1 corrigé Exercice 2 corrigé - Vibration d une goutte La fréquence de vibration d une goutte d eau

Plus en détail

ASPECTS HYDRAULIQUES POUR L ANALYSE ET LA CONCEPTION DES RÉSEAUX DE DRAINAGE

ASPECTS HYDRAULIQUES POUR L ANALYSE ET LA CONCEPTION DES RÉSEAUX DE DRAINAGE ASPECTS HYDRAULIQUES POUR L ANALYSE ET LA CONCEPTION DES RÉSEAUX DE DRAINAGE CHAPITRE 7 7.1 Généralités La conception adéquate des réseaux de drainage doit nécessairement s appuyer sur une bonne compréhension

Plus en détail

Electrocinétique et magnétostatique

Electrocinétique et magnétostatique Chapitre 3 Electrocinétique et magnétostatique 3.1 Electrocinétique - Vecteur densité de courant Un courant électrique correspond à des charges électriques mobiles. On appelle vecteur densité de courant

Plus en détail

P = F S S.BINET FORCES PRESSANTES 1/5. relation Pression / Force / Surface. forces pressantes : Les solides : Cas n 1 : cas n 2 :

P = F S S.BINET FORCES PRESSANTES 1/5. relation Pression / Force / Surface. forces pressantes : Les solides : Cas n 1 : cas n 2 : ACTIVITE 1 : relation Pression / Force / Surface. forces pressantes : Les solides : Cas n 1 : cas n 2 : Mousse Mousse 1. Placez la masse sur le morceau de mousse. Que se passe t-il à l équilibre? La mousse

Plus en détail

MAGE. Présentation du logiciel. Auteur : Jean-Baptiste FAURE Unité de recherche Hydrologie-Hydraulique

MAGE. Présentation du logiciel. Auteur : Jean-Baptiste FAURE Unité de recherche Hydrologie-Hydraulique MAGE Présentation du logiciel Auteur : Jean-Baptiste FAURE Unité de recherche Hydrologie-Hydraulique Contributeurs : plusieurs générations de stagiaires MAGE : logiciel d'hydraulique à surface libre mai

Plus en détail

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+

Transfert thermique. La quantité de chaleur échangée entre deux systèmes se note Q et s exprime en Joule *J+ Chapitre 22 Sciences Physiques - BTS Transfert thermique 1 Généralités 1.1 Température La température absolue est mesuré en Kelvin [K]. La relation de passage entre C et K est : T [K] = [ C ]+ 273,15 Remarque

Plus en détail

G.P. DNS05 Octobre 2012

G.P. DNS05 Octobre 2012 DNS Sujet Impédance d'une ligne électrique...1 I.Préliminaires...1 II.Champ électromagnétique dans une ligne électrique à rubans...2 III.Modélisation par une ligne à constantes réparties...3 IV.Réalisation

Plus en détail

MÉCANIQUE DES FLUIDES TRAVAUX DIRIGÉS

MÉCANIQUE DES FLUIDES TRAVAUX DIRIGÉS MÉCANIQUE DES FLUIDES TRAVAUX DIRIGÉS PREMIÈRE ANNÉE - SÉRIE 1 STATIQUE DES FLUIDES PHÉNOMÈNES CAPILLAIRES RELATION DE BERNOULLI 2012-2013 groupe A : fatimata.sy@cea.fr, pantxo.diribarne@ujf-grenoble.fr

Plus en détail

TS Physique D Aristote à aujourd hui Exercice résolu

TS Physique D Aristote à aujourd hui Exercice résolu P a g e 1 TS Physique Eercice résolu Enoncé -34 avant JC : Aristote déclare qu une masse d or, de plomb ou de tout autre corps pesant tombe d autant plus vite qu elle est plus grosse et, en particulier,

Plus en détail

COURS ÉCRIT. Introduction. 1 Modèles prototype 1D

COURS ÉCRIT. Introduction. 1 Modèles prototype 1D COURS ÉCRIT Modèles prototype D....................... 2 L instabilité roll waves d un écoulement incliné........ 5 3 Instabilité de Kelvin Helmoltz................... 4 Stabilité des écoulements parallèles................

Plus en détail

Repère : Session : 2001 Durée : 2 H 30 Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES

Repère : Session : 2001 Durée : 2 H 30 Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES Page : 1/5 Coefficient : 2 SCIENCES PHYSIQUES - La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l appréciation des copies. - Conformément au dispositions

Plus en détail

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ

Champ et potentiel électrostatique. 1 Cas d une distribution de charges ponctuelles. Outils mathématiques. 1.1 Rappel (ou pas) : notion de champ 2 Champ et potentiel électrostatique Les e ets électriques peuvent être décrits par deux grandeurs que nous allons étudier dans ce chapitre : le champ électrostatique (grandeur vectorielle) et le potentiel

Plus en détail

Thermodynamique et gaz parfaits

Thermodynamique et gaz parfaits Université Paris 7 PCEM 1 Cours de Physique Thermodynamique et gaz parfaits Étienne Parizot (APC Université Paris 7) É. Parizot Physique PCEM 1 ère année page 1 Résumé du cours précédent : travail énergie

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Liste des symboles. Liste des variables

Liste des symboles. Liste des variables Liste des symboles Liste des variables a Coefficient d ajustement (loi de rétention paillis) - a LAI Propension de la culture à l interception de l eau de pluie m a s Albédo du sol - a p Albédo du paillis

Plus en détail

Partiel PHY121 Mécanique du point

Partiel PHY121 Mécanique du point Université Joseph Fourier Grenoble Licence Partiel PHY2 Mécanique du point Vendredi 23 mars 202 Durée h30 Calculatrices et documents non-autorisés Pour chaque question, 4 réponses sont proposées dont ou

Plus en détail

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * *

EPREUVE SPECIFIQUE FILIERE MP PHYSIQUE 1. Durée : 4 heures. Les calculatrices sont autorisées. * * * SESSION 004 EPREUVE SPECIFIQUE FILIERE MP PYSIQUE Durée : 4 heures Les calculatrices sont autorisées. N : Le candidat attachera la plus grande importance à la clarté, à la précision et à la concision de

Plus en détail

NOTIONS DE MECANIQUE DES FLUIDES

NOTIONS DE MECANIQUE DES FLUIDES NOTIONS DE MECNIQUE DES FLUIDES Cours et Exercices Corrigés Riadh EN HMOUD Centre de Publication Universitaire VNT-PROPOS L étude de la mécanique des fluides remonte au moins à l époque de la Grèce antique

Plus en détail

Principes de la Mécanique

Principes de la Mécanique Chapitre 1 Principes de la Mécanique L expérience a montré que tous les phénomènes observés dans la nature obéissent à des lois bien déterminées. Ces lois peuvent être, en plus, déterministes ou indéterministes.

Plus en détail

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique

COMPOSITION DE PHYSIQUE. Quelques aspects de la fusion contrôlée par confinement magnétique ÉCOLE POLYTECHNIQUE FILIÈRE MP CONCOURS D ADMISSION 2007 COMPOSITION DE PHYSIQUE (Durée : 4 heures) L utilisation des calculatrices est autorisée pour cette épreuve. Quelques aspects de la fusion contrôlée

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

CHAPITRE 4. Transferts de chaleur par convection

CHAPITRE 4. Transferts de chaleur par convection CHAPITRE 4 Transferts de chaleur par convection 1 Les 3 modes de transfert de chaleur sont : La conduction La convection Le rayonnement 2 Transfert par conduction 3 Transfert par convection 4 Exemple de

Plus en détail

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides

Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides 1 Chapitre 5-Thermodynamique des systèmes ouverts. Application à l écoulement des fluides I Premier principe de la thermodynamique pour un système ouvert Certains systèmes échangent avec l extérieur, outre

Plus en détail