FONCTIONS : Résolution graphique d une équation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "FONCTIONS : Résolution graphique d une équation"

Transcription

1 FONCTIONS : Résolution graphique d une équation Une entreprise a fabriqué unités d un article au cours de l année L entreprise estime qu elle est en mesure d augmenter sa production pour ce produit de 10 % par an sur la période 2008 à 2012, en faisant des investissements raisonnables. On admet que l évolution de la production, exprimée en unités, est donnée en fonction du rang de l année par la fonction : f(x) = (1,1) x. x = 0 correspondant au rang de l année 2007 x =1 correspondant au rang de l année 2008,, etc. Le service vente propose d estimer la demande de cet article, exprimée en unités; à l aide d une fonction affine, en fonction du rang de l année sur la même période : g(x) = 3000 x L entreprise cherche à connaître l année où elle sera en mesure de répondre complètement à la demande pour cet article, en supposant qu il n y a pas de concurrence. 1) Compléter le tableau de valeurs suivant sur l évolution de la production (arrondir à l unité) : x f(x) ) Tracer la courbe représentative C f de la fonction f dans un repère orthonormée. 3) Compléter le tableau suivant de valeurs pour l évolution de la demande et tracer sur la même feuille que C f la droite représentative de la fonction g. x 0 5 g(x) ) Déterminer graphiquement les solutions de l équation : f(x) = g(x) sur l intervalle [ 0 ; 5 ]. 5) Formuler par une phrase la conclusion de cette étude. 1 11

2 1) Le tableau de valeurs de la fonction f. Pour compléter le tableau pour la fonction f, on va utiliser l application TABLE. Sélectionner dans le menu principal, à l aide du bouton directionnel, l application TABLE et faire. Dans le cas où des fonctions sont déjà présentes, il faut les effacer une à une en utilisant la touche ( DEL) et puis (YES), et se déplacer à l aide du bouton directionnel. Lorsque l écran ne comporte pas de fonctions, utiliser les touches et pour la variable X, pour saisir la fonction : Y1 = 35000( 1,1 )^X et valider avec. On va, maintenant, calculer les valeurs de la fonction f pour des valeurs entières x comprises entre 0 et

3 Sélectionner la touche ( RANG) et entrer les données : Strt : 0, End : 5, ptch : 1. Puis, appuyer sur la touche. Sélectionner alors la touche (TABL) Il apparaît ainsi un tableau à 2 colonnes. La colonne X correspond aux valeurs de l abscisse x. La colonne Y1 correspond aux valeurs de f(x) pour chaque valeur de x. A l aide du bouton directionnel dérouler toutes les valeurs vers le bas jusqu à atteindre la valeur 5 pour compléter le tableau de valeurs. Tableau de valeurs x f(x) ) Tracé de la courbe Pour tracer C f, on peut s aider de la calculatrice pour avoir l allure de courbe. Appuyer sur et à l aide du bouton directionnel sélectionner l application GRAPH et faire. 3 13

4 Il apparaît alors sur l écran la fonction Y1 = 35000(1.1)^X. Pour réaliser le tracé avec la calculatrice, il faut d abord configurer les graduations sur les deux axes X et Y. Ainsi, sélectionner puis ( V-Window ) et saisir les valeurs Xmin : 0 ; max : 5 ; scl : 1. A l aide du bouton se déplacer vers le bas et saisir les valeurs Ymin : ; max : ; scl : Ensuite, faire et (DRAW) pour tracer la courbe. Allure de la courbe On peut alors s aider de l allure de la courbe pour faire le tracé sur une feuille de papier millimétré. 4 14

5 3) Tableau de valeurs et tracé de la droite. Pour compléter le deuxième tableau, il suffit de faire un calcul en sélectionnant puis à l aide du bouton directionnel se placer sur l application RUN et faire. Il apparaît alors un écran vierge dans lequel on saisit le calcul : 3000x puis pour obtenir Tableau de valeurs x 0 5 g(x) Pour tracer la droite on sélectionne à nouveau puis l application GRAPH. On écrit alors sur la deuxième ligne : Y2 = 3000X puis pour valider et on fait alors ( DRAW ) pour faire apparaître les des deux courbes. On peut ainsi s aider de l allure de la droite pour la tracer sur la feuille de papier millimétré. 5 15

6 4) Résolution graphique f(x) = g(x). Pour résoudre graphiquement f(x) = g(x) on utilise les deux courbes obtenues en 3) et on sélectionne puis ( Trace ). Apparaît alors une croix que l on peut déplacer sur chaque courbe à l aide du bouton en cliquant sur la flèche à droite pour augmenter les valeurs de x, ou la flèche à gauche pour les diminuer. On peut changer de courbe en cliquant sur la flèche du haut ou du bas. L équation de la courbe apparaît en haut et les valeurs obtenues en bas de l écran. On obtient pour x = 2,9487 une valeur de Y1 = et Y2 =46346 Pour la valeur x=2,94 on obtient, arrondi à l unité prés : Y1 = Y2 = On peut alors en déduire une valeur approximative x = 2,94 comme unique solution de l équation f(x)=g(x) sur l intervalle [ 0 ; 5 ]. 5) Conclusion. Pour l année 2010 (x = 3) l entreprise sera en mesure de produire le nombre d articles nécessaire pour répondre entièrement à la demande commerciale. 6 16

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200

Suite arithmétique. Rang n 1 2 3 4 5 6 7 8 9 10 11 12 Suite u n u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 u 11 u 12 Abonnements 2000 2600 3200 Suite arithmétique ENONCE : Une société de téléphonie mobile propose un nouveau forfait à partir du mois de janvier 2009. En janvier 2009, elle a enregistré 2000 abonnements souscrits pour ce forfait.

Plus en détail

Cas des intervalles disjoints. Si I = [ 0 ; 2 ] et J = ] 4 ; 5 [, alors I J = et I J = [ 0 ; 2 ] ] 4 ; 5 [ ne peut pas s écrire plus simplement.

Cas des intervalles disjoints. Si I = [ 0 ; 2 ] et J = ] 4 ; 5 [, alors I J = et I J = [ 0 ; 2 ] ] 4 ; 5 [ ne peut pas s écrire plus simplement. Seconde Généralités sur les fonctions I. Intervalles a) Différents types d intervalles. a et b sont deux réels tels que a < b. Le tableau ci-dessous résume les différents types d intervalles. L intervalle

Plus en détail

Statistiques descriptives : Diagrammes

Statistiques descriptives : Diagrammes Statistiques descriptives : Diagrammes ENONCE : On s intéresse à une classe de 28 élèves de 1 ère BAC Pro. En début d année le professeur a distribué une fiche de renseignements que chaque élève a complétée

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS LES FONCTIONS : GENERALITES ET VARIATIONS I. Vocabulaire et notations 1. Exemple d introduction : Avec une ficelle de longueur 10 cm, on fabrique un rectangle. On désigne par x la longueur d un côté de

Plus en détail

Suite géométrique et résolution graphique d une inéquation

Suite géométrique et résolution graphique d une inéquation - - 1 - - - - 1 - -24/12/2010J - - 1 - - Suite géométrique et résolution graphique d une inéquation ENONCE : Une entreprise achète un véhicule neuf au prix de V 0 = 20 000. Elle considère que le véhicule

Plus en détail

Chapitre 1. Fonctions numériques - Exercices. 1 En fonction de... 2 Vocabulaire

Chapitre 1. Fonctions numériques - Exercices. 1 En fonction de... 2 Vocabulaire Chapitre 1 Fonctions numériques - Exercices 1 En fonction de... Exercice 1. On considère un triangle équilatéral ABC et H le pied de la hauteur issue de A. 1. Calculer AH lorsque AB = 3. Même question

Plus en détail

Fonction valeur absolue

Fonction valeur absolue Fonction valeur absolue Valeur absolue et distance Introduction Sur un axe gradué, on a placé quatre points A, B, C et D. Les abscisses de ces points sont x A = 3, x B = 6, x C = 2 et x D = 8,5. Comment

Plus en détail

Objectif : Résoudre graphiquement de deux manières différentes, dans l'ensemble des réels, l'équation : 2x² - 3x - 5 = 0

Objectif : Résoudre graphiquement de deux manières différentes, dans l'ensemble des réels, l'équation : 2x² - 3x - 5 = 0 Résolution graphique d'une équation du second degré avec graphmatica Activité 1 l'équation : 2x² - 3x - 5 = 0 : 1. Démarrer le logiciel graphmatica 2 ( téléchargement sur http://www.graphmatica.com/francais/install.html)

Plus en détail

2de Variations de fonctions Cours

2de Variations de fonctions Cours 2de Variations de fonctions Cours I. Fonction croissante, fonction décroissante Transmath : Activité 1 page 23 1. Définitions ( la courbe «monte» de gauche à droite, plus La courbe «descend» de gauche

Plus en détail

Les fonctions affines

Les fonctions affines TABLE DES MATIÈRES 1 Les fonctions affines Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Définition et représentation d une fonction 2 1.1 Définition..................................

Plus en détail

Résolution graphique d équations et d inéquations

Résolution graphique d équations et d inéquations Résolution graphique d équations et d inéquations I) Equations. Soit une fonction définie sur un domaine inclus dans et à valeurs dans. Soit, un nombre réel. On suppose qu on doit résoudre une équation

Plus en détail

Chapitre 3 Variations d une fonction. Table des matières. Chapitre 3 Variations d une fonction TABLE DES MATIÈRES page -1

Chapitre 3 Variations d une fonction. Table des matières. Chapitre 3 Variations d une fonction TABLE DES MATIÈRES page -1 Chapitre 3 Variations d une fonction TABLE DES MATIÈRES page -1 Chapitre 3 Variations d une fonction Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

TP n 2 Vers de nouvelles fonctions

TP n 2 Vers de nouvelles fonctions IREM de Grenoble : Michèle GANDIT - TP en terminale S TP n 2 Vers de nouvelles fonctions L objet de ce TP est d introduire la fonction exponentielle. Les notions de dérivée d une fonction, de meilleure

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 EPREUVE : MATHÉMATIQUES SÉRIE : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL (ST2S)

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 EPREUVE : MATHÉMATIQUES SÉRIE : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL (ST2S) BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 EPREUVE : SÉRIE : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL (ST2S) Durée de l épreuve : 2 heures Coefficient : 3 L usage d une calculatrice est autorisé.

Plus en détail

Correction-Devoir maison n 8

Correction-Devoir maison n 8 Classe de TS2 pour le 4 novembre 20 Exercice : A - Étude d une fonction On considère la fonction f définie sur R par : Correction-Devoir maison n 8 f(x) = (x+)e x. On note (C) sa représentation graphique

Plus en détail

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité

Chapitre 3 Dérivée I EXERCICES page I-2 3 Dans chaque repère ci-dessous, tracer la droite qui passe par le point de coefficient directeur m. Les unité Chapitre 3 Dérivée I EXERCICES page I-1 I Exercices Comment déterminer le coefficient directeur d une droite ()? Exemple : (2, ; 2) ; (4 ; 3) (l unité du repère est un carreau) Graphiquement : on compte

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Devoir de mathématiques n 2

Devoir de mathématiques n 2 Page Prénom :. Jeudi 3 décembre 05 Devoir de mathématiques n Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

CH I Utilisation de fonctions de référence (Rappels de 2 nd )

CH I Utilisation de fonctions de référence (Rappels de 2 nd ) CH I Utilisation de fonctions de référence (Rappels de 2 nd ) I) Rappels de quelques fonctions de référence : 1) La fonction x 1 : Soit f la fonction définie sur [-5 ; 5] par f(x) = 1. Compléter le tableau

Plus en détail

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou!

1) a) Les nombres réels : Il existe des nombres qui n appartiennent à aucun des ensembles IN,!, ID ou! 2 nd Fonctions 1 Objectifs : IR, les intervalles. Traduire le lien entre deux quantités par une formule. Pour une fonction définie par une courbe, un tableau de données ou une formule : _ identifier la

Plus en détail

Études de signes et inéquations, cours de seconde

Études de signes et inéquations, cours de seconde Études de signes et inéquations, cours de seconde F.Gaudon 16 février 2009 Table des matières 1 Étude du signe des fonctions affines 2 2 Études de signes de produits et de quotients 2 2.1 Exemple d étude

Plus en détail

Fonction dérivée.

Fonction dérivée. Mathématiques :! Analyse et algèbre Activité rappel : étude de fonction 2 Activité 1 : nombre dérivé et variations d une fonction 4 Activité 2 : bassin de rétention 6 Cours 8 Eercices 10 http://jeanneau-maths-sciences.weebly.com

Plus en détail

Devoir commun de mathématiques Secondes Jeudi 28 janvier Durée : 2 heures - calculatrice autorisée -

Devoir commun de mathématiques Secondes Jeudi 28 janvier Durée : 2 heures - calculatrice autorisée - Devoir commun de mathématiques Secondes Jeudi 28 janvier 2010 - Durée : 2 heures - calculatrice autorisée - Pensez à remettre le sujet avec votre copie. Le soin et la qualité de la rédaction seront pris

Plus en détail

I Exercices I I I I I I I I I I I I I-4

I Exercices I I I I I I I I I I I I I-4 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Chapitre 3 Exponentielles. Table des matières. Chapitre 3 Exponentielles TABLE DES MATIÈRES page -1

Chapitre 3 Exponentielles. Table des matières. Chapitre 3 Exponentielles TABLE DES MATIÈRES page -1 Chapitre 3 Exponentielles TABLE DES MATIÈRES page - Chapitre 3 Exponentielles Table des matières I Exercices I-................................................ I- 2................................................

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

CH V Fonctions linéaires Fonctions affines Équation d une droite

CH V Fonctions linéaires Fonctions affines Équation d une droite CH V Fonctions linéaires Fonctions affines Équation d une droite I) Les repères du plan : ) Les repères du plan : a) Repère quelconque : Un repère est constitué de deux axes ayant une même origine. y J

Plus en détail

1) Sur route humide : les essais conduisent au graphique suivant.

1) Sur route humide : les essais conduisent au graphique suivant. EXERCICES SUR LES FONCTIONS USUELLES Exercice 1 Lors d un constat d accident, les gendarmes mesurent la longueur des traces de freinage afin d évaluer la vitesse des véhicules en cause. La distance de

Plus en détail

Chapitre 10 Suites numériques. Table des matières. Chapitre 10 Suites numériques TABLE DES MATIÈRES page -1

Chapitre 10 Suites numériques. Table des matières. Chapitre 10 Suites numériques TABLE DES MATIÈRES page -1 Chapitre 10 Suites numériques TABLE DES MATIÈRES page -1 Chapitre 10 Suites numériques Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Seconde 2 DTS1 fonctions - statistiques S1

Seconde 2 DTS1 fonctions - statistiques S1 Seconde DTS1 fonctions - statistiques 014-015 S1 Exercice 1 : (5 points) On considère la fonction f définie par f(x) = 1) Calculer les images de : a) -1 b) 0 c) 8 x² -. ) Déterminer le(s) antécédent(s)

Plus en détail

Seconde Fiche d'exercices 1 Généralités sur les fonctions

Seconde Fiche d'exercices 1 Généralités sur les fonctions Seconde Fiche d'exercices 1 Généralités sur les fonctions Exercice 1 Traduire symboliquement par une égalité les phrases suivantes : Exemple : (-5 est l'image de 4 par la fonction g ) équivaut à ( g(4)

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Droites des réels Intervalles de R 2 1.1 Définitions................................................. 2

Plus en détail

Spécialité : Communication et Gestion des Ressources Humaines

Spécialité : Communication et Gestion des Ressources Humaines BACCALAURÉAT TECHNOLOGIQUE Session 2013 MATHÉMATIQUES Série STG Spécialité : Communication et Gestion des Ressources Humaines Durée de l épreuve : 2 heures Coefficient : 2 Ce sujet comporte 5 pages numérotées

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses Résolution graphique d inéquations Méthode \ Explications : Pour résoudre l inéquation (ou ) On regarde les portions de la courbe qui sont en-dessous de la droite d équation. L ensemble des solutions est

Plus en détail

INTRODUCTION À LA STATISTIQUE À DEUX VARIABLES AVEC GEOGEBRA

INTRODUCTION À LA STATISTIQUE À DEUX VARIABLES AVEC GEOGEBRA INTRODUCTION À LA STATISTIQUE À DEUX VARIABLES AVEC GEOGEBRA La réalisation d une modélisation simple, construction d un ajustement affine avec un (ou des) changement(s) de variable(s), doit être traitée

Plus en détail

La fiche élève. La droite de régression linéaire, ou droite d ajustement linéaire

La fiche élève. La droite de régression linéaire, ou droite d ajustement linéaire 612 Dans nos classes APMEP La fiche élève La droite de régression linéaire, ou droite d ajustement linéaire Régression : «Réduction de données complexes, prélevées par lots sur un phénomène physique ou

Plus en détail

Résoudre une équation sur TI83+/84+

Résoudre une équation sur TI83+/84+ Résoudre une équation sur TI83+/84+ 1. Résoudre une équation à l aide de solve( Ce paragraphe présente comment résoudre une équation à l aide de la fonction solve( A. Dans l écran de calcul Chercher «solve(»

Plus en détail

Bac SEN SA ET ED Page 1 / 9. Rappel : Equation de la tangente au point d abscisse x o : y = f (x o ).(x x 0 ) + f(x 0 )

Bac SEN SA ET ED Page 1 / 9. Rappel : Equation de la tangente au point d abscisse x o : y = f (x o ).(x x 0 ) + f(x 0 ) Exercice : Etude d une antenne parabolique ( 9 points ) Une antenne parabolique permet de capter des signaux grâce à un dispositif appelé tête, placé en un point appelé foer de la parabole. Un arc de parabole

Plus en détail

document n 1: courbe d'une fonction

document n 1: courbe d'une fonction . DESSINS SUR CALCULATRICE GRAPHIQUE Casio: menu Graph exe Texas: Y= document n 1: courbe d'une fonction (La touche «replay» désignent les 4 flèches à droite et au milieu de la calculatrice) 1) Effacer

Plus en détail

Première ES-L Composition de mathématiques n

Première ES-L Composition de mathématiques n NOM : Prénom : Exercice 1 : évolution du prix du pétrole en 2008 (4 points) Le tableau ci-dessous donne les cours du baril de pétrole brut (en dollars) sur plusieurs mois de l année 2008. Mois Mai Juin

Plus en détail

LA CALCULATRICE POUR CONJECTURER ET VÉRIFIER LES RÉSULTATS D UNE ÉTUDE DE FONCTION

LA CALCULATRICE POUR CONJECTURER ET VÉRIFIER LES RÉSULTATS D UNE ÉTUDE DE FONCTION LA CALCULATRICE POUR CONJECTURER ET VÉRIFIER LES RÉSULTATS D UNE ÉTUDE DE FONCTION Dans cet article, nous proposons d'exploiter les capacités des calculatrices graphiques (TI 82.fr, 83.fr ou 84+) dans

Plus en détail

Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010.

Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010. NOM : Prénom : Exercice 1 : calcul du prix de la rentrée (4,5 points) Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010.

Plus en détail

Chronique GéoGebra. GRMS ENVOL no 149 octobre-novembre-décembre Pierre Couillard, animateur RECIT MST

Chronique GéoGebra. GRMS ENVOL no 149 octobre-novembre-décembre Pierre Couillard, animateur RECIT MST Chronique GéoGebra Pierre Couillard, animateur RECIT MST pierre@recitmst.qc.ca Bienvenue dans cette chronique traitant de Géogebra. Nous allons, lors des prochaines pages, utiliser quelques nouvelles fonctionnalités

Plus en détail

Fonctions numériques : Intervalles, Images, Antécédents, Courbes représentatives

Fonctions numériques : Intervalles, Images, Antécédents, Courbes représentatives Fonctions numériques : Intervalles, Images, Antécédents, Courbes représentatives A Nombres et Ordres L ensemble des réels IR est un ensemble infini de nombres dits «ordonnés», dans les équivalences suivantes,

Plus en détail

Études de signes, équations et inéquations, cours de seconde

Études de signes, équations et inéquations, cours de seconde Études de signes, équations et inéquations, cours de seconde F.Gaudon 6 janvier 2008 Table des matières 1 Résolution d équations produits ou quotients 2 1.1 Résolution d équations produits..................

Plus en détail

Effectifs. (Aires proportionnelles aux effectifs) Duree en min.

Effectifs. (Aires proportionnelles aux effectifs) Duree en min. Durée en minutes x i [0; 20[ [20; 0[ [0; 40[ [40; 60[ [60; 90[ Nombre n i 4 10 14 6 6 TAB. 1 Traitement des dossiers. Effectifs. (Aires proportionnelles aux effectifs). 0 10 20 0 40 50 60 70 80 90 Duree

Plus en détail

MATHEMATIQUES TRAVAIL PREPARATOIRE

MATHEMATIQUES TRAVAIL PREPARATOIRE FONCTIONS NUMERIQUES F 01 1. ETUDE DE LA CHUTE LIBRE D UN OBJET. TRAVAIL PREPARATOIRE Un objet est lâché sans vitesse initiale, d une altitude de 30 m par rapport au sol. L altitude h, en mètres, à laquelle

Plus en détail

Tutoriel Excel Les graphiques

Tutoriel Excel Les graphiques Tutoriel Excel Les graphiques Maintenant que nous connaissons un peu mieux les commandes de bases d Excel, nous explorerons la construction de graphiques. Pour ce faire nous illustrerons la marche à suivre

Plus en détail

EXPONENTIELLES. I Fonction exponentielle de base q. Exercice 01. Exercice 02

EXPONENTIELLES. I Fonction exponentielle de base q. Exercice 01. Exercice 02 EXPONENTIELLES I Fonction exponentielle de base q Exercice 0 Les lois de Moore sont des conjectures énoncées par Gordon Moore (un des trois fondateurs d Intel). En 965, Moore postulait que la complexité

Plus en détail

Document élève DERIVATION

Document élève DERIVATION Document élève DERIVATION Objectifs : -introduire la notion de nombre dérivé et de fonction dérivée. -tracer une tangente à partir du nombre dérivé. -calculer des fonctions dérivées. Prérequis : -construction

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions I) L'ensemble et les intervalles : Généralités sur les fonctions Tous les nombres étudiés jusqu'à présent peuvent être rangés sur une droite graduée. 7 3, 6, 0 Tous les nombres entiers, décimau, rationnels,

Plus en détail

BREVET BLANC 3 ème MAI 2009

BREVET BLANC 3 ème MAI 2009 BREVET BLANC ème MAI 2009 N d inscription : Classe : ACTIVITES NUMERIQUES : / 12 ACTIVITES GEOMETRIQUES : / 12 PROBLEME : / 12 Présentation : / 4 Total : / 40 INSTRUCTIONS L emploi des calculatrices est

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Chapitre 2 Continuité. Table des matières. Chapitre 2 Continuité TABLE DES MATIÈRES page -1

Chapitre 2 Continuité. Table des matières. Chapitre 2 Continuité TABLE DES MATIÈRES page -1 Chapitre Continuité TABLE DES MATIÈRES page -1 Chapitre Continuité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

NOTICE D UTILISATION DE GÉNÉRIS 5+

NOTICE D UTILISATION DE GÉNÉRIS 5+ NOTICE D UTILISATION DE GÉNÉRIS 5+ 1. Acquisition...2 2. Acquisitions multiples...4 3. Traitement d une vidéo...5 4. Graphique...6 4.1. Changement de grandeur en abscisse...6 4.2. Changement des courbes

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012

BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 BACCALAURÉAT TECHNOLOGIQUE SESSION 2012 Epreuve : MATHÉMATIQUES Série : Sciences et Technologies de la Santé et du Social (ST2S) Durée de l épreuve : 2 heures Coefficient : 3 L usage d une calculatrice

Plus en détail

III Algorithmique 1... III III III III III III III-3

III Algorithmique 1... III III III III III III III-3 Chapitre 1 Fonctions TABLE DES MATIÈRES page -1 Chapitre 1 Fonctions Table des matières I Exercices I-1 1 Une première fonction, graphique, vocabulaire...................... I-1 Une fonction définie par

Plus en détail

EXERCICES SUR LES FONCTIONS

EXERCICES SUR LES FONCTIONS EXERCICES SUR LES FONCTIONS 1. Lecture graphique d'images et d'antécédents On considère la fonction f dont la représentation graphique correspond à la ligne brisée ABCDE Compléter f(1) = f(4) = f(-1) =

Plus en détail

Exercices sur les fonctions affines

Exercices sur les fonctions affines Eercices sur les fonctions affines Dans chaque cas, on donne l epression d une fonction affine f : a b où a et b sont deu réels indépendants de. Vocabulaire : epression d une fonction affine. variable

Plus en détail

2) Donner les ensembles de définition des fonctions suivantes : /2

2) Donner les ensembles de définition des fonctions suivantes : /2 NOM : Prénom : Classe : Note : /40 Durée 2 heures Observations : Il sera tenu compte de la clarté et de la présentation de la copie. La calculatrice est autorisée. Exercice 1 : /4 1) Factoriser les expressions

Plus en détail

On étudie la rentabilité de cette opération sur une journée sachant qu au maximum 400 pochettes peuvent être fabriquées chaque jour.

On étudie la rentabilité de cette opération sur une journée sachant qu au maximum 400 pochettes peuvent être fabriquées chaque jour. FONCTION DÉRIVÉE ET ÉTUDE DES VARIATIONS D UNE FONCTION Exercice 1 Après avoir transformé ses magasins, une chaîne s intéresse au lancement d une nouvelle ligne de produits biologiques sur le marché. Pour

Plus en détail

BTS OPTICIEN LUNETIER Mathématiques - BTS Blanc - Décembre 2012

BTS OPTICIEN LUNETIER Mathématiques - BTS Blanc - Décembre 2012 ISO Paris 11 BTS OPTICIEN LUNETIER Mathématiques - BTS Blanc - Décembre 2012 Session 2012 Durée : 2 heures Coefficient : 2 Matériel autorisé : Toutes les calculatrices de poche, y compris les calculatrices

Plus en détail

I- Droites d équations x = c. Dans le repère ci-contre, placer 10. points dont l abscisse (x) est 4. L ensemble des points du plan dont

I- Droites d équations x = c. Dans le repère ci-contre, placer 10. points dont l abscisse (x) est 4. L ensemble des points du plan dont I- Droites d équations x = c Dans le repère cicontre, placer 10 points dont l abscisse (x) est 4. L ensemble des points du plan dont l abscisse est 4 est la droite d équation x = 4. (la tracer et la nommer

Plus en détail

Seconde Fiche d objectifs du module Statistiques

Seconde Fiche d objectifs du module Statistiques Seconde Fiche d objectifs du module 7 2012-2013 Statistiques SAVOIR SAVOIR FAIRE EULER Vocabulaire statistique Population, individu, caractère, effectif, fréquence Représenter graphiquement une série statistique

Plus en détail

y = f(x), y est l'image du nombre x par la fonction f et x est un

y = f(x), y est l'image du nombre x par la fonction f et x est un Seconde Chapitre I : Lectures graphiques et généralités sur les fonctions Année scolaire 202/203 I) Rappels de troisième sur les fonctions : ) Définitions, exemples et notations : a) Fonction : On considère

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

NOM : Seconde AHIJ Devoir n 6- sujet A mercredi 8 février 2012

NOM : Seconde AHIJ Devoir n 6- sujet A mercredi 8 février 2012 NOM : Seconde HIJ Devoir n 6- sujet mercredi 8 février 0 Exercice : sur points y répondre directement sur cette feuille. Donner le coefficient directeur de la droite D : 4 3 D D 3 D. Donner une équation

Plus en détail

x < 6 ou x > 1 ( 2. Le point A 0; 3 )

x < 6 ou x > 1 ( 2. Le point A 0; 3 ) Seconde 8/09/0 Devoir surveillé de mathématiques n o. Eercice n o (7,5 points) On donne ci-dessous la courbe d une fonction f. 7-6 -5 - - - - 0 5 6 7 8 -. Donner le domaine de définition de f. - -. Lire

Plus en détail

TI-83 Premium CE. Fonctions. Représentation graphique de fonctions Tableau de valeurs. Définir une fonction. Tracer la courbe représentative

TI-83 Premium CE. Fonctions. Représentation graphique de fonctions Tableau de valeurs. Définir une fonction. Tracer la courbe représentative Fonctions Représentation graphique de fonctions Tableau de valeurs TI-83 Premium CE Tracer la courbe représentative de la fonction f ( x) x 4x 8 définie sur l intervalle [8;6]. Éditer le tableau de valeurs

Plus en détail

Études de fonctions. 2 Application principale : le sens de variations

Études de fonctions. 2 Application principale : le sens de variations Études de fonctions 1 Dérivées - simples calculs Exercice 1.1 Application directe Dériver, après avoir précisé l ensemble de dérivabilité, les fonctions suivantes : A(x)=x x+ B(x)=x 5x + x 7 C (x)= 5 x

Plus en détail

Chapitre 3 Variations d une fonction. Table des matières. Chapitre 3 Variations d une fonction TABLE DES MATIÈRES page -1

Chapitre 3 Variations d une fonction. Table des matières. Chapitre 3 Variations d une fonction TABLE DES MATIÈRES page -1 Chapitre 3 Variations d une fonction TABLE DES MATIÈRES page -1 Chapitre 3 Variations d une fonction Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Tableau d amortissement et suite géométrique

Tableau d amortissement et suite géométrique Tableau d amortissement et suite géométrique ENONCE : Afin d être plus compétitive, une entreprise décide d emprunter 100 000 pour investir dans de nouvelles machines. Elle souhaite rembourser en 3 ans

Plus en détail

CH V Le second degré :

CH V Le second degré : CH V Le second degré : I) Les fonctions polynômes (Rappels) : 1) Développer, factoriser : Rappels : Pour tout réels a, b et c a( b + c) = ab + ac On dit que l on lorsque l on passe de a( b + c) à ab +

Plus en détail

Fonction dérivée 3 ème

Fonction dérivée 3 ème Fonction dérivée 3 ème Mathématiques Exercice 1 Déterminer dans chaque cas la fonction dérivée de la fonction indiquée tout en précisant le domaine de dérivabilité de. = 3 +2 5 ;= 3 1 2+1 ; +3 1 = +1 ;

Plus en détail

Seconde 4 IE6 fonctions carré et inverse Sujet 1. Seconde 4 IE6 fonctions carré et inverse Sujet 2

Seconde 4 IE6 fonctions carré et inverse Sujet 1. Seconde 4 IE6 fonctions carré et inverse Sujet 2 Seconde IE6 fonctions carré et inverse 20-202 Sujet Eercice : (3 points) f est la fonction définie sur [-;2] par f() = ². b) La fonction f possède-t-elle un maimum? Si oui lequel? Eercice 2 : ( points)

Plus en détail

Statistiques. Ordonnées

Statistiques. Ordonnées CHAPITRE 3 Statistiques Échauffez-vous! 1 Reliez chaque liste de nombres à la moyenne de ceux-ci. 1 ; 2 ; 9 33 0 ; 1 ; 3 ; 5 ; 6 3 1 ; 1,5 ; 2 ; 3,5 4 57 ; 19 ; 23 36 26 ; 58 ; 32 ; 28 2 2 a) Placez sur

Plus en détail

Représenter graphiquement une suite

Représenter graphiquement une suite 8 décembre 2007 Sommaire 1 = f (n) 2 +1 = f ( ) Objectif. On veut représenter la ( ) définie pour tout entier naturel n par : = n2 n+1 +1. Définition de la Cette est définie par formule explicite : les

Plus en détail

Cours de Seconde : Généralités sur les fonctions. E. Dostal

Cours de Seconde : Généralités sur les fonctions. E. Dostal Cours de Seconde : Généralités sur les fonctions E. Dostal août 206 Table des matières Généralités sur les fonctions 2. Deux façons de regarder la notion de fonction......................... 2.2 Définitions.............................................

Plus en détail

Résoudre une (in)équation... ou pas!

Résoudre une (in)équation... ou pas! MS2_2F2_chapitrecomplet 2014/4/8 19:49 page 1 #1 Résoudre une (in)équation... ou pas! FONCTIONS 1 1 MS2_2F2_chapitrecomplet 2014/4/8 19:49 page 2 #2 1. Résolution exacte d (in)équations La résolution algébrique

Plus en détail

Chapitre 5 Dérivée. Table des matières. Chapitre 5 Dérivée TABLE DES MATIÈRES page -1

Chapitre 5 Dérivée. Table des matières. Chapitre 5 Dérivée TABLE DES MATIÈRES page -1 Chapitre Dérivée TABLE DES MATIÈRES page - Chapitre Dérivée Table des matières I Exercices I-................................................ I-................................................ I-................................................

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

FICHE 34 : REALISER UN GRAPHIQUE

FICHE 34 : REALISER UN GRAPHIQUE FICHE 34 : REALISER UN GRAPHIQUE 1. LA CRÉATION DE GRAPHIQUES Un graphique peut être créé dans une feuille de calcul indépendante des données (on parlera alors de fenêtre graphique) ou incorporé dans la

Plus en détail

Utilisation de la calculatrice graphique : niveau première STAV. Tableau de valeurs d une fonction.

Utilisation de la calculatrice graphique : niveau première STAV. Tableau de valeurs d une fonction. Utilisation de la calculatrice graphique : niveau première STAV. Tableau de valeurs d une fonction. Texas instrument (TI 82) Appuyer sur la touche f(x), introduire la fonction (par exemple dans Y1), pour

Plus en détail

(C f )

(C f ) BAC BLANC -.3.9 - Terminales ES, Lycée Newton Exercice 1 - Amérique du Sud 8 6 points On admettra que les fonctions considérées dans cet exercice sont dérivables sur l intervalle ] ; + [. Soit la fonction

Plus en détail

Fonction. Vocabulaire : Image x a pour image y y est l'image de x Antécédent x est un antécédent de y y a pour antécédent x

Fonction. Vocabulaire : Image x a pour image y y est l'image de x Antécédent x est un antécédent de y y a pour antécédent x Fonction On cherche à exprimer une chose en fonction d 'une autre. Introduction Travail : Ecrire 3 phrases indiquant des situations où vous avez entendu parler de fonctions. réponses attendues(?) : Dans

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Certaines questions peuvent être complétées sur le sujet. Inscrivez votre nom et rendez ce sujet avec votre copie. / 4 points

Certaines questions peuvent être complétées sur le sujet. Inscrivez votre nom et rendez ce sujet avec votre copie. / 4 points Externat Notre Dame Devoir Surveillé n ( nde 1 et 3) Samedi 6 décembre Proposition de corrigé Certaines questions peuvent être complétées sur le sujet. Inscrivez votre nom et rendez ce sujet avec votre

Plus en détail

Exercice 3 (pour tous)

Exercice 3 (pour tous) le vendredi février (ÉPREUVES GROUPÉES HEURES) Exercice ( pour tous ) / points La production d une entreprise pour l année est de pièces Chaque année sa production augmente de % Quelle est la production

Plus en détail

Devoir surveillé de mathématiques Enseignement de spécialité

Devoir surveillé de mathématiques Enseignement de spécialité Lycée Eugène Delacroix Terminales S samedi décembre 04 Devoir surveillé de mathématiques Enseignement de spécialité Durée : 4 heures L utilisation d UNE ET D UNE SEULE calculatrice est autorisée. Tout

Plus en détail

Interrogation 1. Nom : Prénom : x x

Interrogation 1. Nom : Prénom : x x modélisation 1 L1MASS- 2014-2015 (a) Interrogation 1 Nom : Prénom : 1 2 3 Soit la fonction f définie par : f(x) = x x 2 + 1. 1. Montrer que la fonction dérivée de f est définie par :f x) = 1 x2 (x 2 +

Plus en détail

S1n EXPRESSION D UNE SUITE

S1n EXPRESSION D UNE SUITE S1n EXPRESSION D UNE SUITE Auteur : Philippe Fortin TI-Nspire - TI-Nspire CAS Mots-clés : suite, tableur, parabole, système d équations, interpolation. Fichiers associés : S1nProf_ExprSuite_CAS.tns, S1nElev_ExprSuite_CAS.tns,

Plus en détail

CHAPITRE 5 Généralités sur les Fonctions

CHAPITRE 5 Généralités sur les Fonctions CHAPITRE 5 Généralités sur les Fonctions A) La notion de Fonction 1) Définition Soit Df un intervalle ou une réunion d'intervalles de ℝ. On appelle fonction de Df dans ℝ une règle qui à tout élément x

Plus en détail

FICHE CALCULATRICE N 2

FICHE CALCULATRICE N 2 FICHE CALCULATRICE N 2 Construction de courbe BUT : On veut construire la représentation graphique d une fonction numérique. Pour cela on dispose de l expression de celle-ci ainsi que d un tableau de valeur

Plus en détail

Exercice 1 sur 6,5 points

Exercice 1 sur 6,5 points NOM PRENOM : Bac blanc Mathématiques TSMG2 Mercredi 12 février 2014 Exercice 1 sur 6,5 points Une entreprise de menuiserie fait une étude sur la fabrication de chaises en bois pour une production comprise

Plus en détail