III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS"

Transcription

1 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS 1. L axiome des parallèles Définition 1.1. Un plan euclidien est un plan de Hilbert E dans lequel l axiome (E) est vérifié, ainsi que l axiome des parallèles, ou axiome de Playfair (mathématicien écossais qui fut le premier probablement à énoncer l axiome des parallèles de cette façon vers 18) : (P) Pour tout point P et toute droite d il existe au plus une droite passant par P et parallèle à d. Cet axiome garantit en particulier que les angles alterne-interne" sont congruents. En effet si α est un angle en P et Q un point sur l une des demi-droites définissant cet angle, il suffit de reporter l angle α en Q : Q c b a P α Supposons par l absurde que cette droite c coupe a en R (l unicité de la parallèle passant par Q est garantie par l axiome de Playfair et impliquera que les angles sont alterne-interne). On reporte alors le segment [QR] sur a de sorte à obtenir un triangle P QS congruent. On conclut alors que S se trouve aussi sur c car ce triangle possède des angles supplémentaires. Mais alors les droites a et c ont deux point en commun, donc égales. Absurde! Corollaire 1.2. Dans un plan euclidien, la seule droite parallèle à d et passant par un point P d, est la perpendiculaire à la perpendiculaire à d par P. 1

2 2 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS Cet arsenal d axiomes nous permet de comprendre les plus belles constructions d Euclide. Sans devoir mesurer ni les longueurs des segments, ni les valeurs des angles, ni l aire des surfaces, nous sommes à même de construire un triangle isocèle dont l angle au sommet est la moitié des angles de base (dans R 2 on dirait que l angle au sommet vaut π/5). (Un triangle d or) A partir de ce triangle, on peut construire le pentagone. On peut en fait montrer tous les résultats des quatre premiers livres d Euclide dans un plan euclidien arbitraire. Inspiré par l exemple du plan cartésien R 2, nous développons une géométrie d incidence K 2 à partir d un corps K arbitraire. Pour certains corps K, le plan K 2 peut être muni d une structure de plan de Hilbert ou même de plan euclidien. 2. Plans cartésiens Nous voulons maintenant retourner momentanément dans notre modèle favori, R 2. Nous allons montrer qu il forme un modèle de la géométrie euclidienne, c est-à-dire qu il forme un plan de Hilbert où (E) et (P) sont valides. Plus généralement, nous allons développer une géométrie dans des plans cartésiens sur d autres corps que R. Notre objet est de regarder si l on peut munir certains de ces plans d une structure de plan de Hilbert ou même de plan euclidien. Définition 2.1. Soit K un corps. Le plan cartésien Π = K 2 est l espace vectoriel K 2 dont les droites sont les ensembles qui satisfont une équation affine ax + by + c =, a avec. b Toute droite peut être écrite soit de la forme x = c, auquel cas on dit qu elle est verticale et que sa pente est infinie, soit de la forme y = mx + h, auquel cas on dit que la pente de la droite vaut m. Exemple 2.2. Le cas des corps finis. Soit p un nombre premier. On étudie le plan cartésien Π = (F p ) 2. C est une géométrie d incidence qui satisfait (P), comme c est le cas pour n importe quel plan cartésien K 2. Mais les droites étant constituées d un nombre fini de points, ce n est pas une géométrie d ordre. Remarquons aussi que le cas de caractéristique 2 est plus étrange que les autres puisqu il existe quatre points A, B, C, D (tous) dans (F 2 ) 2 tels que AB CD, AC BD et AD BC!

3 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS 3 3. Corps ordonnés Pour que le plan cartésien K 2 puisse vérifier les axiomes d ordre il faut que ce corps soit ordonné. Cela signifie qu il doit être muni d un sous-ensemble P d éléments dits positifs tels que (1) Si x, y P, alors x + y, xy P. (2) On a K = P {} P. On écrit a > b lorsque a b P. Ces corps doivent forcément être de caractéristique zéro et ils contiennent toujours Q (Exercice 2 série 3). Dans un corps ordonné K, nous pouvons définir la notion de produit scalaire. Définition 3.1. Un produit scalaire sur K 2 est une application, : K 2 K 2 K telle que pour tout u, v, w K 2, λ K, u, v = v, u (symétrie) ; λ u + v, w = λ u, w + v, w (bilinéarité) ; u, u et u, u = si et seulement si u = (définie positive). On remarque qu une droite d équation ax+by c = est l ensemble d v,c = {u K 2, v, u = c} a b where v =. On dit que v est un vecteur normal à la droite, et est un b a vecteur directeur. Proposition 3.2. Soit K un corps ordonné. L ensemble K 2 muni des droites définies ci-dessus forme une géométrie d incidence. Démonstration. Soit v K 2 non nul et c K. Montrons que la droite d v,c contient au c a + b a 2 +b 2 moins deux points. Remarquons qu elle contient c b a a 2 +b 2 et que si Y d v,c, alors Y +λ ( b, a) est aussi un point de la droite d v,c, par bilinéarité du produit scalaire. Une droite contient donc au moins autant d éléments que le corps!

4 4 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS x 1 Soit X = et Y = y 1 deux points distincts de K 2, et supposons qu il x 2 y 2 existe v = v 1 v 2 K 2 non nul et c K tels que X, Y d v,c. En particulier, v, X Y = c c =. Puisque X Y x 1 y 1 ou bien x 2 y 2. Sans perte de généralité supposons que x 1 y 1. On obtient que v 1 = v 2(x 2 y 2 ) x 1 y 1, et donc c = v 2(x 2 y 2 ) x 1 y 1 x 1 + v 2 x 2. On remarque que nous pouvons choisir v 2 = 1, pour obtenir une droite qui contient X et Y. Remarquons aussi que n importe quel autre choix de v 2 non nul nous donne la même droite, d où l unicité. 1 Pour terminer, les points, et ne sont pas alignés. En effet, si une 1 droite d v,c contenait ces trois points, alors l appartenance du premier point impliquerait que c =, tandis que l appartenance des deux autres points donnerait successivement v 1 = et v 2 =, une contradiction. Nous avons vu dans la preuve que si la droite d v,c = {u K 2, v, u = c} v 2 contient Y, alors elle contient aussi Y + λ pour tout λ K. En fait, tous les points de la droite sont de cette forme. En effet, si X d v,c, alors v, X Y =. Nous pouvons renverser le calcul que nous avons fait précédement, pour voir que si v 1, alors x 1 y 1 = v 2(x 2 y 2 ) v 1 et donc X Y = (x 2 y 2 ) v 1 même lorsque c est seulement v 2 qui est non nul. v 1 ( v 2, v 1 ). On peut procéder de Définition 3.3. Soient X, Y, Z des points alignés distincts. Alors on définit l ordre par X Y Z si et seulement si X Y, Z Y <. On remarque que ceci est vrai si et seulement si il existe λ < avec (Z Y ) = λ(x Y ). Proposition 3.4. Soit K un corps ordonné. Alors le plan cartésien Π = K 2 est une géométrie d ordre.

5 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS 5 Démonstration. L axiome (O1) est vérifié par définition et symétrie du produit scalaire. Pour l axiome (O2), si X, Y sont distincts, alors X Y (2Y X), puisque le produit scalaire est défini positif. L axiome (O3) sera vérifié en exercice (Série 3). Pour l axiome de Pasche (O4), soit A, B, C trois points non alignés, et supposons qu une droite d v,c ne contient pas les trois points A, B, C et coupe le segment [A, B]. Cette situation est bien trop générale pour se traiter facilement. Nous allons utiliser des actions pour nous simplifier la vie. Soit GL 2 (K) le groupe des matrices 2 2 inversibles et à coefficients dans K. Le groupe agit naturellement par multiplication matricielle. (Les éléments de K 2 sont vus comme des vecteurs colonne). On remarque que l action préserve les droites. En effet, si A GL 2 (K), alors v, Ax = (v) t Ax = (A t v) t x = A t v, x. Ceci montre que x d v,c si et seulement si Ax d A t v,c, c est-à-dire si A d v,c = d A t v,c. De même, l action préserve l ordre des points alignés, par linéarité. v 1 v 2 Soit M la matrice inversible M =. On remarque que M t = 1 v 1 v 2 v1 v 2 v 2 +v2 2 1 v 2 v 1 et que w := M t 1 v =. Le fait que l action preserve l ordre des points alignés implique que le triangle A, B, C et la droite d v,c vérifient l axiome de Pasche si et seulement si le triangle M A, M B, M C et la droite M d v,c = d w,c vérifient l axiome de Pasche. Nous nous sommes ramenés à un cas plus simple, puisque maintenant la droite d w,c qui entre dans le triangle est horizontale! Nous pouvons encore utiliser une translation de vecteur pour nous ramener c au cas ou d est la droite des abscisses, et une autre translation pour que le point d intersection entre d et le segment [A, B] soit le point. Ceci implique en particulier que B = λ A pour un unique λ <. Supposons que b 2 c 2. Alors, la droite (BC) = {B + λ(c B) : λ K} coupe l axe des abscisse au point X = B + b 2 b 2 c 2 (C B). Ceci implique en particulier que

6 6 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS B X, C X = ( b2 (C B), 1 b ) 2 (C B) b 2 c 2 b 2 c 2 = b 2 c 2 B A, B A b 2 c 2 b 2 c 2 qui est du signe de b 2 c 2. Puisque b 2 = c 2 implique que la droite (BC) n intersecte pas l axe des abscisses, on a montré formellement que le segment [B, C] intersecte la droite d si et seulement si b 2 et c 2 ont des signes opposés. Or a 2 et b 2 ont des signes opposés. Donc l axiome de Pasche est vérifié, car c 2 a un signe différent de a 2 ou b 2 mais pas les deux. Pour le reste des axiomes, nous allons utiliser le théorème que nous avons vu la semaine passée et que vous utiliserez et démontrerez dans le travail dirigé, qui utilise des actions de groupes. Nous allons avoir besoin d un groupe qui agit sur K 2 d une excellente façon. Nous introduisons d abord le groupe Définition 3.5 (Matrice orthogonales). Une matrice A GL 2 (K) est dite orthogonale si A t A = I 2 = AA t, autrement dit si son inverse est égale à sa transposée. Proposition 3.6. L ensemble des matrices orthogonales 2 2 à coefficients dans K, que l on note O 2 (K) est un sous-groupe de GL 2 (K). Démonstration. En effet, si A, B O 2 (K), alors (AB) t AB = B t A t AB = B t B = I 2. De même pour l autre composition. Aussi, (A 1 ) t A 1 = (A t ) t A t = AA t = I 2. La composition et l inverse de matrices orthogonales est donc orthogonale. Remarquons aussi que Ax, Ay = x, A t Ay = x, y. En fait, les matrices orthogonales sont celles qui préservent le produit scalaire. Définition 3.7. On définit Isom(K 2 ) = {f Bij(K 2 ) : A O 2 (K), b K 2 tel que x K 2, f(x) = Ax + b}. Proposition 3.8. Isom(K 2 ) est un sous groupe des bijections de K 2. Démonstration. En effet, si f(x) = Ax + b et g(x) = A x + b, alors fg(x) = (AA )x + (Ab + b).

7 De plus, f 1 (x) = A 1 x A 1 b. III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS 7 Nous avons donc construit notre action de groupe. Nous devons maintenant voir sous quelles conditions les axiomes (G1), (G2) et (G3) sont vérifiés. Définition 3.9. Le corps K est dit pythagoricien si pour tout a K, l équation a une solution dans K. x 2 (1 + a 2 ) = Proposition 3.1. Les axiomes (G1), (G2) et (G3) sont vérifiés si et seulement si le corps K est pythagoricien. Démonstration. Supposons d abord que (G1) est vérifié, et montrons qu alors le corps doit être pythagoricien. Soient a K Considerons les demi-droites d origine et de vecteurs directeur Alors, par (G1) il existe une matrice m 11 M = m 12 O 2 (K 2 ) m 21 m 22 1 et et b K 2 tels quel application f : K 2 K 2 définie par x Mx + b est telle que 1 f() = et f = λ 1 pour un λ >. La première condition implique que a m 11 b = et la seconde implique que le vecteur m = est tel que m = λ 1. m 12 a Or puisque M est orthogonale, m, m = 1 et donc λ 2 + λ 2 a 2 = 1. Autrement dit, 1 λ est une solution à l équation x 2 (1 + a 2 ) =. Par ailleurs, si K est pythagoricien, et v K 2 non nul, alors il existe toujours une 1 matrice orthogonale M v telle que M v = λv pour un λ >, autrement dit tel que M v [, (1, )) = [, v). En effet, on peut supposer v 1, (le cas v 1 = est très facile), construire w = 1 et résoudre l équation x 2 (1 + v2 2 ) = pour obtenir un x tel que si u = 1w, v v x v 1 u, u = 1. 1 a.

8 8 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS En effet, on a alors 1 (1 + v2 x 2 1 ) = 1. v2 2 u 1 On remarque ensuite que la matrice M v = u 2 est une matrice orthogonale u 2 u 1 qui fait l affaire, et notons R v Isom(K 2 ) la fonction R v (x) = M v (x) pour tout x K 2. Soit [X, A) et [Y, B) deux demi-droites quelconques. Il existe v, w K 2 deux vecteurs non nuls qui sont des vecteurs directeurs de ces demi-droites. Soit t b Isom(K 2 ) : K 2 K 2 la "translation" de vecteur b, autrement dit, t b (x) = x + b pour tout x K 2. On remarque que φ = t Y R w (R v ) 1 t X est un élément de Isom(K 2 ) tel que en particulier φ X = Y, mais aussi φ([x, A)) = φ([y, B)). 1 De plus, si S est l application donnée par x alors φ = t Y R w S(R v ) 1 t X 1 est aussi une application qui envoie [X, A) sur [Y, B), mais avec les demis-plans inversés. L action de l axiome (G1) est donc transitive. Nous devons vérifier que les stabilisateurs sont triviaux. Pour cela, puisque l action est transitive, il suffit de consider le stabilisateur de la demi-droite {(x, ); x }, bordé du demi-plan contenant (, 1). Soit M O 2 (K 2 ) et b K 2 tels que l application φ(x) = Mx+b stabilise la demi-droite bordé du demi-plan. 1 Alors b =, et la première colonne de M doit être. Par conséquent, puisque M est orthogonale, la deuxième colonne peut-être ou bien. Mais puisque le 1 1 demi-plan est aussi fixé, φ(, 1) doit avoir une seconde coordonnée positive. Ceci montre que seule la deuxième option est possible pour la deuxième colonne de M, et donc que M est l identité. Pour l axiome (G2), et étant donné X Y deux points de K 2, alors l application φ = t + X+Y RX Y 1 SR X Y t 2 X+Y est la symétrie d axe la médiatrice du segment [XY ]. 2 (Vérifiez!). Avec une construction de symétrie similaire, on vérifie (G3). Corollaire Les plans K 2 est un plan de Hilbert qui vérifie (P ) si K est pythagoricien.

9 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS 9 Remarque Il existe un sous-corps pythagoricien de R qui est strictement contenu dans R : il s agit des nombres constructibles à la règle et au compas! Ce sous-corps contient toutes les racines carrées d entiers naturels, mais pas toutes les racines cubiques, les nombres transcendants comme π ou e Plans cartésiens euclidiens Pour terminer nous nous intéressons à l axiome (E) d intersection des cercles. Nous allons voir que cette propriété est liée à l existence de racines carrées dans K. Définition 4.1. Un corps ordonné K est euclidien si tout nombre positif a K admet une racine carrée. Théorème 4.2. Soit K un corps ordonné euclidien. Alors le plan cartésien Π = K 2 est un plan de Hilbert qui vérifie (E) et (P), c est un plan euclidien. Démonstration. Si K est euclidien, alors K est en particulier pythagoricien. Donc par le théorème précédent, il suffit de vérifier (E). Considérons deux cercles dans Π, donnés sous forme cartésienne par les équations (x a) 2 + (y b) 2 = r 2 et (x c) 2 + (y d) 2 = s 2 Remarquons que les éléments r et s sont des éléments du corps K puisque les rayons au carré" ont une racine! Supposons que r s et effectuons une translation pour emmener le centre du premier cercle à l origine, si bien que son équation est à présent x 2 +y 2 = r 2. Appelons C = c a et D = d b. Par hypothèse le second cercle n est pas entièrement à l extérieur du premier si bien que C 2 + D 2 r + s, mais pas non plus entièrement à l intérieur, et dans ce cas C 2 + D 2 r s. Développons ces équations et soustrayons l une à l autre pour éliminer les carrées des inconnues : 2Cx + 2Dy = r 2 s 2 + C 2 + D 2 x = r2 s 2 + C 2 + D 2 2Dy 2C où nous avons exprimé x en fonction de y. Comme x 2 + y 2 = r 2, nous en déduisons que (1 + D2 C 2 )y2 D(r2 s 2 + C 2 + D 2 ) C 2 y + (r2 s 2 + C 2 + D 2 ) 2 4C 2 r 2 = (C 2 + D 2 )y 2 D(r 2 s 2 + C 2 + D 2 )y + (r2 s 2 + C 2 + D 2 ) 2 C 2 r 2 = 4

10 1 III. GÉOMÉTRIE EUCLIDIENNE ET PLANS CARTÉSIENS La formule de résolution d une équation du second degré donne une solution dans un corps euclidien si et seulement si le discriminant est positif. Il reste donc à calculer : = D 2 (r 2 s 2 + C 2 + D 2 ) 2 (C 2 + D 2 )[(r 2 s 2 + C 2 + D 2 ) 2 4C 2 r 2 ] = 4C 2 r 2 (C 2 + D 2 ) C 2 (r 2 s 2 + C 2 + D 2 ) 2 Ce nombre est positif si et seulement si 4r 2 (C 2 + D 2 ) (r 2 s 2 + C 2 + D 2 ) 2 ou encore 2r C 2 + D 2 r 2 s 2 + C 2 + D 2. Or [r 2 2r C 2 + D 2 + C 2 + D 2 ] s 2 = ( C 2 + D 2 r) 2 s 2 = ( C 2 + D 2 (r + s))( C 2 + D 2 (r s)) ce qui conclut la démonstration. Ouf. Exemple 4.3. Le corps des nombres réels R est euclidien, si bien que le plan réel R 2 est un plan euclidien. Pour terminer ce chapitre de géométrie axiomatique, faisons une petite excursion en théorie des corps et regardons ce que nous avons appris en raisonnant en termes d axiomes plutôt qu en termes de modèle standard (le plan cartésien réel). On dit qu un corps ordonné est archimédien si pour tout a >, il existe un entier n avec n > a. Tout corps ordonné archimédien est un sous-corps de R. On peut aussi construire un corps ordonné pythagoricien contenant R(t) de la façon suivante : les éléments du corps sont des séries de Laurent formelles i n a i t i, où n Z. Il existe aussi un corps euclidien et non archimédien contenant le corps des fractions rationnelles réelles R(t). Les plan cartésiens sur de tel corps sont des plans de Hilbert, et même un plan euclidien dans le deuxième cas, mais sa géométrie est très différente de notre idée préconçue de la géométrie euclidienne puisqu il existe des segments tellement longs" qu on ne les dépasse jamais en additionnant des segments de longueur 1! L analogie de cette géométrie que propose Hartshorne est de s imaginer que nous vivons dans un monde non archimédien, mais que bien sûr ce que nous voyons et ce que nous pouvons atteindre se trouve à une distance finie et nous n avons aucun moyen de savoir s il y a quelque chose qui se trouve plus loin que n kilomètres pour tout n!

I. GÉOMÉTRIE AXIOMATIQUE

I. GÉOMÉTRIE AXIOMATIQUE I. GÉOMÉTRIE AXIOMATIQUE Traditionnellement, le cours de géométrie de première année à l EPFL (et dans beaucoup d universités) touche à des sujets de géométrie classique au premier semestre et la géométrie

Plus en détail

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle.

Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. Impossibilité de la duplication du cube, de la quadrature du disque et de la trisection de l angle. L étude de ces trois célèbres problèmes de contructions géométriques à la règle et au compas nécessite

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

TD DE GÉOMÉTRIE HYPERBOLIQUE

TD DE GÉOMÉTRIE HYPERBOLIQUE TD DE GÉOMÉTRIE HYPERBOLIQUE Dans ce travail dirigé, vous allez découvrir un modèle de la géométrie hyperbolique, le demi-plan de Poincaré. Vous pouvez supposer connu que R 2 muni des notions standard

Plus en détail

V. TRANSFORMATIONS AFFINES ET ISOMÉTRIES

V. TRANSFORMATIONS AFFINES ET ISOMÉTRIES V. TRANSFORMATIONS AFFINES ET ISOMÉTRIES En géométrie du plan cartésien réel R 2, on a étudié des transformations. Notamment les translations, les rotations, les symétries axiales et les homothéties. Ce

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université de Nice SL2M 2009-10 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère l ensemble

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

Chapitre 1. Géométrie

Chapitre 1. Géométrie Chapitre 1 Géométrie 1.1. On donne les points a = (1, ), b = (4, 4) et c = (4, 3) du plan. Déterminer a. les composantes des vecteurs ab et ba ; b. les coordonnées du milieu du segment ab ; c. les coordonnées

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Plan vectoriel. 1 Définitions. Opérations du plan vectoriel. Arthur LANNUZEL. http ://utbmal.chez-alice.fr

Plan vectoriel. 1 Définitions. Opérations du plan vectoriel. Arthur LANNUZEL. http ://utbmal.chez-alice.fr 1 Arthur LANNUZEL le 13 Décembre 2005 http ://utbmal.chez-alice.fr Plan vectoriel 1 Définitions Dans le plan affine R 2, considérons l ensemble B des bipoints (A, B) avec A, B R 2. Sur cet ensemble, deux

Plus en détail

Vecteurs-équations de droites

Vecteurs-équations de droites Table des matières 1 Vecteurs colinéaires 1 1.1 Définition............................................ 1 1.2 Critère de colinéarité de deux vecteurs dans un repère.................... 1 2 Décomposition

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

CP 2 = r 2. )2 +y 2 +2 c y +( c. 2a )2 (y+ c. 2a )2 d = b2 +c 2 4ad

CP 2 = r 2. )2 +y 2 +2 c y +( c. 2a )2 (y+ c. 2a )2 d = b2 +c 2 4ad 5 Le cercle Équation cartésienne du cercle On considère un cercle Γ de centre C(x 0 ;y 0 ) de rayon r et un point P(x;y). Les conditions suivantes sont équivalentes : P 1) P Γ : le point P appartient au

Plus en détail

1 Équations cartésiennes, équations polaires d un ensemble de points

1 Équations cartésiennes, équations polaires d un ensemble de points Plans, cercles, droites et sphères Ce chapitre aborde les objets fondamentaux utilisés en géométrie : droites et cercles dans le plan, plans, droites et sphères dans l espace. Les objectifs du chapitre

Plus en détail

Espaces euclidiens, orthogonalité, longueur. Moindres carrés.

Espaces euclidiens, orthogonalité, longueur. Moindres carrés. Université Nice Sophia-Antipolis SL2SF 2012-13 Algèbre 2 Espaces euclidiens, orthogonalité, longueur. Moindres carrés. On travaille avec le corps des réels, noté R. Pour tout entier naturel n, on considère

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 24 septembre 2012

Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 24 septembre 2012 Cours d Algèbre I Bachelor Semestre 3 Prof. E. Bayer Fluckiger 24 septembre 2012 Corrigé 1 Exercice 1. 1 Montrer qu un groupe G a exactement un élément neutre. 2 Soient a, b et c trois éléments d un groupe

Plus en détail

Nombres constructibles à la règle et au compas

Nombres constructibles à la règle et au compas Nombres constructibles à la règle et au compas blogdemaths.wordpress.com 1 Points constructibles à la règle et au compas Si M et N sont deux points distincts, on notera (M N) la droite passant par M et

Plus en détail

64 = + (b ( 5)) 2 = Pour que le triangle soit équilatéral il faut en plus, par exemple, que AB = BC. Ce qui donne 3 =

64 = + (b ( 5)) 2 = Pour que le triangle soit équilatéral il faut en plus, par exemple, que AB = BC. Ce qui donne 3 = 1ES Correction du problème sur les paraboles. Dans tout ce qui suit le plan sera muni du repère orthonormé (O, ı, j). 1. Soient A(3, 5), B( 8, ) et C ( 1 3, 5) trois points du plan. Calculer les distances

Plus en détail

I. Matrices positives

I. Matrices positives 1 Corrigé du devoir 16 : Mines-Ponts PSI 26 I Matrices positives 1 Soit A une matrice positive B = t MAM est symétrique car t B = t M t A M = t M A M = B De plus, si X M p,1, on a (BX X) = (AMX MX) = (AY

Plus en détail

TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques

TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques LM360 Mathématiques 2008 TD de topologie et calcul différentiel Corrigé de la Feuille 3: Topologie des espaces métriques Groupe de TD 5 Rappelons que la distance usuelle du plan R 2 est la distance euclidienne

Plus en détail

M = b d. a b ou M =. b a

M = b d. a b ou M =. b a Ce texte est extrait du cours optionnel de géométrie de l année universitaire 1999/2000. B.Ingrao Étude du groupe orthogonal dans le cas du plan. Dans ce qui suit, l espace est de dimension 2 ; en conséquence

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points

N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points N1MA3W01 Algèbre 2 - Examen final En janvier, 3h - 35 points Exercice 0 (sur 6 points) 1. Calculer les valeurs et vecteurs propres des matrices 1 2 0 0 0 0 A = 2 1 0 et B = 1 0 0. 0 0 3 6000 80008 4 2.

Plus en détail

L espace vectoriel n. 1. Vecteurs de n Opérations sur les vecteurs

L espace vectoriel n. 1. Vecteurs de n Opérations sur les vecteurs L espace vectoriel n Vidéo partie Vecteurs de n Vidéo partie Eemples d'applications linéaires Vidéo partie Propriétés des applications linéaires Ce chapitre est consacré à l ensemble n vu comme espace

Plus en détail

2.1 Formes bilinéaires symétriques

2.1 Formes bilinéaires symétriques Chapitre 2 Formes bilinéaires symétriques, formes quadratiques 2.1 Formes bilinéaires symétriques Dans ce qui suit, E est un espace vectoriel sur un corps K. 2.1.1 Définition Définition 2.1 Une application

Plus en détail

Théorème de Thalès. Applications à la géométrie du plan et de l espace

Théorème de Thalès. Applications à la géométrie du plan et de l espace Théorème de Thalès. Applications à la géométrie du plan et de l espace Le théorème de Thalès fait partie des théorèmes que l on rencontre pour la première fois au Collège. Tout d abord sous la forme du

Plus en détail

Proposition1.1. (i) Le composé d une rotation et d une translation (ou d une translation et d une rotation) est une rotation de même angle.

Proposition1.1. (i) Le composé d une rotation et d une translation (ou d une translation et d une rotation) est une rotation de même angle. Géométrie affine 0. Objet du cours. L objet de ce cours est de présenter les principales idées et les résultats importants de la géométrie élémentaire dans le cadre réel affine et dans le cadre réel euclidien,

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

Vecteurs et colinéarité. Angles orientés et trigonométrie

Vecteurs et colinéarité. Angles orientés et trigonométrie DERNIÈRE IMPRESSION LE février 07 à 0:5 Vecteurs et colinéarité. ngles orientés et trigonométrie Table des matières Rappels sur les vecteurs. Définition.................................. Opérations sur

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

CAPES Les deux problèmes de géométrie.

CAPES Les deux problèmes de géométrie. Ecrit CAPES 014. Les deux problèmes de géométrie. 1. Epreuve 1, problème 1 : le sujet Cette épreuve s intéresse aux applications bijectives du plan qui transforment une droite en une droite. Cette propriété

Plus en détail

Chapitre 5. Lois de composition internes - Relations

Chapitre 5. Lois de composition internes - Relations Chapitre 5 Lois de composition internes - Relations 1. Lois de composition internes 1.1. Définition et exemples Définition 5.1 Soit E un ensemble. Une loi de composition interne sur E est une application

Plus en détail

Feuille n o 4 : géométrie

Feuille n o 4 : géométrie Licence 1 Mathématiques Algèbre et géométrie 1 Université Rennes 1 2017 2018 1 Produit scalaire Exercice 1 Feuille n o 4 : géométrie Soit (ABCD) un parallélogramme non aplati du plan euclidien P. 1. En

Plus en détail

Si une isométrie fixe trois points non alignés de P, c est l identité de P.

Si une isométrie fixe trois points non alignés de P, c est l identité de P. Isométries du plan Nous allons représenter les isométries du plan par des opérations algébriques. ais un peu de géométrie sera nécessaire au préalable. Nous considérons ici le plan euclidien P, c est-à-dire

Plus en détail

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques

Formes quadratiques. 1. Formes bilinéaires symétriques et formes quadratiques Agrégation interne UFR MATHÉMATIQUES Formes quadratiques On se place sur un R-espace vectoriel E de dimension finie n. 1. Formes bilinéaires symétriques et formes quadratiques 1.1. Formes bilinéaires symétriques

Plus en détail

Géométrie dans les espaces préhilbertiens

Géométrie dans les espaces préhilbertiens 13 Géométrie dans les espaces préhilbertiens Pour ce chapitre (E, ) est un espace préhilbertien et est la norme associée. 13.1 Mesures de l angle non orienté de deux vecteurs non nuls L inégalité de Cauchy-Schwarz

Plus en détail

Géométrie vectorielle et analytique plane

Géométrie vectorielle et analytique plane Géométrie vectorielle et analytique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions

Plus en détail

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel

Sommaire. Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel Sommaire 1 Vecteurs Qu est-ce qu un vecteur du plan? Somme de vecteurs Vecteur nul - Opposé d un vecteur Produit d un vecteur par un nombre réel 2 Vecteurs colinéaires Définition Conséquences 3 Base du

Plus en détail

Barycentre. Rappels sur le barycentre. On considère n points A i et n nombres réels a i n. a i. Il existe alors un unique point G tel que : Ai G = 0

Barycentre. Rappels sur le barycentre. On considère n points A i et n nombres réels a i n. a i. Il existe alors un unique point G tel que : Ai G = 0 Barycentre Rappels sur le barycentre Définition On considère n points A i et n nombres réels Supposons 0 Il existe alors un unique point G tel que : Ai G = 0 (C est à dire : A 1 G + A 2 G + + A n G = 0

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

PRODUIT SCALAIRE ET ORTHOGONALITÉ

PRODUIT SCALAIRE ET ORTHOGONALITÉ Chapitre 9 : ECS2 Lycée La Bruyère, Versailles Année 2015/2016 PRODUIT SCALAIRE ET ORTHOGONALITÉ 1 Formes bilinéaires 2 1.1 Définition............................................. 2 1.2 Représentation

Plus en détail

Correction des Exercices

Correction des Exercices DAEU-B Maths UGA 016-017 Correction des Exercices Géométrie plane : la méthode des coordonnées. Exercice n o 1 Soit (D) la droite d équation y = x 1. a. Les points A(1, 3) et B(4, 9) appartiennent-ils

Plus en détail

Un corrigé du dossier 55

Un corrigé du dossier 55 Un corrigé du dossier 55 Daniel PERRIN Introduction Je donne exceptionnellement un corrigé du dossier 1 55 sur le thème fonctions de référence : f + λ, λf, etc. La raison de cette exception est que la

Plus en détail

Renforcer ses compétences en mathématiques Devoir n 1

Renforcer ses compétences en mathématiques Devoir n 1 Renforcer ses compétences en mathématiques Devoir n 1 I. Conseils pour mieux réussir Le devoir 1 porte sur les notions des chapitres I, II, III, IV et V. EXERCICE 1 Voir la division euclidienne. Il peut

Plus en détail

1 Produit scalaire et orthogonalité

1 Produit scalaire et orthogonalité 1 1 Produit scalaire et orthogonalité 1.1 Définitions Définition 1.1 Soit E un R-espace vectoriel. 1. On dit que cet espace vectoriel est préhilbertien réel dès qu il a été muni d une forme bilinéaire

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application

Chapitre X. Chapitre X : Matrice inverse et réciproque d une application Chapitre X Chapitre X : Matrice inverse et réciproque d une application Introduction Dans ce chapitre, on fera le lien entre la matrice d une application linéaire et l inverse d une matrice (notion vue

Plus en détail

Axiomatique d Euclide-Hilbert

Axiomatique d Euclide-Hilbert 6 septembre 2016 Euclide Vers -300, Euclide écrit ses Éléments de géométrie dont l objectif est de fonder la géométrie à partir d un petit nombre de postulats. Toutefois subsiste quelques imperfections.

Plus en détail

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme Géométrie métrique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions de longueurs, angles

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

Le plus grand angle fait face au plus grand côté

Le plus grand angle fait face au plus grand côté Le plus grand angle fait face au plus grand côté Daniel PERRIN L objectif de ce texte est de donner quelques preuves d un résultat important mais méconnu : dans un triangle, le plus grand angle fait face

Plus en détail

Chapitre 1 : Équations de la droite dans le plan

Chapitre 1 : Équations de la droite dans le plan EQUATIONS DE LA DROITE DANS LE PLAN 1 Chapitre 1 : Équations de la droite dans le plan 1.1 Introduction Exercice d introduction : On considère l équation vectorielle: x = 3 3 + k. y 2 2 Représenter, dans

Plus en détail

Nombres constructibles

Nombres constructibles APMEP Dans nos classes 345 Enseignant au lycée de Bouxwiller, Edmond JUNG a eu cette année, pour la première fois, une Première L option math avec le nouveau programme, dont le chapitre «Nombres constructibles».

Plus en détail

Polynômes et fractions rationnelles

Polynômes et fractions rationnelles Polynômes et fractions rationnelles L ensemble K(X ) des fractions rationnelles () Polynômes et fractions rationnelles 1 / 25 L ensemble K(X ) des fractions rationnelles Définition On appelle fraction

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Le Béaba des Espaces Normés et Algèbres de Banach

Le Béaba des Espaces Normés et Algèbres de Banach Le Béaba des Espaces Normés et Algèbres de Banach Alain Prouté Université Denis Diderot-Paris 7 Dernière révision de ce texte : 21 novembre 2012 Ce texte a été écrit pour le niveau Licence 2. Table des

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

Chapitre V. Chapitre V : Bases et dimension

Chapitre V. Chapitre V : Bases et dimension Chapitre V Chapitre V : Bases et dimension Introduction On avait vu au Chapitre IV qu une base pour un espace vectoriel V est une partie à la fois libre et génératrice de V. Les bases constituent un outils

Plus en détail

Géométrie euclidienne élémentaire. Euclide : axiomatisation de la géométrie

Géométrie euclidienne élémentaire. Euclide : axiomatisation de la géométrie Une approche déductive rigoureuse de la géométrie euclidienne élémentaire Jean-Pierre Demailly Institut Fourier, Université de Grenoble I, France 15 mars 2010 / Séminaire IREM - Repères / Luminy Euclide

Plus en détail

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne.

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne. 40 CHAPITRE 4. MATRICES ligne L M 1,n (K) et d une matrice B M n,q (K) est encore une matrice ligne. De plus, si on note L i la i-ième ligne de A, alors le produit AB est la L 1 B L 2 B matrice (la juxtaposition

Plus en détail

Isométries affines et vectorielles

Isométries affines et vectorielles Chapitre 3 Isométries affines et vectorielles Objectifs de ce chapitre 1. Rappels sur les isométries vectorielles.. Groupe orthogonal en dimension et 3. Détermination d une isométrie vectorielle en dimension

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace I Modes de repérage dans l espace 1 I.A Coordonnées cartésiennes...................... 1 I.B Coordonnées cylindriques...................... 2 I.C Coordonnées sphériques.......................

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2007 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2007 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 07 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 007 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

GEOMETRIE ANALYTIQUE DANS LE PLAN

GEOMETRIE ANALYTIQUE DANS LE PLAN WORKBOOK PCD -GEOMETRIE ANALYTIQUE DU PLAN 016 GEOMETRIE ANALYTIQUE DANS LE PLAN 1 Déterminer l'équation du cercle centré en C et de rayon r si : a) C (0; 0) et r = 1; b) C = (1; ) et r c) C (3; -4) et

Plus en détail

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec :

2. Donner des équations paramétriques et cartésiennes des droites passant par A et dirigées par v avec : Exo7 Droites du plan ; droites et plans de l espace Fiche corrigée par Arnaud Bodin 1 Droites dans le plan Exercice 1 Soit P un plan muni d un repère R(O, i, j), les points et les vecteurs sont exprimés

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

Espaces vectoriels euclidiens. () Espaces vectoriels euclidiens 1 / 40

Espaces vectoriels euclidiens. () Espaces vectoriels euclidiens 1 / 40 Espaces vectoriels euclidiens () Espaces vectoriels euclidiens 1 / 40 1 Produit scalaire, norme, espace euclidien 2 Orthogonalité Dans tout ce cours, E désigne un R espace vectoriel. () Espaces vectoriels

Plus en détail

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016)

ESPACES VECTORIELS. Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) ESPACES VECTORIELS Résumé de cours d algèbre linéaire L1 de B. Calmès, Université d Artois (version du 1 er février 2016) 1. Espaces et sous-espaces vectoriels Dans ce qui suit, K est un corps, que l on

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

Rappels sur les espaces et applications affines

Rappels sur les espaces et applications affines Chapitre 1 Rappels sur les espaces et applications affines 1.1 Espaces et sous-espaces affines 1.1.1 Espaces affines Définition 1.1 On dit que le triplet (,, Φ est un espace affine (réel de direction si

Plus en détail

Second degré et polynômes Résolution d équation, inéquations et problèmes du second

Second degré et polynômes Résolution d équation, inéquations et problèmes du second Second degré et polynômes Résolution d équation, inéquations et problèmes du second degré Y. Morel Table des matières 1 Trinôme du second degré 1 1.1 Equations du second degré...............................

Plus en détail

Seconde. Eric Leduc 2014/2015

Seconde. Eric Leduc 2014/2015 Seconde Lycée Jacquard 2014/2015 Rappel du plan 1 2 3 Équation courbe Définition n o 1: courbe Une équation de courbe est une relation qui lie les coordonnées de tous les points de la courbe. Autrement

Plus en détail

Vecteurs et applications linéaires

Vecteurs et applications linéaires Vecteurs et applications linéaires (1) (1) () Vecteurs et applications linéaires 1 / 41 1 Familles de vecteurs de R n 2 Sous-espace vectoriels dans R n 3 Base d un sous-espace vectoriel (1) () Vecteurs

Plus en détail

LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes.

LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes. LEÇON N 22 : Équation cartésienne d une droite du plan. Problèmes d intersection, parallélisme. Condition pour que trois droites soient concourantes. Pré-requis : Déterminants ; Définition vectorielle

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc :

Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof. A. Abdulle. Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : Algèbre linéaire pour GM Jeudi 07 novembre 2013 Prof A Abdulle EPFL Série 7 Corrigé Exercice 1 Calculer les produits suivants en utilisant la multiplication par bloc : a b c 3 1 0 4 1 2 1 1 2 2 1 1 2 1

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

Rappel de calcul différentiel

Rappel de calcul différentiel Calcul différentiel et géométrie Année 008-009 ENS Cachan Vincent Beck Différentiabilité. Rappel de calcul différentiel Exercice 1 Exemples et contre-exemples. a) Étudier suivant les valeurs de α > 0,

Plus en détail

Équations de droites

Équations de droites Équations de droites I/ lignement, colinéarité II/ Coefficient directeur III/ Équations de droites 1/ Définition / Comment dire si un point appartient à une droite dont on connaît l équation 3/ Propriétés

Plus en détail

Les mathématiques de l Origami

Les mathématiques de l Origami Les mathématiques de l Origami 1 Origami, septembre 2008 Les mathématiques de l Origami Et la comparaison avec les constructions à la règle et au compas 2 Origami, septembre 2008 rincipes de la géométrie

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

FONCTIONS POLYNÔMES et SECOND DEGRE

FONCTIONS POLYNÔMES et SECOND DEGRE FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n

Plus en détail

Chapitre 4. Similitudes du plan. 4.1 Définition et exemples

Chapitre 4. Similitudes du plan. 4.1 Définition et exemples Chapitre 4 Similitudes du plan Les isométries sont des transformations rigides, dans le sens où elles préservent toutes les mesures du plan affine : distances et angles. En effet, le terme isométrie est

Plus en détail

Géométrie, L2 Mathématiques. Rachid Regbaoui

Géométrie, L2 Mathématiques. Rachid Regbaoui Géométrie, L2 Mathématiques Rachid Regbaoui 2 hapitre 1 Géométrie affine plane 1.1 Plan affine L ensemble R 2 sera muni de sa structure naturelle d espace vectoriel réel, i.e pour tout (x 1, x 2 ), (y

Plus en détail

TRANSFORMATIONS DU PLAN

TRANSFORMATIONS DU PLAN TRANSFORMATIONS DU PLAN On appelle transformation plane (ou transformation du plan) dans lui-même tout procédé qui, à partir de n importe quel point M du plan, permet de construire un point M du plan.

Plus en détail

a 11 a 1n A = (a ij ) = ... a m1 a mn

a 11 a 1n A = (a ij ) = ... a m1 a mn Chapitre 4 Les matrices 4 Notions de bases Définition Une matrice est un tableau rectangulaire contenant des nombres : a a n A a ij a m a mn Les matrices peuvent représenter toutes sortes d informations

Plus en détail

Matrices. () Matrices 1 / 45

Matrices. () Matrices 1 / 45 Matrices () Matrices 1 / 45 1 Matrices : définitions 2 Calcul matriciel 3 Opérations élémentaires sur les lignes d une matrice 4 Transposition On va principalement travailler avec R Mais on peut remplacer

Plus en détail

LEÇON N 36 : Produit vectoriel, produit mixte.

LEÇON N 36 : Produit vectoriel, produit mixte. LEÇON N 36 :. Pré-requis : Généralités sur les espaces euclidiens affines et vectoriels de dimension inférieure ou égale à trois ; Orientation de l espace (base orthonormée directe, indirecte) : règle

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

Notations et présentation du sujet. Partie A : une majoration des modules des racines d un polynôme

Notations et présentation du sujet. Partie A : une majoration des modules des racines d un polynôme Notations et présentation du sujet Dans tout le problème n désigne un entier naturel non nul. Si a et b sont deux entiers naturels tels que a < b on note [a, b] l ensemble des entiers naturels k tels que

Plus en détail

4.1 L ensemble des réels est un corps ordonné

4.1 L ensemble des réels est un corps ordonné Table des matières 4 Propriétés de R 4. L ensemble des réels est un corps ordonné....................... 4.. Propriétés d ordre de R............................. 4..2 Valeur absolue..................................

Plus en détail

Présentation Proséminaire : Construction d une famille de graphes à large maille G (SL 2 (q)), S q ).

Présentation Proséminaire : Construction d une famille de graphes à large maille G (SL 2 (q)), S q ). Présentation Proséminaire : Construction d une famille de graphes à large maille G SL q)), S q ) Matthieu Karlen matthieukarlen@unifrch supervisé par Dr Ciobotaru Corina 0 décembre 016 Table des matières

Plus en détail

Feuille d exercices 6 : Familles libres, génératrices. Applications linéaires.

Feuille d exercices 6 : Familles libres, génératrices. Applications linéaires. Université Denis Diderot Paris 7 (4-5) TD Maths, Agro wwwprobajussieufr/ merle Mathieu Merle : merle@mathuniv-paris-diderotfr Feuille d exercices 6 : Familles libres, génératrices Applications linéaires

Plus en détail

Chapitre 2 : Les matrices

Chapitre 2 : Les matrices Chapitre 2 : Les matrices I. Définitions On appelle matrice à lignes et colonnes N, N à coefficients dans =R C un tableau à lignes et colonnes contenant un élément de à l intersection de chaque ligne et

Plus en détail

Fiche méthode géométrie analytique. Les formules à retenir Elles sont déjà dans votre cours mais abondance de bien ne nuit pas!

Fiche méthode géométrie analytique. Les formules à retenir Elles sont déjà dans votre cours mais abondance de bien ne nuit pas! Les formules à retenir Elles sont déjà dans votre cours mais abondance de bien ne nuit pas! Soient A(x A,y A ) et (x,y ). ( x xa; y ya) = = ( x x ) + ( y y ) A A Le milieu du segment [] a pour coordonnées

Plus en détail

Résumé 18 : Equations différentielles

Résumé 18 : Equations différentielles http://mpbertholletwordpresscom Résumé 18 : Equations différentielles I est un intervalle réel, K = R ou C, et E est un K espace vectoriel normé de dimension finie n I LE CADRE 1 Equation différentielle

Plus en détail

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P Résumé du cours roites et plans de l espace ans l espace un plan est caractérisé par la donnée de trois points non alignés, deux droites sécantes ou strictement parallèles. Un plan passant par trois points

Plus en détail