Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A Dénitions et notations

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Optimisation numérique. Outline. Introduction et exemples. Daniele Di Pietro A.A. 2012-2013. 1 Dénitions et notations"

Transcription

1 Optimisation numérique Introduction et exemples Daniele Di Pietro A.A Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples en commande optimale et en contrôle optimal 3 Programme du cours

2 Dénition et notations I On notera V l'espace dans lequel est posé le problème si V est de dimension nie, on supposera qu'il est un espace vectoriel normé (EVN) si V est de dimension innie, on supposera qu'il est un espace de Hilbert réel (EHR) (voir rappels) La solution appartient en général à un sous-ensemble K V dit ensemble des éléments admissibles Dénition et notations II Le critère ou fonction coût ou objectif est une fonction J : K R Le problème à étudier sera donc noté inf J(v) v K

3 Dénition et notations III Parfois on veut souligner que le minimum est atteint, à savoir u K, J(u) = inf v K J(v) On note alors de préférence min J(v) v K Attention, il ne s'agit pas d'une règle systématique! Dénition et notations IV Dénition (Minimum local de J sur K) On dit que u est un minimum local de J sur K ssi u K et δ > 0, v K, v u V < δ = J(v) J(u)

4 Dénition et notations V Dénition (Inmum de J sur K) On appelle inmum de J sur K la borne supérieure dans R des constantes qui minorent J sur K. Si J n'est pas minorée sur K, alors l'inmum vaut. Si K est vide, par convention l'inmum est +. Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples en commande optimale et en contrôle optimal 3 Programme du cours

5 Problème de transport I On dispose de M entrepôts indicés par 1 i M Chaque entrepôt dispose d'un niveau de stocks s i Il faut livrer N clients indicés par 1 j N Chaque client a commandé la quantité r j avec j r j i s i Le coût de transport unitaire entre l'entrepôt i et le client j est c ij Les variables de décision sont les quantités v ij de marchandise partant de l'entrepôt i vers le client j L'objectif est de minimiser le coût tout en satisfaisant les commandes des clients Problème de transport II On introduit la matrice V := (v ij ) R N,M avec v ij = quantité partant de l'entrepôt i vers le client j Mathématiquement cela revient à résoudre M inf V R N,M J(V ) := N c ij v ij i=1 j=1

6 Problème de transport III On ne déplace pas les merchandises d'un entrepôt à un autre et les stockes sont limités, v ij 0, N v ij s i j=1 Une deuxième contrainte vient de la satisfaction des clients, M v ij = r j i=1 1 j N Problème de transport IV Cet exemple est représentatif d'une classe importante de problèmes en RO, les programmes linéaires Une méthode de résolution ecace pour ces problèmes a été inventé par G. Dantzig en 1948 Une application célèbre est la planication du point aérien sur Berlin Nous allons étudier cette méthode dans la dernière partie du cours!

7 Problème d'aectation I Soit N femmes indicées par 1 i N et N hommes indicés par 1 j N On introduit les variables d'accord { 1 si i et j veulent se marier, a ij = 0 sinon Nous allons supposer par simplicité que seuls les mariages hétérosexuels sont autorisés Le but du jeu consiste à maximiser le nombre total de mariages Problème d'aectation II Soit S N l'ensemble des permutations de {1,..., N} Mathématiquement cela revient à chercher max σ S N N i=1 a iσ(i) Une diérence majeure par rapport au cas précédent est qu'ici on à aaire à un problème à variables entières Une variante consiste à autoriser des préférences nuancées, a ij (0, 1) 1 i, j N

8 Problème d'aectation III On introduit la matrice des variables de décision V = (v ij ) avec v ij = { 1 s'il y a mariage entre i et j, 0 sinon Il s'agit dans ce cas de résoudre N sup V J(V ) := soumis aux contraintes i=1 j=1 N a ij v ij v ij {0, 1}, N v ik 1, N v kj 1 1 i, j N k=1 k=1 Pour les célibataires : nous n'allons pas traiter ce problème en cours Tournée du voyageur de commerce I Il s'agit d'un autre exemple célèbre en optimisation combinatoire Un représentant doit visiter n villes successivement et revenir à son point de départ Soit t ij le temps pour rejoindre la ville i de la ville j, avec éventuellement t ij t ji L'objectif consiste à minimiser le temps de parcours en passant une et une seul fois par chaque ville On peut reformuler ce problème en termes de théorie des graphes

9 Tournée du voyageur de commerce II Soit C l'ensemble des cycles du graphe qui passent une et une seule fois par toutes les villes Il s'agit de résoudre min C C { J(C) := c C t c1,c 2 } Optimisation quadratique à contraintes linéaires Soit A R n,n symétrique dénie positive et b R n Soit B R m,n, m n, de rang plein On souhaite résoudre le problème {J(x) := 12 } Ax x b x inf x ker B Ce problème est central en mécanique des uides numérique lorsqu'on a aaire à un uide incompressible Cet exemple sera développé en cours

10 Calcul de la première valeur propre Soit A R n,n symétrique On veut caractériser et calculer les solution de inf Ax x x R n, x 2 =1 On verra en cours qu'il s'agit des vecteurs propres de A associés à sa plus petite valeur propre Régression au sens des moindres carrés I Soit {(x i, y i )} 1 i N un nuage de N 3 points de R 2 Le problème consiste à déterminer la droite qui s'en approche le plus au sens des moindres carrés Mathématiquement cela revient à chercher a, b R qui minimisent J(a, b) := N [y i (ax i + b)] 2 i=1

11 Régression au sens des moindres carrés II Plus généralement, soit A R M,N, M < N Si A n'est pas de rang plein, il existe des vecteurs y R N t.q. le système linéaire Av = y, n'admet pas de solution On peut alors le résoudre au sens des moindres carrés en cherchant un vecteur y R M minimisant la quantité J(v) := Av y 2 2 La régression au sens des moindres carré n'est que le cas particulier x 1 1 A =.. x N 1 Minimisation d'une énergie mécanique I a f b On cherche la conguration d'équilibre d'une membrane soumise à un chargement correspondante à l'énergie mécanique minimale Soit Ω = (a, b) la conguration de la membrane à repos, et plaçons-nous sous l'hypothèse de petites déformations Soit f le chargement par unité de longueur La membrane est supposée xée sur son contour

12 Minimisation d'une énergie mécanique II Soit V l'espace des déformations correspondantes à une quantité d'énergie nie Mathématiquement il s'agit de résoudre inf v V { J(v) := 1 } v 2 fv 2 Ω Ω Cet exemple se généralise pour Ω R d, d 2, en posant J(v) := 1 v 2 fv 2 Ω Ω Minimisation d'une énergie mécanique III Un exemple plus compliqué vient de la mécanique des uides Soit Ω la région d'espace occupé par un uide Newtonien incompressible soumis à la force volumique f L'écoulement visqueux stationnaire satisfait minimise l'énergie J(v) := ν v 2 f v, 2 Ω où ν est la viscosité dynamique du uide v est un champs de vitesse incompressible, à savoir, v = 0 Ω

13 Minimisation d'une énergie mécanique IV Figure: Exemple d'écoulement visqueux stationnaire (cavité entraînée) Commande optimale I On considère le problème de guider un robot an qu'il suive au plus près une trajectoire prédénie L'état du robot à l'instant t est représenté par une fonction y(t) à valeurs dans R N (position, vitesse) On agit sur le robot par l'intermédiaire d'une commande v(t) (puissance du moteur, direction des roues, etc.) Les lois de la mécanique classique conduisent au système d'odes dy(t) = Ay(t) + Bv(t) + f(t) pour 0 t T dt y(0) = y 0, (Σ) avec A R N,N et B R N,M

14 Commande optimale II Soit z(t) la trajectoire cible et z T la position nale cible On introduit les matrices symétriques positives R, Q et D avec R dénie On dénit le critère quadratique J(v) := + T 0 T 0 Rv(t) v(t)dt Q(y z)(t) (y z)(t)dt coût du contrôle traj. cible + D(y(T ) z T ) (y(t ) z T ), pos. nale cible où l'on remarquera que y(t) dépend de v(t) via le système (Σ) Commande optimale III Pour tenir compte des limitations physiques (puissance d'un moteur, etc.) on introduit l'ensemble des commandes admissibles K R M Le problème consiste à résoudre inf J(v) v(t) K, 0 t T Lorsque la fonction à optimiser dépend de la solution d'une équation diérentielle ordinaire (EDO) on parle de commande optimale

15 Contrôle d'une membrane I On revient sur l'exemple d'une membrane élastique xée sur son contour se déformant sous l'action du chargement f Soit v une force de contrôle. Le problème est modélisé par l'edp u = f + v dans Ω, u = 0 où u représente le déplacement vertical sur Ω, Le contrôle, typiquement un actionneur pièzo-électrique, appartient à K := {v(x) λ v(x) Λ dans ω et v = 0 dans Ω \ ω}, avec ω Ω Contrôle d'une membrane II On cherche le contrôle qui rend le déplacement u le plus proche possible d'un déplacement désiré u 0 Mathématiquement, cela revient à résoudre inf J(v), v K avec J critère de distance donné, par exemple, par J(v) := 1 ( u u0 2 + c v 2) 2 Ω On remarquera que u dépend de v via l'edp écrit précédemment Ce problème est dit de contrôle optimal car, pour d 2, la fonction à minimiser dépend de la solution d'une EDP

16 Problème inverse I L'écoulement du pétrole dans le sous-sol est régi par l'équation de Darcy (k p) = f dans Ω, (Π) p = 0 sur Ω où k > 0 est la perméabilité et p la pression En pratique, la perméabilité est déterminée à partir de mesures de la pression Supposons que l'on dispose d'une mesure p 0 du champs de pression On souhaite trouver la valeur de k qui minimise l'écart entre la solution de (Π) et p 0 Problème inverse II Soit Ψ(k) l'unique solution de (Π) pour une valeur xée de k Il s'agit de résoudre { } inf J(v) := Ψ(k) p 0 2 k R + H 1 (Ω) Ce problème est dit d'identication de paramètre ou inverse

17 Un exemple en simulation de réservoir Figure: Optimisation de l'emplacement des puits dans un réservoir pétrolier Outline 1 Dénitions et notations 2 Applications Exemples en recherche opérationnelle Exemples en algèbre linéaire Exemples en commande optimale et en contrôle optimal 3 Programme du cours

18 Programme du cours Séance 1 Introduction et exemples 2 Rappels et compléments 3 Conditions d'existence et unicité 4 Inéquation d'euler 5 Multiplicateurs de Lagrange 6 Point selle, condition KTT 7 Méthode du gradient 8 Variations sur la méthode du gradient 9 Gradient conjugué 10 Newton + Broyden 11 Uzawa + dualité 12 Programmation linéaire + simplexe/1 13 Simplexe/2

Chapitre 1 : Programmation linéaire

Chapitre 1 : Programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 1 : Programmation linéaire J.-F. Scheid 1 I. Introduction 1) Modélisation En Recherche Opérationnelle (RO), modéliser un problème consiste à identifier: les variables

Plus en détail

PROGRAMMATION DYNAMIQUE

PROGRAMMATION DYNAMIQUE PROGRAMMATION DYNAMIQUE 1 Le principe d optimalité de Bellman La programmation dynamique est fondée sur le principe d optimalité de Bellman : Soit f une fonction réelle de x et y = (y 1, y 2,..., y n ).

Plus en détail

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I

ÉLÉMENTS D OPTIMISATION. Complément au cours et au livre de MTH 1101 - CALCUL I ÉLÉMENTS D OPTIMISATION Complément au cours et au livre de MTH 1101 - CALCUL I CHARLES AUDET DÉPARTEMENT DE MATHÉMATIQUES ET DE GÉNIE INDUSTRIEL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Hiver 2011 1 Introduction

Plus en détail

TP - Modélisation et optimisation des systèmes complexes

TP - Modélisation et optimisation des systèmes complexes Master Informatique 1ere année (M1) Année 2010-2011 TP - Modélisation et optimisation des systèmes complexes Résolution du problème d'aectation généralisé par relaxation lagrangienne 1 Introduction Le

Plus en détail

Autour de Perron, Frobenius et Markov

Autour de Perron, Frobenius et Markov Université Claude Bernard Lyon 1-2007/2008 Préparation Capes - Algèbre et Géométrie - Devoir à rendre le 12 février 2008 - Autour de Perron Frobenius et Markov Rappels et notations On note M mn (K) le

Plus en détail

OPTIMISATION DE PORTEFEUILLE ET TEMPS D ARRÊT OP

OPTIMISATION DE PORTEFEUILLE ET TEMPS D ARRÊT OP OPTIMISATION DE PORTEFEUILLE ET TEMPS D ARRÊT OPTIMAL ÉCOLE POLYTECHNIQUE CMAP March 7, 2007 Outline 1 Notations 2 Un Problème Classique Objectif. Optimisation de portefeuille. Résolution. 3 Un problème

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Chapitre 1 Introduction à l optimisation 1.1 Problématique 1.1.1 Cadre Un problème d optimisation consiste, étant donnée une fonction f : S R, àtrouver: 1) son minimum v (resp. son maximum) dans S 2) un

Plus en détail

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif

Chapitre 6. Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique. 6.1.1 Exemple introductif Chapitre 6 Programmation Dynamique. Méthodes P.S.E.P. 6.1 Programmation dynamique 6.1.1 Exemple introductif Problème : n matrices M i (m i, m i+1 ) à multiplier en minimisant le nombre de multiplications,

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

Série n 5 : Optimisation non linéaire

Série n 5 : Optimisation non linéaire Université Claude Bernard, Lyon I Licence Sciences & Technologies 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France Option: M2AO 2007-2008 Série n 5 : Optimisation

Plus en détail

Le théorème du point xe. Applications

Le théorème du point xe. Applications 49 Le théorème du point xe. Applications 1 Comme dans le titre de cette leçon, le mot théorème est au singulier, on va s'occuper du théorème du point xe de Picard qui a de nombreuses applications. Le cas

Plus en détail

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v)

Rappels (1) Objectif et plan. Rappels (2) On considère le problème modèle, supposé bien posé, Chercher uh V h tel que (1) a(u, v) = b(v) Rappels (1) On considère le problème modèle, supposé bien posé, { Chercher u V tel que a(u, v) = b(v) v V (1) Éléments finis en 2D Alexandre Ern ern@cermics.enpc.fr http://cermics.enpc.fr/cours/cs (V Hilbert,

Plus en détail

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html

Arithmétique Algorithmique. http://www.math.univ-lyon1.fr/~roblot/ens.html Arithmétique Algorithmique http://www.math.univ-lyon1.fr/~roblot/ens.html Partie III Algorithmes classiques 1 Coût de la multiplication et de la division 2 Exponentiation rapide 3 Algorithme d Euclide

Plus en détail

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense.

Feuille d exercices n o 1. N(x i ). 4. On rappelle qu un espace normé est séparable s il contient une partie dénombrable dense. 1 Feuille d exercices n o 1 1. Deuxième forme géométrique du théorème de Hahn-Banach Soient A E et B E deux convexes, non vides, disjoints (E est une espace vectoriel normé). On suppose que A est fermé

Plus en détail

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES

ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Chapitre 5 ÉTUDE MATHÉMATIQUE DES PROBLÈMES ELLIPTIQUES Exercice 5.2.1 A l aide de l approche variationnelle démontrer l existence et l unicité de la solution de { u + u = f dans (5.1) u = 0 sur où est

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire NICOD JEAN-MARC Master 2 Informatique Université de Franche-Comté UFR des Sciences et Techniques septembre 2008 NICOD JEAN-MARC Rappels sur les graphes 1 / 47 Sommaire 1 Exemple

Plus en détail

1 Programmation linéaire

1 Programmation linéaire UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 2012 2013 Master d économie Cours de M. Desgraupes Méthodes Numériques Document 4 : Corrigé des exercices d optimisation linéaire

Plus en détail

CH12 : Solide en mouvement de translation

CH12 : Solide en mouvement de translation BTS électrotechnique 1 ère année - Sciences physiques appliquées CH12 : Solide en mouvement de translation Motorisation des systèmes Enjeu : Problématique : En tant que technicien supérieur, il vous revient

Plus en détail

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée

Cours 2 6 octobre. 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Introduction aux modèles graphiques 2010/2011 Cours 2 6 octobre Enseignant: Francis Bach Scribe: Nicolas Cheifetz, Issam El Alaoui 2.1 Maximum de vraisemblance pour une loi Gaussienne multivariée Soit

Plus en détail

M2 MPRO. Optimisation dans les Graphes 2014-2015

M2 MPRO. Optimisation dans les Graphes 2014-2015 M2 MPRO Optimisation dans les Graphes 2014-2015 Programmation linéaire et problèmes d'optimisation dans les graphes 1 Problèmes d'optimisation dans les graphes : quelles méthodes pour les résoudre? Théorie

Plus en détail

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques

Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques Agrégation externe de mathématiques, session 2005 Épreuve de modélisation, option Probabilités et Statistiques (605) GESTION DE STOCK À DEMANDE ALÉATOIRE Résumé : Chaque mois, le gérant d un magasin doit

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz)

INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle. Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) INFO-F-310 (MATH-H404) Algorithmique et Recherche Opérationnelle Prof. Yves De Smet (co-titulaire Prof. Bernard Fortz) Terminologie Recherche Opérationnelle Méthodes quantitatives de gestion Mathématiques

Plus en détail

Chapitre 7 : Programmation dynamique

Chapitre 7 : Programmation dynamique Graphes et RO TELECOM Nancy 2A Chapitre 7 : Programmation dynamique J.-F. Scheid 1 Plan du chapitre I. Introduction et principe d optimalité de Bellman II. Programmation dynamique pour la programmation

Plus en détail

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7

(i) Le nombre de travailleurs commencant leur service est positif ou nul : x i 0 i = 1,...,7 Chapitre 1 Modelisation 11 Exemples de Problèmes 111 La Cafétaria Cafétaria ouverte toute la semaine Statistique sur le personnel requis : Jour Lundi Mardi Mercredi Jeudi Vendredi Samedi Dimanche Nombre

Plus en détail

Analyse en composantes principales

Analyse en composantes principales Analyse en composantes principales Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Analyse en composantes principales p. 1/18 Introduction Objectifs Soit {x i } i=1,,l

Plus en détail

Cours de mécanique M14-travail-énergies

Cours de mécanique M14-travail-énergies Cours de mécanique M14-travail-énergies 1 Introduction L objectif de ce chapitre est de présenter les outils énergétiques utilisés en mécanique pour résoudre des problèmes. En effet, parfois le principe

Plus en détail

Maximisation de la fonction d utilité exponentielleprix d indifférence dans un modèle avec défauts

Maximisation de la fonction d utilité exponentielleprix d indifférence dans un modèle avec défauts Maximisation de la fonction d utilité exponentielleprix d indifférence dans un modèle avec défauts Thomas Lim Université Paris 7-LPMA Travail en collaboration avec Marie-Claire Quenez Séminaire des jeunes

Plus en détail

208 - Espaces vectoriels normés, applications linéaires continues. Exemples

208 - Espaces vectoriels normés, applications linéaires continues. Exemples 208 - Espaces vectoriels normés, applications linéaires continues. Exemples On se xe un corps K = R ou C. Tous les espaces vectoriels considérés auront K comme corps de base. 1 Généralités Remarque. Tout

Plus en détail

1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle?

1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle? CONTRÔLE DE RECHERCHE OPÉRATIONNELLE Le contrôle est noté sur 30. 1. Question 1 pt Comment s'appelle la société française de recherche opérationnelle? 2. Management de projet 2 pts Considérons le projet

Plus en détail

Corrigé des exercices «Principe fondamental de la dynamique»

Corrigé des exercices «Principe fondamental de la dynamique» «Principe fondamental de la dynamique» Exercice 1 a. Un véhicule parcourt 72 km en 50 minutes. Calculer sa vitesse moyenne et donner le résultat en km/h puis en m/s. La vitesse v est donnée en fonction

Plus en détail

Programmation linéaire

Programmation linéaire Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

sept.2003 I. Le problème traité, Mise en équation Le problème traité, Mise en équation 1. Généralités, hypothèses et notations

sept.2003 I. Le problème traité, Mise en équation Le problème traité, Mise en équation 1. Généralités, hypothèses et notations Modélisation et simulation de la déformation d'une pièce de tissu soumise à un champ de forces sept.23 I. Le problème traité, Mise en équation Le problème traité, Mise en équation 1. Généralités, hypothèses

Plus en détail

Chapitre 4 : Dualité en programmation linéaire

Chapitre 4 : Dualité en programmation linéaire Graphes et RO TELECOM Nancy 2A Chapitre 4 : Dualité en programmation linéaire J.-F. Scheid 1 Plan du chapitre 1 Introduction et définitions 2 Propriétés et Théorèmes de dualité 3 Conditions d optimalité

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Cours de Mathématiques II Chapitre 1. Algèbre linéaire

Cours de Mathématiques II Chapitre 1. Algèbre linéaire Université de Paris X Nanterre UFR Segmi Année 7-8 Licence Economie-Gestion première année Cours de Mathématiques II Chapitre Algèbre linéaire Table des matières Espaces vectoriels Espaces et sous-espaces

Plus en détail

Techniques d Analyse par les Méthodes de Lyapunov (suite)

Techniques d Analyse par les Méthodes de Lyapunov (suite) Techniques d Analyse par les Méthodes de Lyapunov (suite) Analyse et Commande des Systèmes Non Linéaires Cours SM II () Enseignant: Dr. Ph. Müllhaupt 1 / 24 Leçon 5 1 Désavantage de la définition de la

Plus en détail

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA

COURS OPTIMISATION. Cours en Master M1 SITN. Ionel Sorin CIUPERCA COURS OPTIMISATION Cours en Master M1 SITN Ionel Sorin CIUPERCA 1 Table des matières 1 Introduction 4 2 Quelques rappels de calcul différentiel, analyse convexe et extremum 5 2.1 Rappel calcul différentiel............................

Plus en détail

Filtre de Wiener. Analyse en Composantes Principales

Filtre de Wiener. Analyse en Composantes Principales Filtre de Wiener Analyse en Composantes Principales Guillaume Obozinski LIGM/Ecole des Ponts - ParisTech Traitement de l information et vision artificielle Ecole des Ponts Filtre de Wiener Norbert Wiener

Plus en détail

CHAPITRE IV: ONDES DE CHOCS DROITES

CHAPITRE IV: ONDES DE CHOCS DROITES CHAPITRE IV: ONDES DE CHOCS DROITES Nous avons souligné au chapitre II, ainsi qu au chapitre III, que pour les écoulements à grande vitesse le modèle continu ne permettait pas de décrire la totalité des

Plus en détail

Ax = b iff (B + N) x N

Ax = b iff (B + N) x N Chapitre 3 Algorithme du simplexe 3.1 Solution de base admissible P en forme standard. A = (a 1,...,a n ) Hypothèse : n m (plus de variables que d équations) et rg(a)=m (pas d équation inutile). Donc après

Plus en détail

Intégrales curvilignes.

Intégrales curvilignes. Chapitre 1 Intégrales curvilignes. 1.1 Généralités 1.1.1 Courbes paramétrées dans le plan. Motivations, exemples. L exemple basique de courbe est la trajectoire décrite par un objet assimilée à un point

Plus en détail

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières.

TD7. ENS Cachan M1 Hadamard 2015-2016. Exercice 1 Sous-espaces fermés de C ([0,1]) formé de fonctions régulières. Analyse fonctionnelle A. Leclaire ENS Cachan M Hadamard 25-26 TD7 Exercice Sous-espaces fermés de C ([,] formé de fonctions régulières. Soit F un sous-espace vectoriel fermé de C ([,] muni de la convergence

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé

Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé Planche n o 19. Applications linéaires continues, normes matricielles. Corrigé n o 1 *I : 1 Soit P E. Si on pose P = + a k X k, il existe n N tel que k > n, a k =. Donc P = { k= P k } Sup k!, k N = Max{

Plus en détail

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL

Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL Analyse en composantes principales Christine Decaestecker & Marco Saerens ULB & UCL LINF 2275 Stat. explor. multidim. 1 A.C.P.: Analyse en Composantes Principales Analyse de la structure de la matrice

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail

1 Contrôle des connaissances 2010/2011

1 Contrôle des connaissances 2010/2011 1 Contrôle des connaissances 2010/2011 Remarque préliminaire On s attachera dans la rédaction à être aussi précis que possible. Ainsi, lors de l écriture de chaque problème d optimisation et de chaque

Plus en détail

MATH-F-306 - Optimisation. Prénom Nom Note

MATH-F-306 - Optimisation. Prénom Nom Note MATH-F-306 Optimisation examen de 1 e session année 2009 2010 Prénom Nom Note Répondre aux questions ci-dessous en justifiant rigoureusement chaque étape, affirmation, etc. AUCUNE NOTE N EST AUTORISÉE.

Plus en détail

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique

Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Agrégation externe de mathématiques, texte d exercice diffusé en 2012 Épreuve de modélisation, option informatique Résumé : A partir du problème de la représentation des droites sur un écran d ordinateur,

Plus en détail

Programmation linéaire (PL) 2. Programmation linéaire a. Modélisation. Exemple d un modèle de PL. Exemple d un modèle de PL (suite)

Programmation linéaire (PL) 2. Programmation linéaire a. Modélisation. Exemple d un modèle de PL. Exemple d un modèle de PL (suite) Programmation linéaire (PL) IFT1575 Modèles de recherche opérationnelle (RO). Programmation linéaire a. Modélisation Problème classique de planification : affecter des ressources limitées à plusieurs activités

Plus en détail

Michel.Campillo@ujf-grenoble.fr. Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1

Michel.Campillo@ujf-grenoble.fr. Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1 Michel.Campillo@ujf-grenoble.fr Documents: http://isterre.fr/annuaire/pages-web-du-personnel/michel-campillo/ TUE415 1 Ondes de surface: observations Figures de: Stein and Wysession TUE415 2 Pourquoi étudier

Plus en détail

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée

Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Techniques d estimation : Maximum de Vraisemblance et Méthode des Moments Généralisée Philippe Gagnepain Université Paris 1 Ecole d Economie de Paris Centre d économie de la Sorbonne-UG 4-Bureau 405 philippe.gagnepain@univ-paris1.fr

Plus en détail

Introduction au cours de physique (1)

Introduction au cours de physique (1) Introduction au cours de physique () Exercices : Petites variations, valeurs moyennes Calculs de petites variations Méthode De manière générale : il est souvent plus simple de faire une différentiation

Plus en détail

Épreuve orale d Informatique Fondamentale

Épreuve orale d Informatique Fondamentale Épreuve orale d Informatique Fondamentale Patrick Baillot, Nicolas Ollinger, Alexis Saurin ULC MPI 2013 Résumé Ce document consiste en une sélection, à titre d exemples, de 3 sujets proposés à l épreuve

Plus en détail

Problème du flot à coût minimum

Problème du flot à coût minimum Problème du flot à coût minimum IFT1575 Modèles de recherche opérationnelle (RO). Optimisation de réseaux e. Flot à coût minimum On a un graphe orienté et connexe chaque arc (i,j), on associe une capacité

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique

La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation

Plus en détail

Exercices théoriques

Exercices théoriques École normale supérieure 2008-2009 Département d informatique Algorithmique et Programmation TD n 9 : Programmation Linéaire Avec Solutions Exercices théoriques Rappel : Dual d un programme linéaire cf.

Plus en détail

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI

Chapitre 6. Modélisation en P.L.I. 6.1 Lien entre PL et PLI. 6.1.1 Approximation de la PLI Chapitre 6 Modélisation en P.L.I. 6.1 Lien entre PL et PLI (P) problème de PL. On restreint les variables à être entières : on a un problème de PLI (ILP en anglais). On restreint certaines variables à

Plus en détail

208. Espaces vectoriels normés. Applications linéaires continues. Exemples.

208. Espaces vectoriels normés. Applications linéaires continues. Exemples. 208. Espaces vectoriels normés. Applications linéaires continues. Exemples. Pierre Lissy May 29, 2010 Dans totue la suite, E désigne un espace vectoriel sur R ou C. 1 Norme. Espace vectoriel normé 1.1

Plus en détail

Gestion de la congestion

Gestion de la congestion Gestion de la congestion réseau de télécommunication ou de transport Madiagne Diallo Laboratoire Université de Versailles, France Projet FT R&D Participants : Barth, Bouhtou, Diallo et Wynter : 000 --

Plus en détail

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2.

COURBES PARAMÉTRÉES. t + 1. c ex :]0, [ R n, t + Γ ex := c ex (I). c est une courbe paramétrée de classe C 2. COUBES PAAMÉTÉES 1 Propriétés géométriques des courbes paramétrées Soit n = 2 ou 3 et E n un espace ane associé à l'espace vectoriel n Soit une norme sur n Dénition 11 Une courbe paramétrée est une application

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

cos φ sin φ 0 sin φ cos φ 0 0 0 1 1 0 0 0 cos θ sin θ 0 sin θ cos θ cos ψ sin ψ 0 sin ψ cos ψ 0 0 0 1

cos φ sin φ 0 sin φ cos φ 0 0 0 1 1 0 0 0 cos θ sin θ 0 sin θ cos θ cos ψ sin ψ 0 sin ψ cos ψ 0 0 0 1 Corrigé No 2 26.09.08 Representation de base des milieux continus 1. Angles d'euler Par dénition, les angles d'euler sont dénis de la manière suivante en partant d'un repère orthonormé Oxyz : - on tourne

Plus en détail

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique

1 Présentation du moulin. 2 Modélisation mathématique. 2.1 Modélisation statique. Don Quichotte de l Atlantique 1 Présentation du moulin Il s agit d une roue tournant autour d un axe. Sur l extérieur de la roue sont fixées des tiges et sur les tiges sont accrochés des récipients. Ces récipients sont ouverts en haut

Plus en détail

1 Cinématique du solide

1 Cinématique du solide TBLE DES MTIÈRES 1 Cinématique du solide 1 1.1 Coordonnées d un point dans l espace......................... 1 1.1.1 Repère et référentiel................................ 1 1.1.2 Sens trigonométrique...............................

Plus en détail

15 Notions sur les turbomachines

15 Notions sur les turbomachines 16 avril 2004 429 15 Au cours des chapitres précédents, on a maintes fois considéré des machines au sein desquelles s opérait un échange de travail avec le milieu extérieur (compresseurs, turbines). Parmi

Plus en détail

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique

Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique Programmation Linéaire Cours 1 : programmes linéaires, modélisation et résolution graphique F. Clautiaux francois.clautiaux@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 Motivation et objectif du cours

Plus en détail

Chapitre 2. Optimisation de la consigne de couple du conducteur.

Chapitre 2. Optimisation de la consigne de couple du conducteur. Chapitre 2. Optimisation de la consigne de couple du conducteur. 49 1.Introduction. L objectif poursuivi dans cette étude est l augmentation de l autonomie du véhicule en modifiant la consigne de couple

Plus en détail

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6

Probabilités et Statistiques. Raphaël KRIKORIAN Université Paris 6 Probabilités et Statistiques Raphaël KRIKORIAN Université Paris 6 Année 2005-2006 2 Table des matières 1 Rappels de théorie des ensembles 5 1.1 Opérations sur les ensembles................... 5 1.2 Applications

Plus en détail

Le second degré. Déterminer et utiliser la forme la plus adéquate d une fonction polynôme de degré deux en vue de la résolution d un problème :

Le second degré. Déterminer et utiliser la forme la plus adéquate d une fonction polynôme de degré deux en vue de la résolution d un problème : Chapitre 1 Ce que dit le programme Le second degré CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Second degré Forme canonique d une fonction polynôme de degré deux. Équation du second degré, discriminant.

Plus en détail

Programmation Linéaire - Cours 2

Programmation Linéaire - Cours 2 Programmation Linéaire - Cours 2 P. Pesneau pierre.pesneau@math.u-bordeaux1.fr Université Bordeaux 1 Bât A33 - Bur 265 Sommaire 1 2 3 Retournons dans le yaourt! Reprenons l exemple du 1er cours Forme normale

Plus en détail

Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans

Chapitre 2 : Les systèmes d équations récurrentes linéaires. dans Chapitre 2 : Les systèmes d équations récurrentes linéaires dans Sommaire Sandrine CHARLES 1 Introduction... 3 2 Rappels sur les formes de Jordan réelles dans... 4 2.1 Deux valeurs propres réelles distinctes

Plus en détail

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale

MT18 A 2012 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale MT8 A 0 Variables aléatoires à valeurs réelles Aleth Chevalley Loi binomiale, loi de Poisson, loi normale. Fonction de répartition.. Variable aléatoire à valeurs réelles Définition : Soit un ensemble fondamental

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

ETUDE DES E VI V B I RATIO I N O S

ETUDE DES E VI V B I RATIO I N O S ETUDE DES VIBRATIONS 1 Chapitre I - Présentation et définitions 2 Les objectifs à atteindre: 1) Savoir décrire le modèle de l'oscillateur harmonique et savoir l'appliquer à l'étude des systèmes physiques

Plus en détail

Épreuve de Mathématiques 8

Épreuve de Mathématiques 8 Lycée La Prat s Vendredi 10 avril 2015 Classe de PT Épreuve de Mathématiques 8 Durée 4 h L usage des calculatrices est interdit. La présentation, la lisibilité, l orthographe, la qualité de la rédaction

Plus en détail

Systèmes dynamiques. Chapitre 1

Systèmes dynamiques. Chapitre 1 Chapitre 1 Systèmes dynamiques 1) Placement financier On dépose une quantité d argent u 0 à la banque à l instant t 0 = 0 et on place cet argent à un taux r > 0. On sait qu en vertu de la loi des intérêts

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA Chapitre 5 :. Introduction aux méthodes par séparation et évaluation Les méthodes arborescentes ( Branch and Bound Methods ) sont des méthodes exactes d'optimisation qui pratiquent une énumération intelligente

Plus en détail

Master MIMSE - Année 1. Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 1. Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 1 Gestion des stocks Gestion des stocks déterministe Variantes du modèle de Wilson 2 Hypothèses du modèle de Wilson Un seul produit ex. multiproduit Horizon de temps infini horizon

Plus en détail

La commande par mode glissant

La commande par mode glissant 1. Introduction Les lois de commande classiques du type PID sont très efficaces dans le cas des systèmes linéaires à paramètres constants. Pour des systèmes non linéaires ou ayant des paramètres non constants,

Plus en détail

Algorithmique et Structures de Données

Algorithmique et Structures de Données 1.1 Algorithmique et Structures de Données Jean-Charles Régin Licence Informatique 2ème année 1.2 Itérations Jean-Charles Régin Licence Informatique 2ème année Itération : définition 3 En informatique,

Plus en détail

Programmation linéaire

Programmation linéaire 1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit

Plus en détail

3 Equations de Laplace et de Poisson

3 Equations de Laplace et de Poisson 3 Equations de Laplace et de Poisson 3. Formule d intégration par parties Soit un domaine borné à bord régulier de classe C. On note ν = ν(x) le vecteur normal extérieur au point x. Pour toutes fonctions

Plus en détail

Epreuve de Physique I-B Durée 4 h

Epreuve de Physique I-B Durée 4 h * Banque filière PT * BANQUE PT - EPREUVE I-B. Epreuve de Physique I-B Durée 4 h Etude d'une micropompe électrostatique Indications générales : On donnera tous les résultats avec leur unité. Les candidats

Plus en détail

Régression logistique

Régression logistique Régression logistique Gilles Gasso. INSA Rouen -Département ASI Laboratoire LITIS Régression logistique p. 1 Introduction Objectifs Le classifieur de Bayes est basé sur la comparaison des probabilités

Plus en détail

Fonction logarithme népérien, cours de Terminale STI

Fonction logarithme népérien, cours de Terminale STI Fonction logarithme népérien, cours de Terminale STI F.Gaudon 5 juillet 010 Table des matières 1 Construction de la fonction logarithme népérien Propriétés analytiques.1 Étude de la fonction.......................................

Plus en détail

UNIVERSITE SAAD DAHLAB DE BLIDA

UNIVERSITE SAAD DAHLAB DE BLIDA LA PROGRAMMATION LINEAIRE La première révolution industrielle avait remplacé la force musculaire de l'homme par celle des machines. La seconde voyait la machine se commander elle-même. Les ordinateurs

Plus en détail

Exemple d un modèle de PL. 2. Programmation linéaire a. modélisation. Programmation linéaire (PL) Exemple d un modèle de PL (suite)

Exemple d un modèle de PL. 2. Programmation linéaire a. modélisation. Programmation linéaire (PL) Exemple d un modèle de PL (suite) Exemple d un modèle de PL IFT1575 Modèles de recherche opérationnelle (RO). Programmation linéaire a. modélisation Données du problème (Wyndor Glass, sec..1 H&L): Deux types de produits (produit 1, produit

Plus en détail

11. Espaces vectoriels, homomorphismes, bases

11. Espaces vectoriels, homomorphismes, bases 11. Espaces vectoriels, homomorphismes, bases 11.1. Espaces vectoriels, algèbres 11.1.1. Structure d espace vectoriel et d algèbre 11.1.2. Combinaisons linéaires 11.1.3. Espaces vectoriels et algèbres

Plus en détail

Devoir maison n 5. MP Lycée Clemenceau. A rendre le 7 janvier 2014. Centrale

Devoir maison n 5. MP Lycée Clemenceau. A rendre le 7 janvier 2014. Centrale Devoir maison n 5 MP Lycée Clemenceau A rendre le 7 janvier 214 Centrale - Dans le problème, λ désigne toujours une application continue de IR + dans IR +, croissante et non majorée. - Dans le problème,

Plus en détail

AA2 - Projet informatique

AA2 - Projet informatique AA2 - Projet informatique Jean-Baptiste Vioix (jean-baptiste.vioix@iut-dijon.u-bourgogne.fr) IUT de Dijon-Auxerre - LE2I http://jb.vioix.free.fr 1-15 Introduction Fonctionnement du module Le but de ce

Plus en détail

Optimisation numérique. Outline. Multiplicateurs de Lagrange. Daniele Di Pietro A.A Contraintes d'égalité. 2 Contraintes d'inégalité

Optimisation numérique. Outline. Multiplicateurs de Lagrange. Daniele Di Pietro A.A Contraintes d'égalité. 2 Contraintes d'inégalité Optimisation numérique Multiplicateurs de Lagrange Daniele Di Pietro A.A. 2013-2014 Outline 1 Contraintes d'égalité 2 Contraintes d'inégalité Introduction Nous cherchons à écrire des conditions de minimalité

Plus en détail