Quelques problématiques en aéroélasticité stochastique

Dimension: px
Commencer à balayer dès la page:

Download "Quelques problématiques en aéroélasticité stochastique"

Transcription

1 Quelques problématiques en aéroélasticité stochastique J-C Chassaing, D. Lucor, A. Vincenti C.T. Nitschke (PhD Student) J. Maruani, M. Touil (Masters Student) Axe transverse Interactions Fluide-Structure Institut d Alembert, Université Pierre et Marie Curie Journée Optimisation sous incertitude, ONERA Palaiseau, 12 nov Optimisation sous incertitude, ONERA 1 / 30

2 Cadre général Interactions Fluide-Structure Structure : corps profilés Aérodynamique: incompressible supersonique Instabilités dynamiques: telles que les charges aérodynamiques dépendent du mouvement même de la structure Conséquences: - usure prématurée, ruine immédiate - certification nécessaire Optimisation sous incertitude, ONERA 2 / 30

3 Cadre général Interactions Fluide-Structure Structure : corps profilés Aérodynamique: incompressible supersonique Instabilités dynamiques: telles que les charges aérodynamiques dépendent du mouvement même de la structure Conséquences: - usure prématurée, ruine immédiate - certification nécessaire Variables d intérêt: Vitesse de flottement Amplitude des cycles limites Optimisation sous incertitude, ONERA 2 / 30

4 Quantification d incertitudes en Aéroélasticité Principe : U f = f i ( x) + ˆε i Nature des incertitudes: - f i : modèle - x paramétrique - ˆε i différence entre observation et prédiction (Poirion 2000, Romero 2001, Pettit 2003, Livne 2003) Les grandes étapes... Propagation directe (solveurs non-intrusifs), analyse de sensibilité Inférence statistique, optimisation robuste... dans un environnement hostile : Non-linéarité, dimensionnalité, modèles déterministes haute fidélité multi-physiques Optimisation sous incertitude, ONERA 3 / 30

5 Quelques problématiques en aéroélasticité stochastique Plan de l exposé 1 Quantification d incertitudes paramétriques : Solveur déterministe CFD haute fidélité Problème fortement non-linéaire Flottement de structure en matériaux composites 2 Propagation d incertitudes de modèles et calibration 3 Optimisation robuste avec critères aéroélastiques 4 Perspectives Optimisation sous incertitude, ONERA 4 / 30

6 1.1 Quantification d incertitudes en cfd compressible Profil d aile en présence d incertitudes aérodynamiques Couplage Chaos polynomial généralisé (gpc) / rsm-rans 2D Naca 0012 (Re ), écoulement transsonique stationnaire Paramètres incertains variable distribution polynômes 1. angle d attaque: α = 5 ± 1 deg uniforme Legendre (P = 7) 2. nombre de Mach: M = 0.65 ± 0.05 uniforme Legendre (P = 7) PDF et coefficients de sensibilité Isentropic Mach number M is Chassaing, Lucor, AIAA J. 45(8) 2010 Optimisation sous incertitude, ONERA 5 / 30

7 1.1 Quantification 1.4 d incertitudes en 1.4 cfd compressible nq=6 Profil d aile en présence d incertitudes nq=7 aérodynamiques Couplage 0.6 Chaos polynomial généralisé (gpc) / rsm-rans 2D Naca 0012 (Re ), écoulement transsonique stationnaire 0.2 Paramètres incertains 0 variable distribution polynômes x/c 1. angle d attaque: α = 5 ± 1 deg uniforme Legendre x/c (P = 7) 2. nombre de Mach: M = 0.65 ± 0.05 uniforme Legendre (P = 7) M is Variances de c p et c f nq=2 nq=3 nq=4 nq=5 nq=8 en fonction de P M is nq=2 nq=3 nq=4 nq=5 nq=6 nq=7 nq= Fig. C1 Effect of the number of collocation points n q on the distribution of the mean value of M is for case D, 5 deg and M1 0: CHASSAING AND LUCOR σ 2 C p p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 σ 2 C f ( 106 ) x/c x/c Fig. C2 Influence Importance of the polynomial du ratioorder x/ ξ P on the pressure 1 coefficient C p and the skin-friction C f variances along the airfoil surfaces (case D). Convergence lente: gpc à support global n est pas adapté à la CFD non-linéaire cessary Optimisation to increase sous theincertitude, number of collocation ONERA points per random (Fig. C2, right). Indeed, the skin friction is avery sensitivequantity 5 / to 30

8 1.1 Quantification d incertitudes en cfd compressible Pour aller plus loin: couplage uq-adaptative/cfd pour N d 10 Approche par collocation adaptative et anisotrope grilles creuses et interpolations hiearchiques (Klimke, 2006) Solveur déterministe: rans Configuration: Tuyère transsonique kth-vm100 (Bron, 2006) 6 incertitudes : P tin, P out, T u, l t, h bump,l bump mean 2Dp 2Dg 3D 4D 6D # samples variance # samples Gorle, Labit, Lucor, Chassaing, submitted to IFASD 2013, June, Bristol [UK] anr-capcao, Conception Assistée par Paramétrisation pour une Conception Aéroélastique Optimisée (ecl, upmc, fluorem) Optimisation sous incertitude, ONERA 6 / 30

9 1.2 Aéroélasticité non-linéaire stochastique Profil à 2 dll en flexion/torsion α k α h k ξ a h b x α b Modèle déterministe ( ) ξ,, + x αα,, ω ω 2 + 2ζ ξ U ξ, + U k ξ ξ = 1 πµ C L(τ) ( ) x α rα 2 ξ,, + α,, + 2 ζα U α, + U k(α) = πµrα 2 C M (τ) Formulation analytique de l opérateur aérodynamique instationnaire (Lee et al. JSV 2005) Modèle de raideur pentique rigidifiant (k α3 > 0) ou assouplissant (k α3 < 0) k(α) = k α1 α + k α3 α 3 + k α5 α 5 Optimisation sous incertitude, ONERA 7 / 30

10 1.2 Formulation gpc multi-éléments adaptative (ME-gPC) 1. Partionnement de l espace aléatoire Décomposition D de B = d i=1[a i, b i ] Nouvelle variable aléatoire ξ k et sa PDF conditionnelle ˆf k (ξ k I Bk = 1) Approximation gpc par morceaux du champ aléatoire N e N e M u r (ξ) = û k (ξ k )I Bk = û k,j Φ k,j (ξ k )I Bk 2. h-adapativité k=1 k=1 j=0 Estimation du taux de décroissance de l erreur relative de la variance η k = σ2 k,p σk,p 1 2 M P, σ 2 σk,p 1 2 k,p = ûk,je[φ 2 2 k,j] Critère adaptatif: η γ k Pr(I B k = 1) θ 1 Réduction du coût global par raffinement anisotrope Wan and Karniadakis, JCP 209(2005) Foo, Wan and Karniadakis, JCP 227(2008) j=1 Optimisation sous incertitude, ONERA 8 / 30

11 1.2 Diagramme de bifurcation stochastique et convergence αa (deg) σkα 1 = 0.2;σkα 3 = 0.75 σkα 1 = 0 ;σkα 3 = 0.75 σkα 1 = 0 ;σkα 3 = 0 PDF Normalized errl2(σ αa ) e-05 1e U U* U = 6.34 U = P = 2 P = 3 P = 4 P = 5 1e-07 irregular RS 1e N errl2(σ 2 α A ) e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e smooth RS N Optimisation sous incertitude, ONERA 9 /

12 1.3 Flottement de structures composites stratifiées Objectif Influence sur la vitesse de flottement (cadre linéaire) des incertitudes de fabrication et de mesure pour des ailes en matériaux composites stratifiés (modèle poutre composite) Sources d incertitude Module de Young et coefficients matériau, épaisseurs et orientation des angles des couches Modèle aéroélastique stochastique Structure: opérateur Rayleigh Ritz de type poutre / solveur aéroélastique V-g Aérodynamique: opérateur incompressible instationnaire analytique Solveur stochastique : Monte-carlo Etat de l art Optimisation déterministe par AG + LHS (Manan, Eng. Optim., 2010) Quantification d incertitudes pour l aéroélasticité de matériaux composites: Solveur Rayleigh-Ritz plaque + Lamination Parameters + gpc (Scarth & Cooper, 2012) Optimisation sous incertitude, ONERA 10 / 30

13 1.3 Flottement de structures composites stratifiées Modèle de poutre composite Théorie des composites stratifiés (CLT), Fibre unidirectionnelle par couche Solveur aéroélastique Rayleigh-Ritz + aérodynamique analytique + solveur V g Surface de réponse: séquence [β + δ/ β + δ/β + δ/ β + δ] s (!) sauts de modes aéroélastiques Optimisation sous incertitude, ONERA 11 / 30

14 1.3 Flottement de structures composites stratifiées Quantification d incertitudes par qmc Distributions Uniformes de ±3% (4 modules matériau, épaisseur et orientation par couche) = variations de 5 à 10 % sur V f Inconvénients Convergence lente, coût élevé si utilisation avec un modèle haute fidélité Dimensionalité du problème stochastique Interprétation physique de la sensibilité de la marge au flottement aux incertitudes délicate Optimisation sous incertitude, ONERA 12 / 30

15 1.3 Flottement de structures composites stratifiées Représentation polaire du stratifié (Verchery, 1979 ; Vannucci, Meccanica, 2005) Représentation par invariants, adaptée au changement de repère Les symétries du matériau sont facilement identifiables Réduction de la dimensionalité du problème par paramétrisation (N max d = 12) Statistique des paramètres polaires par MCs Représentation par les invariants de la séquence [β/ β/β/ β] s: φ 1 : direction de l axe d orthotropie, R 1 : rayon invariant R 0 cos4(φ 0 φ 1 ), R 0 sin4(φ 0 φ 1 ) Réponse de V f Distribution des paramètres polaires de flexion Optimisation sous incertitude, ONERA 13 / 30

16 2. UQ and model updating in aeroelasticity Uncertainty breakdown V f = f i (x, ξ) + ˆε i Lack of accuracy of a given model for a particular scenario Several competing models for the same physical phenomenon Sources of uncertainty - f i : model-form - ξ: parametric uncertainty - ˆε i : predictive uncertainty Reducing uncertainties and model updating Bayesian updating to Goland wing flutter with PC: Dwight et al., 2011 Adjustment factors approach: Riley and Grandhi, 2011 Bayesian model selection for nonlinear aeroelastic systems: Sandhu, Khalil et al., 2014 Nitchke et al., WCCM XI, July 2014 Barcelona Optimisation sous incertitude, ONERA 14 / 30

17 2. BMA: Deterministic aeroelastic model Flutter of a typical airfoil section (a) 2-DOF aeroelastic model b b ( PDF (Tw 0.16 α a h b x α b h k α k h 0.04 Governing equations ḧ b xα α h ω2 h b + PDF 0.8 Flutter Solution Method: Iterative frequency 0.2 matching V g method 0.6 L = 0 rα 2 ḧ α x α b r αω 2 αα 2 + Mα = 0 mb 2 (c) Critical flutter velocity (Two-states mb Theodorsen s approximation) exp. (Û L initial ) adjusted Incompressible flow, linear stiffnessess, no mechanical damping 0.4 Quantity of Interest and observation data: critical flutter speed V f 0 10 p(ul Û L 0.8 e a 0.6 a B Optimisation sous incertitude, ONERA U 15 / 430

18 2. BMA: Model-form uncertainty Flow model for harmonic motion High fidelity FEM-CFD based aeroelastic solver Low-order aerodynamic model: account for added-mass, quasi steady effects and wake vorticity with k = ωb U L = ρb 2 ( ) Uπ α + πḧ πba h α 2πρUbC(k) ( M α = ρb [π a h ( +2ρUb 2 1 π 2 + a h the reduced frequency { Uα + ḣ + b ( 1 2 a h ) ( ) ] Ub α + πb a2 h α a h πbḧ ) { ( ) } 1 C(k) Uα + ḣ + b 2 a h α Theodorsen s transfer function C(k) as structural uncertainty Riley (2011) constructs an adjusted model using 6 individual approximations of C(k) Present work: the model class is based on two surrogate models of C(k) with tunable (stochastic) coefficients C 4 (k) = 1 + α 1ik + α 2 k α 3 ik + α 4 k 2 C 8 (k) = β 1 + β 2 ik β 3 k 2 β 4 ik 3 + k 4 β 5 + β 6 ik β 7 k 2 β 8 ik 3 + 2k 4 Optimisation sous incertitude, ONERA 16 / 30 ) } α

19 2. BMA problem set-up Experimental data a b c d exp. case Scenario : varying frequency ratio ω h /ω α ωh/ωa Data set : D = {d a, d b, d c, d d } c d b a exp. case Observed variable: flutter velocity V f speed V f Objective: Given a set of models M = {C 4 (k), C 8 (k)} with uncertain coefficients α i, β j and experimental data D : 1 Calibrate the stochastic model coefficients using D 2 Summarize the effect of model-form uncertainty to make robust predictions of new cases 1 Optimisation sous incertitude, ONERA 17 / 30

20 2. BMA Statistical model (1/3) Bayesian Model Averaging (BMA) p(q D) = m p(q D, M i )P(M i D) i=1 p(q D) : distribution of the adjusted model of variable of interest q p(q D, M i ) : robust predictive distribution of model M i P(M i D) : posterior model probability here: q = V f, M = {C 2(k), C 4(k)} and D = {d a, d b, d c, d d } Optimisation sous incertitude, ONERA 18 / 30

21 2. BMA Statistical model (2/3) Robust predictive distribution p(q D, M i ) p(q D, M i ) = p(q, θ i, M i )p(θ i D, M i )dθ i with θ the model coefficients Predictive distribution p(q θ, D, M i ) (using Gaussian noise N (0, σ 2 )) ( 1 p(q θ i, M i ) = (2πσi ) exp (q y(θ ) i, M i )) 2 2σi 2 Likelihood function f N f N (D θ i, M i ) = Π n d j=1 1 2πσ 2 i exp ( (y(θ ) i, M i ) d j ) 2 2σ 2 i Posterior of the model coefficients p(θ i D, M i ) p(θ i D, M i ) = kf N (D θ i, M i )p(θ i M i ) Optimisation sous incertitude, ONERA 19 / 30

22 2. BMA Statistical model (3/3) Model probability P(M i D) P(M i D) = P(D M i )P(M i ) m j=1 P(D M j)p(m j ) P(M i ) : individual model probability of the prior (Uniform distribution) P(D M i ) : marginal likelihood P(D M i ) = f N (D θ, M i )p(θ M i )dθ with p(θ M i ) : prior density Practical considerations The likelihood f N is sampled using Markov-Chain Monte-Carlo applied to the V g solver The marginal posterior p(q D, M i ) is evaluated using basic Monte Carlo Optimisation sous incertitude, ONERA 20 / 30

23 2. BMA Calibration results Bayesian information criteria BIC = 2 ln(p(d M)) Influence of σ for D = {d a, d b, d c, d d } Inference with σ as hyperparameter Conclusion: optimal values strongly differ Optimisation sous incertitude, ONERA 21 / 30

24 2. BMA Calibration results Posterior of V f for C 8 (k) PDF 2 case A PDF 2 case B V f V f PDF 2 case C PDF 2 case D V f V f prior posterior Optimisation sous incertitude, ONERA 22 / 30

25 2. BMA Calibration results Posterior of model coefficients for C 8 (k) Adaptation of parameters coincides with sensitivity Selecting σ carrefully allows better adaption σ too low leads to overadaptation to certain (not all) points Optimisation sous incertitude, ONERA 23 / 30

26 2. BMA Prediction results c d b a exp. case Combined model from BMA 6.41 PDF p(q D, C 4) p(q D, C 8) p(q D) speed V f V f Model probability C 4(k) C 8(k) σ = σ = HPI Optimisation sous incertitude, ONERA 24 / 30

27 3. Optimisation aéroélastique robuste: les premiers pas... Objectif: Optimisation de la marge au flottement en présence d incertitudes paramétriques Cadre de l étude: Aéroélasticité linéaire, solution analytique du flottement (solveur Rayleigh-Ritz, écoulement incompressible), nb de V.A modéré (N < 10) Optimiseur: - Algorithme Génétique - Méthode ADP pour la prise en compte des contraintes - Optimisation en poids d un caisson d aile stratifié (contraintes mécaniques et de faisabilité sur les paramètres polaires) (Montemurro et al., J Optim Theory Appl 2012) Solveur stochastique: - quasi Monte-Carlo (qmc) - Chaos Polynomial généralisé (gpc) Optimisation sous incertitude, ONERA 25 / 30

28 3. Optimisation robuste Problème jouet #1 Profil d aile en flexion-torsion Optimisation déterministe (Nikbay TWMS J. App. Eng. Math., 2011) max {V f }, g 1 = ω 1 0, g 2 = r α 1 0 s d S S = {s d R, s lower s d s upper } ; s d = {k, x α, I α, m} Surface de response Capture de l optimum (déterministe) sur les frontières: = Algorithme génétique Surface de réponse régulière + dimension modérée = gpc candidat potentiel Optimisation sous incertitude, ONERA 26 / 30

29 3. Optimisation robuste Problème jouet #1: profil en flexion/torsion Formulation du problème d optimisation max{e Vf }, g 1 = ω 1 0, g 2 = r α 1 0, g 3 = COV(V f ) 2.5 S = {s det, s prob R, s lower s det s upper, s prob = N(µ, σ 2 )} s det = {k, I α} s prob = {x α, m} Flutter index Ecart-type Moyenne CoV (%) Cas initial Opti déterministe Opti robuste Optimisation sous incertitude, ONERA 27 / 30

30 3. Optimisation robuste en aéroélasticité Exemple 2: Aile avec effet de flèche et corde variable Formulation du problème max{e Vf } S = {s det, s prob R, s lower s det s upper, s prob = N(µ, σ 2 )} s det = {λ, R}, s prob = {ω 1, ω 2 } Temps de calcul: solveur Rayleigh-Ritz/AG/gPC Simulation déterministe AG + gpc AG/gPC AG/gPC AG/gPC AG/gPC N design N UQ Temps 4 sec 1h 4h 4h 16h 32h 50 individus, 20 générations, P = 3 Optimisation sous incertitude, ONERA 28 / 30

31 3. Optimisation robuste en aéroélasticité: Conclusion Développement d une approche low-fidelity pour l optimisation robuste en aéroélasticité linéaire Réduction des coûts de calcul: Etude en cours 1 Calcul stochastique en grande dimension/solution régulière = Quadrature de Stroud (N P=2 = N d + 1 et N P=3 = 2N d ) 2 Méta-modèle à deux niveaux 1. échantillonnage gpc sélectif sur un sous-ensemble d individus 2. Calcul des statistiques des individus restants par interpolations des coefficients modaux Optimisation sous incertitude, ONERA 29 / 30

32 4. Conclusion générale Objectifs des travaux en Aéroélasticité stochastique Capacités prédictives des modèles stochastiques de marge au flottement/lco limitation des surdimensionnements Intégration des solveurs stochastiques dans des boucles d optimisation / calibration Réduction du temps de développement et diminution des cycles conception/essais Bilan Problèmes stochastiques directs - Possibilité de sélectionner le solveur stochastique (qmc, gpc, me-gpc, ASGC) en fonction de la raideur/dimensionnalité du problème - Utilisation avec des modèles haute fidélité (CFD/E.F) et réalistes (matériaux composites) (N < 10) Inférence statistique (BMA) et optimisation robuste (AG/gPC) - Algorithmes conventionnels déployés sur des modèles physiques réduits Perspectives - Développement d approches multi-fidélité pour l optimisation sous incertitudes - La calibration Bayésienne peut être envisagée en amont de la phase de calibration Optimisation sous incertitude, ONERA 30 / 30

téléphone sur l'exposition de la tête»

téléphone sur l'exposition de la tête» «Analyse statistique de l'influence de la position du téléphone sur l'exposition de la tête» A.Ghanmi 1,2,3 J.Wiart 1,2, O.Picon 3 1 Orange Labs R&D 2 WHIST LAB (http://whist.institut-telecom.fr), 3 Paris

Plus en détail

Une approche pour un contrôle non-linéaire temps réel

Une approche pour un contrôle non-linéaire temps réel Une approche pour un contrôle non-linéaire temps réel L. Mathelin 1 L. Pastur 1,2 O. Le Maître 1 1 LIMSI - CNRS Orsay 2 Université Paris-Sud 11 Orsay GdR Contrôle des décollements 25 Nov. 2009 Orléans

Plus en détail

Ecoulements 2D décollés autour d un mât et d une voile. B. Haddad, B. Lepine (Ecole Navale) Contact: chapin@ensica.fr

Ecoulements 2D décollés autour d un mât et d une voile. B. Haddad, B. Lepine (Ecole Navale) Contact: chapin@ensica.fr Ecoulements 2D décollés autour d un mât et d une voile V.G. Chapin,, S. Jamme (ENSICA) B. Haddad, B. Lepine (Ecole Navale) Contact: chapin@ensica.fr Aérodynamique du voilier Analyser & optimiser les performances

Plus en détail

Prise en compte de la stochasticité dans les modèles : optimisation robuste

Prise en compte de la stochasticité dans les modèles : optimisation robuste Prise en compte de la stochasticité dans les modèles : optimisation robuste Rodolphe Le Riche (CNRS & EMSE) & Victor Picheny (INRA) La Rochelle, 5/11/2014 Plan Introduction 1 Introduction 2 Formulations

Plus en détail

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil

Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Modélisation d un code numérique par un processus gaussien, application au calcul d une courbe de probabilité de dépasser un seuil Séverine Demeyer, Frédéric Jenson, Nicolas Dominguez CEA, LIST, F-91191

Plus en détail

Détermination des fréquences propres d une structure avec paramètres incertains

Détermination des fréquences propres d une structure avec paramètres incertains Détermination des fréquences propres d une structure avec paramètres incertains Etienne ARNOULT Abdelhamid TOUACHE Pascal LARDEUR Université de Technologie de Compiègne Laboratoire Roberval BP 20 529 60

Plus en détail

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV

INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Séminaire MTDE 22 mai 23 INTRODUCTION AUX MÉTHODES DE MONTE CARLO PAR CHAÎNES DE MARKOV Vincent Mazet CRAN CNRS UMR 739, Université Henri Poincaré, 5456 Vandœuvre-lès-Nancy Cedex 1 juillet 23 Sommaire

Plus en détail

Méthodes de Simulation

Méthodes de Simulation Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents

Plus en détail

Analyse et Commande de Microscope à Effet Tunnel (STM)

Analyse et Commande de Microscope à Effet Tunnel (STM) Analyse et Commande de Microscope à Effet Tunnel (STM) Présenté par: Irfan Ahmad (Doctorant en 2 éme année) Encadré par: Alina Voda & Gildas Besançon GIPSA-lab, Département Automatique Grenoble, France

Plus en détail

Optimisation en poids de structures composites

Optimisation en poids de structures composites Optimisation en poids de structures composites stratifiées Marco Montemurro, Angela Vincenti, Paolo Vannucci, Ahmed Makradi To cite this version: Marco Montemurro, Angela Vincenti, Paolo Vannucci, Ahmed

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay Plan 1 Incertitudes des modèles empiriques 2 Identification et caractérisation des paramètres incertains

Plus en détail

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013

CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 CSMA 2013 11e Colloque National en Calcul des Structures 13-17 Mai 2013 La méthode CGSM pour l analyse statique des plaques avec variabilité Mahyunirsyah MAHJUDIN 1,2 *, Frédéric DRUESNE 1, Irwan KATILI

Plus en détail

Project PROBA. Working Group Belgian Grid. 18.11.2013 Vanessa De Wilde

Project PROBA. Working Group Belgian Grid. 18.11.2013 Vanessa De Wilde Project PROBA Working Group Belgian Grid 18.11.2013 Vanessa De Wilde Agenda Problématique Etat de l art Projet PROBA Overview de la méthodologie Curtailment assessment Probabilistic assessment Risk indices

Plus en détail

MCMC et approximations en champ moyen pour les modèles de Markov

MCMC et approximations en champ moyen pour les modèles de Markov MCMC et approximations en champ moyen pour les modèles de Markov Gersende FORT LTCI CNRS - TELECOM ParisTech En collaboration avec Florence FORBES (Projet MISTIS, INRIA Rhône-Alpes). Basé sur l article:

Plus en détail

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012

Arbres binaires. Hélène Milhem. Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 Arbres binaires Hélène Milhem Institut de Mathématiques de Toulouse, INSA Toulouse, France IUP SID, 2011-2012 H. Milhem (IMT, INSA Toulouse) Arbres binaires IUP SID 2011-2012 1 / 35 PLAN Introduction Construction

Plus en détail

Problèmes de fiabilité dépendant du temps

Problèmes de fiabilité dépendant du temps Problèmes de fiabilité dépendant du temps Bruno Sudret Dépt. Matériaux et Mécanique des Composants Pourquoi la dimension temporelle? Rappel Résistance g( RS, ) = R S Sollicitation g( Rt (), St (),) t =

Plus en détail

Echantillonnage Non uniforme

Echantillonnage Non uniforme Echantillonnage Non uniforme Marie CHABERT IRIT/INP-ENSEEIHT/ ENSEEIHT/TéSASA Patrice MICHEL et Bernard LACAZE TéSA 1 Plan Introduction Echantillonnage uniforme Echantillonnage irrégulier Comparaison Cas

Plus en détail

Introduction aux Méthodes de Monte Carlo

Introduction aux Méthodes de Monte Carlo Méthodes de Monte Carlo pour la Modélisation et le Calcul Intensif Applications à la Physique Numérique et à la Biologie Séminaire CIMENT GRID Introduction aux Méthodes de Monte Carlo Olivier François

Plus en détail

Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé

Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé Application de la méthode de surface de réponse stochastique à l analyse de stabilité d un tunnel pressurisé Guilhem Mollon 1, Daniel Dias 2, Abdul-Hamid Soubra 3 1 Doctorant, Laboratoire de Génie Civil

Plus en détail

Vision par ordinateur

Vision par ordinateur Vision par ordinateur Stéréoscopie par minimisation d'énergie Frédéric Devernay d'après le cours de Richard Szeliski Mise en correspondance stéréo Quels algorithmes possibles? mettre en correspondance

Plus en détail

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6

Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Fouille de Données et Media Sociaux Cours 2 Master DAC Data Science UPMC - LIP6 Ludovic Denoyer 21 septembre 2015 Ludovic Denoyer () FDMS 21 septembre 2015 1 / 1 Contexte Observation La plupart des bonnes

Plus en détail

Analyse des données individuelles groupées

Analyse des données individuelles groupées Analyse des données individuelles groupées Analyse des Temps de Réponse Le modèle mixte linéaire (L2M) Y ij, j-ième observation continue de l individu i (i = 1,, N ; j =1,, n) et le vecteur des réponses

Plus en détail

Quelques axes de développement méthodologique en optimisation géométrique de formes aérodynamiques dans un contexte MDO

Quelques axes de développement méthodologique en optimisation géométrique de formes aérodynamiques dans un contexte MDO Quelques axes de développement méthodologique en optimisation géométrique de formes aérodynamiques dans un contexte MDO J.-A. Désidéri, INRIA Sophia Antipolis, desideri@sophia.inria.fr 16 Mars 2004 On

Plus en détail

Modélisation et simulation d événements rares. Josselin Garnier (Université Paris Diderot)

Modélisation et simulation d événements rares. Josselin Garnier (Université Paris Diderot) Modélisation et simulation d événements rares Josselin Garnier (Université Paris Diderot) 2 Traitement des incertitudes En anglais : uncertainty quantification. Problème général : Comment modéliser les

Plus en détail

Simulation avancée du procédé d injection

Simulation avancée du procédé d injection Simulation avancée du procédé d injection JT «Conception et optimisation numérique en plasturgie» Jeudi 30 juin Ronan Le Goff Sommaire Introduction Modèle numérique Cas d étude Paramètres rhéo Stratégies

Plus en détail

Filtrage stochastique non linéaire par la théorie de représentation des martingales

Filtrage stochastique non linéaire par la théorie de représentation des martingales Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de

Plus en détail

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES

OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES OPTIMISATION DE LA TARIFICATION DES RÉSEAUX MOBILES ST50 - Projet de fin d études Matthieu Leromain - Génie Informatique Systèmes temps Réel, Embarqués et informatique Mobile - REM 1 Suiveur en entreprise

Plus en détail

Quantification et hiérarchisation des incertitudes dans un processus de simulation numérique

Quantification et hiérarchisation des incertitudes dans un processus de simulation numérique Proposition de thèse CIFRE CERMICS-EDF Quantification et hiérarchisation des incertitudes dans un processus de simulation numérique 13 Janvier 2015 1 Contexte industriel et problématique En tant qu équipement

Plus en détail

Etude de l écoulement d un fluide entre deux plans parallèles munis d obstacles

Etude de l écoulement d un fluide entre deux plans parallèles munis d obstacles ème Congrès Français de Mécanique Bordeaux, 6 au 3 août 3 Etude de l écoulement d un fluide entre deux plans parallèles munis d obstacles. BODIF, F. DNNE,.K. BENKL niversité des Sciences et de la Technologie

Plus en détail

Figure 3.1- Lancement du Gambit

Figure 3.1- Lancement du Gambit 3.1. Introduction Le logiciel Gambit est un mailleur 2D/3D; pré-processeur qui permet de mailler des domaines de géométrie d un problème de CFD (Computational Fluid Dynamics).Il génère des fichiers*.msh

Plus en détail

Probabilistic design of wastewater treatment plants

Probabilistic design of wastewater treatment plants Probabilistic design of wastewater treatment plants Thèse Mansour Talebizadehsardari Doctorat en génie des eaux Philosophiae doctor (Ph.D.) Québec, Canada Mansour Talebizadehsardari, 2015 RÉSUMÉ Dans cette

Plus en détail

Club_Saturne 2007. Analyse d incertitudes avec Mercure_Saturne pour la modélisation de la dispersion atmosphérique. Emmanuel Demaël, Damien Bilbault

Club_Saturne 2007. Analyse d incertitudes avec Mercure_Saturne pour la modélisation de la dispersion atmosphérique. Emmanuel Demaël, Damien Bilbault Club_Saturne 2007 Analyse d incertitudes avec Mercure_Saturne pour la modélisation de la dispersion atmosphérique Emmanuel Demaël, Damien Bilbault 27 novembre 2007 Introduction Contexte : Objectifs : Répondre

Plus en détail

1st AIAA Sonic Boom Prediction Workshop

1st AIAA Sonic Boom Prediction Workshop 1st AIAA Sonic Boom Prediction Workshop January 11, 2014 National Harbor, Maryland Franck DAGRAU Summary of cases analyzed Body Of Revolution 69 degrees delta wing body Lockheed Martin 1021 Test cases

Plus en détail

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU

$SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU $SSOLFDWLRQGXNULJHDJHSRXUOD FDOLEUDWLRQPRWHXU Fabien FIGUERES fabien.figueres@mpsa.com 0RWVFOpV : Krigeage, plans d expériences space-filling, points de validations, calibration moteur. 5pVXPp Dans le

Plus en détail

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau

K. Ammar, F. Bachoc, JM. Martinez. Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des modèles de krigeage à la simulation numérique K Ammar, F Bachoc, JM Martinez CEA-Saclay, DEN, DM2S, F-91191 Gif-sur-Yvette, France Séminaire ARISTOTE - 23 octobre 2014 - Palaiseau Apport des

Plus en détail

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant

X1 = Cash flow/ Dette totale. X2 = Revenu net / Total des actifs au bilan. X3 = Actif réalisable et disponible / Passif courant EXEMPLE : FAILLITE D ENTREPRISES Cet exemple a pour objectif d étudier la faillite d entreprises. Les données proviennent de l ouvrage de R.A.Johnson et D.W Wichern : Applied Multivariate Statistical Analysis»,

Plus en détail

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé

DATA MINING 2 Réseaux de Neurones, Mélanges de classifieurs, SVM avancé I. Réseau Artificiel de Neurones 1. Neurone 2. Type de réseaux Feedforward Couches successives Récurrents Boucles de rétroaction Exemples de choix pour la fonction : suivant une loi de probabilité Carte

Plus en détail

ETUDE COMPARATIVE DES MODELISATIONS NUMERIQUE ET PHYSIQUE DE DIFFERENTS OUVRAGES D EVACUATION DES CRUES

ETUDE COMPARATIVE DES MODELISATIONS NUMERIQUE ET PHYSIQUE DE DIFFERENTS OUVRAGES D EVACUATION DES CRUES ETUDE COMPARATIVE DES MODELISATIONS NUMERIQUE ET PHYSIQUE DE DIFFERENTS OUVRAGES D EVACUATION DES CRUES P.E. LOISEL, J. SCHAGUENE, O. BERTRAND, C. GUILBAUD ARTELIA EAU ET ENVIRONNEMENT Symposium du CFBR

Plus en détail

Méthodes et Applications en Aéronautique

Méthodes et Applications en Aéronautique Méthodes et Applications en Aéronautique Eric MANOHA Département Simulation Numérique des Ecoulements et Aéroacoustique Office National d Études et de Recherches Aérospatiales www.onera.fr Plan Contexte

Plus en détail

Conception & optimisation d avion

Conception & optimisation d avion Conception & optimisation d avion Florian De Vuyst Ecole Centrale Paris Laboratoire Mathématiques Appliquées aux Systèmes Conférences Qu en savez-vous vraiment? Musée des arts et métiers Jeudi 24 avril

Plus en détail

Remplacement de la table d harmonie du violon par un sandwich balsa/fibre de lin

Remplacement de la table d harmonie du violon par un sandwich balsa/fibre de lin JST : Matériaux composites renforcés par des fibres végétales Remplacement de la table d harmonie du violon par un sandwich balsa/fibre de lin Kerem Ege, Jean-François Caron, Stéphane Marcadet, Hugo Martin

Plus en détail

Experimental study of flow separation

Experimental study of flow separation Experimental study of flow separation Fawzi FADLA TEMPO Laboratory (DF2T Team) - Valenciennes Outline Introduction & Background Motivations & Methodology 2D-Bump separation (adverse pressure gradient)

Plus en détail

Simulation en Imagerie Médicale

Simulation en Imagerie Médicale Simulation en Imagerie Médicale Fabien Baldacci LaBRI 15 Novembre 2012 Fabien Baldacci Simulation en Imagerie Médicale 1 / 37 Plan 1 Introduction 2 Principes de la simulation 3 Accélération des calculs

Plus en détail

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr

Modélisation prédictive et incertitudes. P. Pernot. Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr Modélisation prédictive et incertitudes P. Pernot Laboratoire de Chimie Physique, CNRS/U-PSUD, Orsay pascal.pernot@u-psud.fr Le concept de Mesure Virtuelle mesure virtuelle résultat d un modèle visant

Plus en détail

Prise en compte de la flexibilité des cas de charges dimensionnants en optimisation de structure

Prise en compte de la flexibilité des cas de charges dimensionnants en optimisation de structure CSMA 213 11e Colloque National en Calcul des Structures 13-17 Mai 213 Prise en compte de la flexibilité des cas de charges dimensionnants en optimisation de structure Dimitri BETTEBGHOR 1, Christophe BLONDEAU

Plus en détail

Imputation multiple pour variables qualitatives par analyse des correspondances multiples

Imputation multiple pour variables qualitatives par analyse des correspondances multiples Imputation multiple pour variables qualitatives par analyse des correspondances multiples Vincent Audigier & François Husson & Julie Josse Laboratoire de mathématiques appliquées, Agrocampus Ouest 65 rue

Plus en détail

Aérodynamique Numérique

Aérodynamique Numérique Aérodynamique Numérique Dominique BLANC Rodolphe GOURSEAU 16 mars 2005 TABLE DES MATIÈRES ii Table des matières Introduction iii 1 Maillage non structuré 1 1.1 Préparation du maillage.....................

Plus en détail

Les processus d évolution génétique en filtrage de signaux et en analyse de risques

Les processus d évolution génétique en filtrage de signaux et en analyse de risques Les processus d évolution génétique en filtrage de signaux et en analyse de risques P. Del Moral IRIA Centre Bordeaux-Sud Ouest Séminaire de Stat. et Santé Publique de l IFR 99, décembre 08 qq-références

Plus en détail

Introduction à l approche bootstrap

Introduction à l approche bootstrap Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?

Plus en détail

Catalogue de formation

Catalogue de formation Enregistré sous le numéro : 11 91 012 9991 auprès du Commissaire de la République de la Région Ile de France et du Département de Paris, CADLM propose un ensemble de formation dont les programmes sont

Plus en détail

Etudes numérique et expérimentale d un système tournant à supports flexibles variables

Etudes numérique et expérimentale d un système tournant à supports flexibles variables Etudes numérique et expérimentale d un système tournant à supports flexibles variables C. Villa J-J. Sinou F. Thouverez M. Massenzio Laboratoire de Tribologie et Dynamique des Systèmes CNRS-UMR 5513 Equipe

Plus en détail

en sciences de l ingénieur

en sciences de l ingénieur Systèmes Automatisés Optimisation en sciences de l ingénieur présente les principales méthodes exactes d optimisation statique et dynamique. Parmi les méthodes décrites figurent : - la programmation linéaire

Plus en détail

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE

L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE L ANALYSE DU RISQUE DE FAILLITE PAR LE BIAIS DES SYSTÈMES DE L INTELLIGENCE ARTIFICIELLE Paul Pașcu, Assist Prof, PhD, Ștefan cel Mare University of Suceava Abstract: This article aims to present a number

Plus en détail

Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli?

Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli? Plans d expérience bayésiens: Que nous proposent Chaloner et Verdinelli? Bayesian Experimental Design: A Review Statistical Science, Vol. 10, No. 3 Sophie Ancelet 1, 2 1 UMR 518 AgroParisTech/INRA, Département

Plus en détail

Optimisation directe des poids de modèles dans un prédicteur Bayésien naïf moyenné

Optimisation directe des poids de modèles dans un prédicteur Bayésien naïf moyenné Optimisation directe des poids de modèles dans un prédicteur Bayésien naïf moyenné Romain Guigourès, Marc Boullé Orange Labs 2 avenue Pierre Marzin 22307 Lannion Cedex {romain.guigoures, marc.boulle}@orange-ftgroup.com

Plus en détail

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7

Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques. Elec 2311 : S7 Les méthodes d optimisation appliquées à la conception de convertisseurs électromécaniques Elec 2311 : S7 1 Plan du cours Qu est-ce l optimisation? Comment l optimisation s intègre dans la conception?

Plus en détail

Puissance d un test de détection de zones de changement abrupt dans le plan

Puissance d un test de détection de zones de changement abrupt dans le plan Puissance d un test de détection de zones de changement abrupt dans le plan Edith Gabriel & Denis Allard Institut National de la Recherche Agronomique, Unité de Biométrie Domaine saint Paul, site agroparc,

Plus en détail

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R

Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Les simulations dans l enseignement des sondages Avec le logiciel GENESIS sous SAS et la bibliothèque Sondages sous R Yves Aragon, David Haziza & Anne Ruiz-Gazen GREMAQ, UMR CNRS 5604, Université des Sciences

Plus en détail

Approche multi-échelles: Aide à la conception et à l'injection de pièces en Polyamide renforcé. Y. Deyrail, M. Oumarou, A. Causier, W.

Approche multi-échelles: Aide à la conception et à l'injection de pièces en Polyamide renforcé. Y. Deyrail, M. Oumarou, A. Causier, W. Approche multi-échelles: Aide à la conception et à l'injection de pièces en Polyamide renforcé Y. Deyrail, M. Oumarou, A. Causier, W. Zerguine SOMMAIRE Présentation de la société Contexte de l étude Approche

Plus en détail

Commande robuste et extensions Pierre Apkarian. Travail Sous-Marin 15-16 Janv. 2014

Commande robuste et extensions Pierre Apkarian. Travail Sous-Marin 15-16 Janv. 2014 Commande robuste et extensions Pierre Apkarian Travail Sous-Marin 15-16 Janv. 2014 Sommaire Introduction Techniques fondamentales de commande robuste Extensions Travail Sous-Marin 15-16 Janv. 2014 - -

Plus en détail

Zebulon. des matériaux. Emile Renner. Thématique: PMMCM Encadrants: Patrick DELOBELLE, Fabrice RICHARD, Yves GAILLARD, Fabien Amiot

Zebulon. des matériaux. Emile Renner. Thématique: PMMCM Encadrants: Patrick DELOBELLE, Fabrice RICHARD, Yves GAILLARD, Fabien Amiot Zebulon Code EF spécialisé dans le comportement des matériaux Emile Renner Thématique: PMMCM Encadrants: Patrick DELOBELLE, Fabrice RICHARD, Yves GAILLARD, Fabien Amiot Plan I- Introduction II- Structure

Plus en détail

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date

Guide de SolidWorks Flow Simulation pour l enseignant. Présentateur Date Guide de SolidWorks Flow Simulation pour l enseignant Présentateur Date 1 Qu'est-ce que SolidWorks Flow Simulation? SolidWorks Flow Simulation est un logiciel d'analyse des écoulements de fluide et du

Plus en détail

Identification de la conductivité anisotrope de laines minérales

Identification de la conductivité anisotrope de laines minérales Identification de la conductivité anisotrope de laines minérales JEAN-FRANÇOIS WITZ a,stéphane ROUX a, FRANÇOIS HILD a, JEAN-BAPTISTE RIEUNIER b a. Laboratoire de Mécanique et Technologie de Cachan b.

Plus en détail

Introduction aux Support Vector Machines (SVM)

Introduction aux Support Vector Machines (SVM) Introduction aux Support Vector Machines (SVM) Olivier Bousquet Centre de Mathématiques Appliquées Ecole Polytechnique, Palaiseau Orsay, 15 Novembre 2001 But de l exposé 2 Présenter les SVM Encourager

Plus en détail

optimisation robuste de réseaux de télécommunications

optimisation robuste de réseaux de télécommunications optimisation robuste de réseaux de télécommunications Orange Labs Laboratoire Heudiasyc, UMR CNRS 6599, Université de Technologie de Compiègne Olivier Klopfenstein thèse effectuée sous la direction de

Plus en détail

Analyse de données longitudinales continues avec applications

Analyse de données longitudinales continues avec applications Université de Liège Département de Mathématique 29 Octobre 2002 Analyse de données longitudinales continues avec applications David MAGIS 1 Programme 1. Introduction 2. Exemples 3. Méthodes simples 4.

Plus en détail

Modèle mixte non linéaire. Application à la modélisation de processus dynamiques et prise en compte d effets génotypiques et environnementaux

Modèle mixte non linéaire. Application à la modélisation de processus dynamiques et prise en compte d effets génotypiques et environnementaux Modèle mixte non linéaire. Application à la modélisation de processus dynamiques et prise en compte d effets génotypiques et environnementaux Hervé Monod Unité MIA-Jouy en Josas INRA - Dépt Mathématiques

Plus en détail

Fig.1. Orientation dans une plaque renforcée par 30% de fibres de verre. Orifice d'injection

Fig.1. Orientation dans une plaque renforcée par 30% de fibres de verre. Orifice d'injection ème Congrès Français de Mécanique Besançon, 9 août au septembre Comportement en flexion de matériaux composites à fibres courtes A. Djebbar a, M. Salviab, S.Larbi a. b. a Laboratoire de Mécanique, Structure,

Plus en détail

Principales caractéristiques de Mixmod

Principales caractéristiques de Mixmod Modèle de mélanges Principales caractéristiques de Mixmod Gérard Govaert et Gilles Celeux 24 octobre 2006 1 Plan Le modèledemélange Utilisations du modèle de mélange Les algorithmes de Mixmod Modèle de

Plus en détail

Eco-conception de maisons à énergie positive

Eco-conception de maisons à énergie positive MEXICO Rencontres 2015, Clermont-Ferrand 06 octobre 2015 Eco-conception de maisons à énergie positive Mots-clés : Optimisation multicritère, algorithme génétique, fronts de Pareto Thomas RECHT : thomas.recht@mines-paristech.fr

Plus en détail

Commande auto-adaptative par auto-séquencement, avec application à un avion instable

Commande auto-adaptative par auto-séquencement, avec application à un avion instable Commande auto-adaptative par auto-séquencement, avec application à un avion instable Patrice ANTOINETTE 1 2 Gilles FERRERES 1 1 ONERA-DCSD, Toulouse 2 ISAE, Toulouse GT MOSAR, 4 juin 2009 Plan Introduction

Plus en détail

TABLE DES MATIERES. C Exercices complémentaires 42

TABLE DES MATIERES. C Exercices complémentaires 42 TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence

Plus en détail

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.

Statistique. Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7. Statistique Jean-Yves Tourneret (1) (1) Université of Toulouse, ENSEEIHT-IRIT-TéSA Thème 1 : Analyse et Synthèse de l Information jyt@n7.fr Cours Statistique, 2010 p. 1/52 Plan du cours Chapitre 1 : Estimation

Plus en détail

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes

Modèle de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes de troncature gauche : Comparaison par simulation sur données indépendantes et dépendantes Zohra Guessoum 1 & Farida Hamrani 2 1 Lab. MSTD, Faculté de mathématique, USTHB, BP n 32, El Alia, Alger, Algérie,zguessoum@usthb.dz

Plus en détail

Approche bayésienne des modèles à équations structurelles

Approche bayésienne des modèles à équations structurelles Manuscrit auteur, publié dans "42èmes Journées de Statistique (2010)" Approche bayésienne des modèles à équations structurelles Séverine Demeyer 1,2 & Nicolas Fischer 1 & Gilbert Saporta 2 1 LNE, Laboratoire

Plus en détail

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA

Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université

Plus en détail

Conception et simulation des systèmes de production. Chapitre 7 Planification et gestion de projet

Conception et simulation des systèmes de production. Chapitre 7 Planification et gestion de projet Conception et simulation des systèmes de production Chapitre 7 Planification et gestion de projet Planification et gestion de projet Les 6 phases d un projet industriel : 1. L enthousiasme délirant sous-estimation

Plus en détail

ENSE3 - API/CSPI et Master Automatique - 2008/2009

ENSE3 - API/CSPI et Master Automatique - 2008/2009 ENSE3 - API/CSPI et Master Automatique - 28/29 DS Commande robuste - - 19 janvier 29 Nom Prénom Signature ATTENTION: Mettre votre nom et répondre directement sur les feuilles de l énoncé. Justifiez vos

Plus en détail

Cryptage physique de données optiques de seconde génération

Cryptage physique de données optiques de seconde génération Cryptage physique de données optiques de seconde génération M. Nourine, Y. K. Chembo, M. Peil & L. Larger Groupe Optoélectronique, Département d Optique P.M. Duffieux, Institut FEMTO-ST, UMR CNRS 6174

Plus en détail

INTERPRÉTATION DES RÉSULTATS DE SVM

INTERPRÉTATION DES RÉSULTATS DE SVM INTERPRÉTATION DES RÉSULTATS DE SVM Thanh-Nghi Do & François Poulet {dothanh poulet}@esiea-ouest.fr ESIEA Recherche 38, rue des Docteurs Calmette et Guérin Parc Universitaire de Laval-Changé 53000-Laval

Plus en détail

Des outils pour l optimisation et la robustesse. Marc Sevaux

Des outils pour l optimisation et la robustesse. Marc Sevaux Des outils pour l optimisation et la sse Marc Sevaux Université de Valenciennes et du Hainaut-Cambrésis Laboratoire d Automatique, de Mécanique et d Informatique Industrielles et Humaines (UMR CNRS 8530)

Plus en détail

TP Laboratoire Matériaux

TP Laboratoire Matériaux TP Laboratoire Matériaux Courard Luc Département d Architecture, Géologie, Environnement et Constructions Secteur GEMME, Université de Liège B5 Local -1/534 Tél. 04/366.93.50 Courriél: Luc.Courard@ulg.ac.be

Plus en détail

Projet ARTEMIS - processus multiniveau Thierry Lefebvre, Peter Schmollgruber / DCPS

Projet ARTEMIS - processus multiniveau Thierry Lefebvre, Peter Schmollgruber / DCPS Projet ARTEMIS - processus multiniveau Thierry Lefebvre, Peter Schmollgruber / DCPS JSO MDO Onera 25 et 26 janvier 2012 Plan de la présentation La conception avant projet avion à l'onera La plateforme

Plus en détail

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES

Table des matières. Avant propos. Chapitre I NOTIONS SUR LES SYSTEMES Table des matières Avant propos Chapitre I NOTIONS SUR LES SYSTEMES 1. Systèmes linéaires 1 2. Systèmes stationnaires 1 3. Systèmes continus 2 4. Systèmes linéaires invariants dans le temps (LIT) 2 4.1

Plus en détail

Figure 1 : Différentes étapes de réalisation d une pièce par le procédé RTM

Figure 1 : Différentes étapes de réalisation d une pièce par le procédé RTM ECO-MOULAGE DES PALES D EOLIENNES ET PANNEAUX SOLAIRES EN MATERIAUX COMPOSITES VIA LE PROCEDE RTM Dr Brahim ATTAF Expert en Structures et Matériaux Composites Région PACA - France Contact: b.attaf@wanadoo.fr

Plus en détail

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci

Rev. Ivoir. Sci. Technol., 19 (2012) 59 71. ISSN 1813-3290, http://www.revist.ci 59 ISSN 1813-3290, http://www.revist.ci RÉGRESSION LOGISTIQUE DANS LES ESSAIS CLINIQUES PAR MCMC Ahlam LABDAOUI * et Hayet MERABET Département de Mathématiques, Université Mentouri-Constantine, Route d

Plus en détail

«Clustering pour le bureau d études : Application en CFD»

«Clustering pour le bureau d études : Application en CFD» «Clustering pour le bureau d études : Application en CFD» Par Nicolas COSTE, Société OPTIFLOW - 11/12/2002 OPTIFLOW: Bureau d études et de recherches en Mécanique des Fluides Créée en 1998 par un ensemble

Plus en détail

Contributions de la statistique à la maîtrise de la qualité dans l industrie de la défense: de la conformité aux gains d avantages concurrentiels

Contributions de la statistique à la maîtrise de la qualité dans l industrie de la défense: de la conformité aux gains d avantages concurrentiels Photo : Sgt Norm McLean, Combat Camera - DND ref.: IS2013-0004-6464 Contributions de la statistique à la maîtrise de la qualité dans l industrie de la défense: de la conformité aux gains d avantages concurrentiels

Plus en détail

Post-processing of multimodel hydrological forecasts for the Baskatong catchment

Post-processing of multimodel hydrological forecasts for the Baskatong catchment + Post-processing of multimodel hydrological forecasts for the Baskatong catchment Fabian Tito Arandia Martinez Marie-Amélie Boucher Jocelyn Gaudet Maria-Helena Ramos + Context n Master degree subject:

Plus en détail

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test

Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test 11 juillet 2003 Étude des Corrélations entre Paramètres Statiques et Dynamiques des Convertisseurs Analogique-Numérique en vue d optimiser leur Flot de Test Mariane Comte Plan 2 Introduction et objectif

Plus en détail

Mclust : Déceler des groupes dans un jeu de données grâce aux mélanges gaussiens.

Mclust : Déceler des groupes dans un jeu de données grâce aux mélanges gaussiens. Adrien Perrard. UMR 7205, MNHN Mclust : Déceler des groupes dans un jeu de données grâce aux mélanges gaussiens. Partition et mélanges gaussiens Partition et mélanges gaussiens Partition et mélanges gaussiens

Plus en détail

Efficacité énergétique des réseaux de cœur et d accès

Efficacité énergétique des réseaux de cœur et d accès Efficacité énergétique des réseaux de cœur et d accès David Coudert Joanna Mouliérac, Frédéric Giroire MASCOTTE I3S (CNRS/Université Nice Sophia-Antipolis) INRIA Sophia-Antipolis Méditerranée 1 Contexte

Plus en détail

Sélection de modèles avec l AIC et critères d information dérivés

Sélection de modèles avec l AIC et critères d information dérivés Sélection de modèles avec l AIC et critères d information dérivés Renaud LANCELOT et Matthieu LESNOFF Version 3, Novembre 2005 Ceci n est pas une revue exhaustive mais une courte introduction sur l'utilisation

Plus en détail

Arrêt optimal et optimisation de la maintenance

Arrêt optimal et optimisation de la maintenance Benoîte de Saporta CQFD - Contrôle de Qualité et Fiabilité Dynamique 22 septembre 2011 Benoîte de Saporta 1/34 Plan 1 Un problème de maintenance 2 Modélisation mathématique 3 Stratégie de résolution 4

Plus en détail

«Pièges», «erreurs» et pathologie des calculs numériques

«Pièges», «erreurs» et pathologie des calculs numériques Session de formation continue ENPC «Pièges», «erreurs» et pathologie des calculs numériques 6-8 octobre 2010 Philippe Mestat (LCPC) «Pièges» pour débutant?. Conditions limites en déplacements : il faut

Plus en détail

Logiciels pour l analyse d incertitude et l analyse de sensibilité. David Makowski, Hervé Monod, Hervé Richard

Logiciels pour l analyse d incertitude et l analyse de sensibilité. David Makowski, Hervé Monod, Hervé Richard Logiciels pour l analyse d incertitude et l analyse de sensibilité David Makowski, Hervé Monod, Hervé Richard PLAN Exemple sous tableur : Crystal Ball Panorama des logiciels disponibles Modules de tableurs

Plus en détail

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1

Modélisation stochastique des données à partir d essais sur matériaux. Pr. Denys Breysse Université Bordeaux 1 Modélisation stochastique des données à partir d essais sur matériaux Pr. Denys Breysse Université Bordeaux 1 Hasard cause fictive de ce qui arrive sans raison apparente ou explicable (Petit Robert). Ce

Plus en détail

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés

Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Une Approche basée sur la Simulation pour l Optimisation des Processus Décisionnels Semi-Markoviens Généralisés Emmanuel Rachelson 1 Patrick Fabiani 1 Frédérick Garcia 2 Gauthier Quesnel 2 1 ONERA-DCSD

Plus en détail

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier

Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Test de comparaison de deux modèles de régression non paramétriques basé sur les coefficients de Fourier Zaher Mohdeb Université Mentouri Département de Mathématiques, Constantine, Algérie E-mail: zaher.mohdeb@umc.edu.dz

Plus en détail

Instabilités bi- et tridimensionnelles dans une couche limite décollée compressible subsonique

Instabilités bi- et tridimensionnelles dans une couche limite décollée compressible subsonique Instabilités bi- et tridimensionnelles dans une couche limite décollée compressible subsonique M. Merle a,b, U. Ehrenstein b, J-C. Robinet a a. Laboratoire DynFluid - Arts et Métiers ParisTech, 151 Boulevard

Plus en détail