Distribution des échantillons aléatoires
|
|
|
- Martin Paré
- il y a 9 ans
- Total affichages :
Transcription
1 Chapitre 4 Distribution des échantillons aléatoires Université de Paris Ouest
2 Objectifs du chapitre Rappel : L inférence statistique consiste à induire les caractéristiques inconnues d une population à partir d un échantillon. échantillon représentatif? échantillon suffisamment grand?
3 Sommaire 1 Un exemple pour comprendre 2 Distribution des échantillons aléatoires 3 Un exemple de calcul 4 Conclusion
4 Un exemple avec une petite population Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. P A = 10 C = 8 B = 7 D = 6 E = 9
5 Un exemple avec une petite population Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. échantillon de taille 2 P A = 10 C = 8 B = 7 D = 6 éch. AB x = 8, 5 E = 9
6 Un exemple avec une petite population Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. échantillon de taille 2 P A = 10 C = 8 B = 7 D = 6 éch. AB éch. AC x = 8, 5 x = 9 E = 9
7 Un exemple avec une petite population Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. échantillon de taille 2 P A = 10 C = 8 B = 7 D = 6 éch. AB éch. AC... éch. DE x = 8, 5 x = 9... x = 7, 5 E = 9
8 Un exemple avec une petite population Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. échantillon de taille 2 P A = 10 C = 8 B = 7 D = 6 éch. AB éch. AC... éch. DE x = 8, 5 x = 9... x = 7, 5 E = 9 Si l échantillon est tiré au sort, alors la moyenne observée x est aléatoire!
9 Suite de l exemple : distribution des échantillons Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. échantillon de taille 2 P A = 10 B = 7 C = 8 D = 6 E = 9 nb d échantillons 5 éch. parfaits éch. anormal moyenne empirique Si l échantillon est tiré au sort, alors la moyenne empirique x est aléatoire!
10 Suite de l exemple : distribution des échantillons Le score d Agpar mesure la santé d un nouveau-né. P = {5 enfants}, µ = 8. échantillon de taille 2 P A = 10 B = 7 C = 8 D = 6 E = 9 nb d échantillons 5 éch. parfaits éch. anormal moyenne empirique Si l échantillon est tiré au sort, alors la moyenne empirique x est aléatoire!
11 Exemple : à retenir Si l échantillon est tiré au sort, alors la moyenne empirique x est aléatoire. On aimerait connaître la distribution de x Si l échantillon est grand, peu de chances d avoir un échantillon anormal?
12 Notations : x vs X n En fonction du contexte, deux notations x : moyenne observée sur un un échantillon fixé X n : moyenne empirique d un échantillon aléatoire
13 Notations : x vs X n En fonction du contexte, deux notations x : moyenne observée sur un un échantillon fixé X n : moyenne empirique d un échantillon aléatoire A = 10 B = 7 P C = 8 D = 6 Pour l échantillon AB, x = 8, 5 mais X n peut valoir 8.5/9/7.5/... E = 9
14 Sommaire 1 Un exemple pour comprendre 2 Distribution des échantillons aléatoires Protocole d échantillonnage Échantillons aléatoires pour une variable quantitative Échantillons aléatoires pour une variable qualitative 3 Un exemple de calcul 4 Conclusion
15 Protocole : qu est-ce qu un échantillon aléatoire? On a besoin d un modèle mathématique précis pour le tirage d un échantillon de n personnes. Hypothèses n tirages uniformes : chaque individu a la même chance d être tiré au sort. Les tirages sont indépendants. Les tirages se font avec remise.
16 Échantillons aléatoires pour une variable quantitative X variable continue, de moyenne µ et d écart-type σ. X n désigne la moyenne empirique d un échantillon tiré au sort. Formule Si n 30, alors X n approx. N ( ) σ µ,. n
17 Échantillons aléatoires pour une variable quantitative X variable continue, de moyenne µ et d écart-type σ. X n désigne la moyenne empirique d un échantillon tiré au sort. Formule Si n 30, alors X n approx. N ( ) σ µ,. n Exemple : X = Âge, µ = 41, σ = 23. Si n = 30, X 30 est l âge moyen de 30 Français tirés au hasard. ( ) approx. 23 X 30 N 41, = N (41; 4, 20). 30
18 Exemples de X n quand n varie X = Âge, µ = 41, σ = 23. X 80 X X µ = 41 âge
19 Exemples de X n quand n varie X = Âge, µ = 41, σ = 23. Si n = 30, X 30 est l âge moyen de 30 Français tirés au hasard. X 30 N (41; 4, 20) X 80 X X µ = 41 âge
20 Exemples de X n quand n varie X = Âge, µ = 41, σ = 23. Si n = 30, X 30 est l âge moyen de 30 Français tirés au hasard. Si n = 80, X 80 est l âge moyen de 80 Français tirés au hasard. X 30 N (41; 4, 20) X 80 N (41; 2, 57) X 80 X X µ = 41 âge
21 Échantillons aléatoires pour une variable qualitative X variable qualitative, de proportion p. On note F n la moyenne empirique d un échantillon tiré au sort. Formule Si n 30, np 5 et n(1 p) 5, alors ( approx. F n N p, ) p(1 p). n
22 Échantillons aléatoires pour une variable qualitative X variable qualitative, de proportion p. On note F n la moyenne empirique d un échantillon tiré au sort. Formule Si n 30, np 5 et n(1 p) 5, alors ( approx. F n N p, ) p(1 p). n Exemple : P = utilisateurs de Facebook en France,X = Sexe, p= proportion de femmes = Soit F n la proportion de femmes parmi 30 utilisateurs tirés au hasard.
23 Échantillons aléatoires pour une variable qualitative X variable qualitative, de proportion p. On note F n la moyenne empirique d un échantillon tiré au sort. Formule Si n 30, np 5 et n(1 p) 5, alors ( approx. F n N p, ) p(1 p). n Exemple : P = utilisateurs de Facebook en France,X = Sexe, p= proportion de femmes = Soit F n la proportion de femmes parmi 30 utilisateurs tirés au hasard. Comme 30 30, , , approx. F n N ( 0.54, ) = N (0.54, 0.09).
24 Échantillons aléatoires pour une variable qualitative P = utilisateurs de Facebook en France,X = Sexe, p = 0.54 F n = proportion de femmes parmi 30 utilisateurs tirés au hasard. F n approx. N (0.54, 0.09).
25 Sommaire 1 Un exemple pour comprendre 2 Distribution des échantillons aléatoires 3 Un exemple de calcul 4 Conclusion
26 Un exemple de calcul X = Sexe, p= proportion de femmes = 0.54 F n = proportion de femmes dans un échantillon de 30 individus. Question : On tire 30 utilisateurs au hasard, quelle est la probabilité d avoir plus de 60% d hommes?
27 Un exemple de calcul X = Sexe, p= proportion de femmes = 0.54 F n = proportion de femmes dans un échantillon de 30 individus. Question : On tire 30 utilisateurs au hasard, quelle est la probabilité d avoir plus de 60% d hommes? Cela revient à calculer P(F n 0.40). Au transparent précédent, nous avons vu que F n N (0.54; 0.09).
28 Un exemple de calcul X = Sexe, p= proportion de femmes = 0.54 F n = proportion de femmes dans un échantillon de 30 individus. Question : On tire 30 utilisateurs au hasard, quelle est la probabilité d avoir plus de 60% d hommes? Cela revient à calculer P(F n 0.40). Au transparent précédent, nous avons vu que F n N (0.54; 0.09). On centre et on réduit F n : ( ) Fn P(F n 0.40) = P = P (Z 1.56) = F ( 1.56) = 1 F (1.56) =
29 Un exemple de calcul X = Sexe, p= proportion de femmes = 0.54 F n = proportion de femmes dans un échantillon de 30 individus. Question : On tire 30 utilisateurs au hasard, quelle est la probabilité d avoir plus de 60% d hommes? Cela revient à calculer P(F n 0.40). Au transparent précédent, nous avons vu que F n N (0.54; 0.09). On centre et on réduit F n : ( ) Fn P(F n 0.40) = P = P (Z 1.56) = F ( 1.56) = 1 F (1.56) = Réponse : On a environ 6% de chance de tomber sur un échantillon comptant plus de 60% d hommes.
30 Sommaire 1 Un exemple pour comprendre 2 Distribution des échantillons aléatoires 3 Un exemple de calcul 4 Conclusion
31 Conclusion Échantillon tiré au sort moyenne empirique/fréquence empirique aléatoire. Si n 30, on connaît la distribution de X n, F n.
32 Conclusion Échantillon tiré au sort moyenne empirique/fréquence empirique aléatoire. Si n 30, on connaît la distribution de X n, F n. Rappel Les formules ne sont valables que si l échantillon est aléatoire et uniforme : chaque individu de P a la même chance de faire partie de l échantillon.
Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes
IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Probabilités conditionnelles Loi binomiale
Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard
P1 : Corrigés des exercices
P1 : Corrigés des exercices I Exercices du I I.2.a. Poker : Ω est ( l ensemble ) des parties à 5 éléments de l ensemble E des 52 cartes. Cardinal : 5 I.2.b. Bridge : Ω est ( l ensemble ) des parties à
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #16
ACTUARIAT 1, ACT 2121, AUTOMNE 201 #16 ARTHUR CHARPENTIER 1 Dans une petite compagnie d assurance le nombre N de réclamations durant une année suit une loi de Poisson de moyenne λ = 100. On estime que
LES GENERATEURS DE NOMBRES ALEATOIRES
LES GENERATEURS DE NOMBRES ALEATOIRES 1 Ce travail a deux objectifs : ====================================================================== 1. Comprendre ce que font les générateurs de nombres aléatoires
Calcul élémentaire des probabilités
Myriam Maumy-Bertrand 1 et Thomas Delzant 1 1 IRMA, Université Louis Pasteur Strasbourg, France Licence 1ère Année 16-02-2006 Sommaire La loi de Poisson. Définition. Exemple. 1 La loi de Poisson. 2 3 4
Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12
Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont
NOTE SUR LA MODELISATION DU RISQUE D INFLATION
NOTE SUR LA MODELISATION DU RISQUE D INFLATION 1/ RESUME DE L ANALYSE Cette étude a pour objectif de modéliser l écart entre deux indices d inflation afin d appréhender le risque à très long terme qui
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Chapitre 3 : Principe des tests statistiques d hypothèse. José LABARERE
UE4 : Biostatistiques Chapitre 3 : Principe des tests statistiques d hypothèse José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Plan I. Introduction
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE
Chapitre 5 UE4 : Biostatistiques Tests paramétriques de comparaison de 2 moyennes Exercices commentés José LABARERE Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés.
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010
Exercices supplémentaires sur l introduction générale à la notion de probabilité 2009-2010 Exercices fortement conseillés : 6, 10 et 14 1) Un groupe d étudiants est formé de 20 étudiants de première année
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Exo7. Probabilité conditionnelle. Exercices : Martine Quinio
Exercices : Martine Quinio Exo7 Probabilité conditionnelle Exercice 1 Dans la salle des profs 60% sont des femmes ; une femme sur trois porte des lunettes et un homme sur deux porte des lunettes : quelle
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Observation statistique
2. APERÇU DES RÉSULTATS DU RENDEMENT Observation statistique s. Les résultats présentés dans ce rapport sont fondés sur des échantillons. Des échantillons distincts ont été sélectionnés pour chaque instance
POKER ET PROBABILITÉ
POKER ET PROBABILITÉ Le poker est un jeu de cartes où la chance intervient mais derrière la chance il y a aussi des mathématiques et plus précisément des probabilités, voici une copie d'écran d'une main
TESTS D'HYPOTHESES Etude d'un exemple
TESTS D'HYPOTHESES Etude d'un exemple Un examinateur doit faire passer une épreuve type QCM à des étudiants. Ce QCM est constitué de 20 questions indépendantes. Pour chaque question, il y a trois réponses
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Principe d un test statistique
Biostatistiques Principe d un test statistique Professeur Jean-Luc BOSSON PCEM2 - Année universitaire 2012/2013 Faculté de Médecine de Grenoble (UJF) - Tous droits réservés. Objectifs pédagogiques Comprendre
Cours (7) de statistiques à distance, élaboré par Zarrouk Fayçal, ISSEP Ksar-Said, 2011-2012 LES STATISTIQUES INFERENTIELLES
LES STATISTIQUES INFERENTIELLES (test de Student) L inférence statistique est la partie des statistiques qui, contrairement à la statistique descriptive, ne se contente pas de décrire des observations,
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre
Vous incarnez un surdoué en informatique qui utilise son ordinateur afin de pirater des comptes bancaires un peu partout dans le monde et s en mettre plein les poches. Problème : vous n êtes pas seul!
Lois de probabilité. Anita Burgun
Lois de probabilité Anita Burgun Problème posé Le problème posé en statistique: On s intéresse à une population On extrait un échantillon On se demande quelle sera la composition de l échantillon (pourcentage
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Le suivi de la qualité. Méthode MSP : généralités
Le suivi de la qualité La politique qualité d une entreprise impose que celle maîtrise sa fabrication. Pour cela, elle doit être capable d évaluer la «qualité» de son processus de production et ceci parfois
Les probabilités. Chapitre 18. Tester ses connaissances
Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce
LES PROBABILITÉS DE GAINS
LES PROBABILITÉS DE GAINS JOUER À DES JEUX DE HASARD La seule chose que tous les jeux de hasard ont en commun, c est que le fait de gagner ou de perdre se fait de façon aléatoire. Même si le rêve de gagner
Chapitre 3 : INFERENCE
Chapitre 3 : INFERENCE 3.1 L ÉCHANTILLONNAGE 3.1.1 Introduction 3.1.2 L échantillonnage aléatoire 3.1.3 Estimation ponctuelle 3.1.4 Distributions d échantillonnage 3.1.5 Intervalles de probabilité L échantillonnage
C est à vous qu il appartient de mettre en place des conditions optimales pour permettre la meilleure réalisation possible.
Commission Mixte Nationale UNSS - FFSB Programme 2012-2016 Réalisation du livret par Céline TOLLER 1 Ce petit mémento doit aider l élève du collège ou du lycée à arbitrer les rencontres sportives, en cours
VI. Tests non paramétriques sur un échantillon
VI. Tests non paramétriques sur un échantillon Le modèle n est pas un modèle paramétrique «TESTS du CHI-DEUX» : VI.1. Test d ajustement à une loi donnée VI.. Test d indépendance de deux facteurs 96 Différentes
Niveau de scolarité et emploi : le Canada dans un contexte international
N o 81-599-X au catalogue Issue n o 008 ISSN : 1709-8661 ISBN : 978-1-100-98615-9 Feuillet d information Indicateurs de l éducation au Niveau de scolarité et emploi : le dans un contexte international
Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014
Tests du χ 2 Statistiques Décisionnelles L3 Sciences Economiques & Gestion Faculté d économie, gestion & AES Université Montesquieu - Bordeaux 4 2013-2014 A. Lourme http://alexandrelourme.free.fr Outline
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
NOTIONS DE PROBABILITÉS
NOTIONS DE PROBABILITÉS Sommaire 1. Expérience aléatoire... 1 2. Espace échantillonnal... 2 3. Événement... 2 4. Calcul des probabilités... 3 4.1. Ensemble fondamental... 3 4.2. Calcul de la probabilité...
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication. Philippe Robert INRIA Paris-Rocquencourt
Algorithmes de Transmission et de Recherche de l Information dans les Réseaux de Communication Philippe Robert INRIA Paris-Rocquencourt Le 2 juin 2010 Présentation Directeur de recherche à l INRIA Institut
LES DIFFERENTS TYPES DE MESURE
LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce
Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.
Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté
Probabilités III Introduction à l évaluation d options
Probabilités III Introduction à l évaluation d options Jacques Printems Promotion 2012 2013 1 Modèle à temps discret 2 Introduction aux modèles en temps continu Limite du modèle binomial lorsque N + Un
Cryptographie et fonctions à sens unique
Cryptographie et fonctions à sens unique Pierre Rouchon Centre Automatique et Systèmes Mines ParisTech [email protected] Octobre 2012 P.Rouchon (Mines ParisTech) Cryptographie et fonctions
DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES
BTS GPN ERE ANNEE-MATHEMATIQUES-DENOMBREMENT-COMBINATOIRE-EXERCICE DE SYNTHESE EXERCICE RECAPITULATIF (DE SYNTHESE) CORRIGE Le jeu au poker fermé DENOMBREMENT-COMBINATOIRE-PROBABILITES GENERALES On joue
Arbre de probabilité(afrique) Univers - Evénement
Arbre de probabilité(afrique) Univers - Evénement Exercice 1 Donner l univers Ω de l expérience aléatoire consistant à tirer deux boules simultanément d une urne qui en contient 10 numérotés puis à lancer
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
Annexe commune aux séries ES, L et S : boîtes et quantiles
Annexe commune aux séries ES, L et S : boîtes et quantiles Quantiles En statistique, pour toute série numérique de données à valeurs dans un intervalle I, on définit la fonction quantile Q, de [,1] dans
SONDAGES RELATIFS AUX SERVICES D INFORMATION ET DE RÉFÉRENCE OFFERTS PAR LA DIRECTION GÉNÉRALE DE LA DIFFUSION DE BANQ
SONDAGES RELATIFS AUX SERVICES D INFORMATION ET DE RÉFÉRENCE OFFERTS PAR LA DIRECTION GÉNÉRALE DE LA DIFFUSION DE BANQ RÉSULTATS DE L ÉTÉ 2008 JUMELÉS À CEUX DE L HIVER 2008 RAPPORT VERSION FINALE Daniel
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE. Cinquième épreuve d admissibilité STATISTIQUE. (durée : cinq heures)
CONCOURS D ENTREE A L ECOLE DE 2007 CONCOURS EXTERNE Cinquième épreuve d admissibilité STATISTIQUE (durée : cinq heures) Une composition portant sur la statistique. SUJET Cette épreuve est composée d un
PRIX DE VENTE À L EXPORTATION GESTION ET STRATÉGIES
PRIX DE VENTE À L EXPORTATION GESTION ET STRATÉGIES Direction du développement des entreprises et des affaires Préparé par Jacques Villeneuve, c.a. Conseiller en gestion Publié par la Direction des communications
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Calculs de probabilités
Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile
Probabilités Loi binomiale Exercices corrigés
Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre
Introduction à l approche bootstrap
Introduction à l approche bootstrap Irène Buvat U494 INSERM buvat@imedjussieufr 25 septembre 2000 Introduction à l approche bootstrap - Irène Buvat - 21/9/00-1 Plan du cours Qu est-ce que le bootstrap?
WWW.ELCON.SE Multichronomètre SA10 Présentation générale
WWW.ELCON.SE Multichronomètre SA10 Présentation générale Le SA10 est un appareil portable destiné au test des disjoncteurs moyenne tension et haute tension. Quoiqu il soit conçu pour fonctionner couplé
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
ESSEC. Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring
ESSEC Cours «Management bancaire» Séance 3 Le risque de crédit Le scoring Les méthodes d évaluation du risque de crédit pour les PME et les ménages Caractéristiques Comme les montants des crédits et des
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
Feuille d exercices 2 : Espaces probabilisés
Feuille d exercices 2 : Espaces probabilisés Cours de Licence 2 Année 07/08 1 Espaces de probabilité Exercice 1.1 (Une inégalité). Montrer que P (A B) min(p (A), P (B)) Exercice 1.2 (Alphabet). On a un
23. Interprétation clinique des mesures de l effet traitement
23. Interprétation clinique des mesures de l effet traitement 23.1. Critères de jugement binaires Plusieurs mesures (indices) sont utilisables pour quantifier l effet traitement lors de l utilisation d
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction.
Exploitation et analyse des données appliquées aux techniques d enquête par sondage. Introduction. Etudes et traitements statistiques des données : le cas illustratif de la démarche par sondage INTRODUCTION
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
THÉÂTRE DU BEAUVAISIS
THÉÂTRE DU BEAUVAISIS THÉÂTRE DU BEAUVAISIS Un peu d histoire Enquête publique : le cadre Le dossier Déroulement de l enquête Avis et conclusions du CE Après remise du rapport Octobre 2014 : où en est-on?
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Cours de Tests paramétriques
Cours de Tests paramétriques F. Muri-Majoube et P. Cénac 2006-2007 Licence Ce document est sous licence ALC TYPE 2. Le texte de cette licence est également consultable en ligne à l adresse http://www.librecours.org/cgi-bin/main?callback=licencetype2.
COMMENT GAGNER DE L ARGENT AUX PARIS FOOT
COMMENT GAGNER DE L ARGENT AUX PARIS FOOT Cet ebook a pour vocation de vous présenter diverses méthodes pour gagner de l argent grâce aux paris sportifs sur le foot. Lisez attentivement cet ebook pour
Étude des tendances en matière de soins de santé au Canada
www.bucksurveys.com Étude des tendances en matière de soins de santé au Canada Résultats 2011 Introduction: Faibles augmentations à tous les niveaux Depuis que Buck a lancé, en 2001, sa première Étude
Probabilités (méthodes et objectifs)
Probabilités (méthodes et objectifs) G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Probabilités (méthodes et objectifs) 10 juin 2007 1 / 19 1 Déterminer la loi de probabilité d
Pourquoi investir en bourse? Pour gagner nettement plus qu avec un livret
Chapitre 5 Pourquoi investir en bourse? Pour gagner nettement plus qu avec un livret Achetez de bonnes actions et gardez-les jusqu à ce qu elles augmentent, ensuite vendez-les. Si elles n augmentent pas,
La nouvelle planification de l échantillonnage
La nouvelle planification de l échantillonnage Pierre-Arnaud Pendoli Division Sondages Plan de la présentation Rappel sur le Recensement de la population (RP) en continu Description de la base de sondage
Méthode : On raisonnera tjs graphiquement avec 2 biens.
Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel
NOTICE DE MONTAGE ECHELLE
NOTICE DE MONTAGE ECHELLE À CRINOLINE ACIER Me llerie uminium, acier et i x Rue de la coulée verte - P.A de la fringale 2700 VAL DE REUIL Tel. 02 32 09 57 80 - Fax. 02 32 09 57 92 Email : [email protected]
CONCEPTION ET TIRAGE DE L ÉCHANTILLON
CHAPITRE 4 CONCEPTION ET TIRAGE DE L ÉCHANTILLON Ce chapitre technique 1 s adresse principalement aux spécialistes de sondage, mais aussi au coordinateur et aux autres responsables techniques de l enquête.
Exemple On lance une pièce de monnaie trois fois de suite. Calculer la probabilité d obtenir exactement deux fois pile.
Probabilités Définition intuitive Exemple On lance un dé. Quelle est la probabilité d obtenir un multiple de 3? Comme il y a deux multiples de 3 parmi les six issues possibles, on a chances sur 6 d obtenir
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Correction du baccalauréat ES/L Métropole 20 juin 2014
Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)
Fibonacci et les paquerettes
Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au
Unité E Variation et analyse statistique
Unité E Variation et analyse statistique VARIATION ET ANALYSE STATISTIQUE Introduction Ce module présente aux élèves deux méthodes d'utilisation des statistiques pour décrire des données et tirer des conclusions
Item 169 : Évaluation thérapeutique et niveau de preuve
Item 169 : Évaluation thérapeutique et niveau de preuve COFER, Collège Français des Enseignants en Rhumatologie Date de création du document 2010-2011 Table des matières ENC :...3 SPECIFIQUE :...3 I Différentes
Services Observatoire 2010 de l opinion sur l image des banques
Observatoire 2010 de l opinion sur l image des banques - Juillet 2010 Méthodologie Méthodologie : Cette étude a été menée dans le cadre de l'omcapi, l'enquête périodique multi-clients de l'ifop, réalisée
Variables Aléatoires. Chapitre 2
Chapitre 2 Variables Aléatoires Après avoir réalisé une expérience, on ne s intéresse bien souvent à une certaine fonction du résultat et non au résultat en lui-même. Lorsqu on regarde une portion d ADN,
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Mesures et incertitudes
En physique et en chimie, toute grandeur, mesurée ou calculée, est entachée d erreur, ce qui ne l empêche pas d être exploitée pour prendre des décisions. Aujourd hui, la notion d erreur a son vocabulaire
Modélisation aléatoire en fiabilité des logiciels
collection Méthodes stochastiques appliquées dirigée par Nikolaos Limnios et Jacques Janssen La sûreté de fonctionnement des systèmes informatiques est aujourd hui un enjeu économique et sociétal majeur.
Fluctuation d une fréquence selon les échantillons - Probabilités
Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille
Intervention au Colloque de Bruxelles du jeudi 31 octobre 2013 (Mallorie Trannois)
Intervention au Colloque de Bruxelles du jeudi 31 octobre 2013 (Mallorie Trannois) Tout d abord, je voulais remercier Monsieur Marique de m avoir invité à donner mon point de vue lors de la table ronde
PROBABILITÉS CONDITIONNELLES
PROBABILITÉS CONDITIONNELLES A.FORMONS DES COUPLES Pour la fête de l école, les élèves de CE 2 ont préparé une danse qui s exécute par couples : un garçon, une fille. La maîtresse doit faire des essais
Modélisation et simulation du trafic. Christine BUISSON (LICIT) Journée Simulation dynamique du trafic routier ENPC, 9 Mars 2005
Modélisation et simulation du trafic Christine BUISSON (LICIT) Journée Simulation dynamique du trafic routier ENPC, 9 Mars 2005 Plan de la présentation! Introduction : modèles et simulations définition
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12
ACTUARIAT 1, ACT 2121, AUTOMNE 2013 #12 ARTHUR CHARPENTIER 1 Une compagnie d assurance modélise le montant de la perte lors d un accident par la variable aléatoire continue X uniforme sur l intervalle
