RE SOLUTIONS CHAPITRE 1

Save this PDF as:

Dimension: px
Commencer à balayer dès la page:

Download "201-105-RE SOLUTIONS CHAPITRE 1"

Transcription

1 Chapitre1 Matrices RE SOLUTIONS CHAPITRE 1 EXERCICES a) 1 3 Ë Ë 1 16 pas défini d) e) Ë Ë a) Ë4 4 0 Ë Ë a) Ë Ë Ë a) Ë , 045 1, 04 1, Ë Ë Ë a) 605, 743, 902, 11, , 864, 946, 11, , 1001, 1128, 1276, Ë902, 1034, 1282, 1370, 605, 745, 900, 11, , 865, 945, 11, , 1000, 1130, 1275, Ë900, 1035, 1280, 1370, 696, 857, 10, 35 13, , 995, 10, 87 13, 63 10, 01 11, 50 13, 00 14, 67 Ë10, 35 11, 91 14, 72 15, a) Ë Ë Ë5 5 6 Ë Ë Ë Ë Tous les articles dont les quantités sont négatives doivent être produits en priorité pour répondre à la demande.

2 2 Chapitre 1 Matrices 7. a) 6 8 Ë Ë Ë d) pas défini t 8. a) A + A Ë La matrice A + A t est toujours symétrique. EXERCICES a) Ë Ë Ë0 0 d) Ë Non; A B 8 7 B A Ë 9 17 et 17 3 Ë a) Ë Ë Ë 17 4 d) pas défini En effectuant le produit des matrices, on trouve a + c b + d 0 0 Ë4a + 2c 4b + 2d Ë0 0. On cherche donc a et c tels que 2a + c 0 et 4a + 2c 0. Ces deux équations ont les mêmes solutions et la condition s écrit c 2a. En donnant une valeur particulière à a dans cette équation, on aura donc une valeur c qui satisfait à la condition. En posant a 1, par exemple, on trouve c 2. De plus, on cherche b et d tels que 2b + d 0 et 4b + 2d 0. Ces deux équations ont les mêmes solutions et la condition s écrit d 2b. En donnant une valeur particulière à b dans cette équation, on aura une valeur d qui satisfait à la condition. En posant b 4, par exemple, on trouve d La matrice B Ë 2 8 satisfait donc à la condition posée. En effet A B Ë4 2 Ë 2 8 Ë0 0 On remarque que la matrice B satisfaisant à la condition posée n est pas unique. De plus, B A Ë 2 8 Ë 4 2 Ë Donc A B π B A. 5. a) A B et B A Un des produits donne une matrice 2 2 et l autre donne une matrice Ë 5 81 Ë A B 7 2 B A Ë 0 0 et 14 4 Ë 1 3 Les deux produits donnent une matrice 2 2. Cependant, les deux matrices sont différentes car les éléments des matrices sont différents A B , B A Ë Ë Les deux produits donnent une matrice 3 3. Cependant, les deux matrices sont différentes car les éléments des matrices sont différents.

3 Chapitre1 Matrices 3 d) Soit, par exemple, A 3 0 B 2 0 et Ë0 3 Ë0 2. On a alors A B B A 6 0 Ë a) (A + B) t A t + B t 6 7 Ë2 5, (A B)t B t A t 1 37 Ë16 6. (A + B) t et A t + B t ne sont pas définies. (A B) t B t A t (A + B) t A t + B t , (A B)t B t A t Ë Ë Ë a) Ï heures à l atelier de sciage Ë2 1 1 Ë16 Ë Ô, soit Ì heures à l atelier d assemblage 98 ÓÔ 98 heures à l atelier de sablage Pour trouver le coût de production en salaires, il faut effectuer le produit matriciel de la matrice des salaires horaires par la matrice des temps de réalisation, soit : 187 ( 10, 75 7, 53 8, 25) $ Ë 77,17 98 Le coût de réalisation d un exemplaire est obtenu en calculant le produit de la matrice des salaires horaires par la matrice des temps de réalisation de chaque article, soit : ( 10, 75 7, 53 8, 25) , 81 37, 28 55, 56 Ë ( ) Le coût est donc de 63,81 $ pour un bureau, 37,28 $ pour une chaise et 55,56 $ pour une table. 8.a) , 2 16, 65 Ï1 802 unités de bois 273, 2, Ë12, 08, 14, Ë52 Ë Ô soit Ì273,2 unités de contreplaqué 184, 8 ÓÔ 184,8 unités d aggloméré Ï182 h et 10 min à l atelier de sciage Ë Ë52 Ë Ô, soit Ì111 h et 30 min à l atelier d assemblage ÓÔ 153 h et 35 min à l atelier de sablage La réalisation nécessite donc 182 heures et 10 minutes de travail à l atelier de sciage, 111 heures et 30 minutes à l atelier d assemblage et 153 heures et 35 minutes à l atelier de sablage. 9. a) Ë 6 3 Ë 6 3 Ë Ë Ë Ë a) A A Ë, Ë. La matrice A est nilpotente d indice a a A 0 3a a, A Ë0 9a 3a. La matrice A est nilpotente d indice 3. Ë0 0 0 Les deux exemples des parties a et b suggèrent que oui. d) Soit A une matrice nilpotente d indice 3. On a alors A 3 0. Par les propriétés des opérations, on a (aa) 3 (aa) (aa) (aa) aaa (A A A) a 3 A 3 a Donc, la matrice aa est nilpotente d indice 3.

4 4 Chapitre 1 Matrices e) Soit A une matrice nilpotente d indice n. On a alors A n 0. Par les propriétés des opérations, on a n n n n ( aa) ( aa) ( aa)... ( aa) ( aa... a)( A A... A) a A a n fois n fois n fois Donc, la matrice aa est nilpotente d indice n. 11. a) t t A A et A A Ë Ë A A t et A t A sont des matrices symétriques quelle que soit la matrice A. Soit A une matrice. Pour montrer que la matrice A A t est symétrique, il faut montrer qu elle est égale à sa transposée. On a, par les propriétés des opérations : (A A t ) t A tt A t A A t. La matrice A A t est donc symétrique. De même pour A t A. 12. Parce que (A + B) 2 A 2 + AB + BA + B 2. Le produit matriciel n est pas commutatif, c est-à-dire que AB π BA. 13. A A et A , Ë0 0 4 Ë0 0 8 Ë Les puissances d une matrice triangulaire supérieure sont également des matrices triangulaires supérieures. 14. Soit A, une matrice idempotente, c est-à-dire A 2 A. On doit montrer que (A t ) 2 A t. Or, (A t ) 2 A t A t, par définition du produit; (A A) t, puisque (A B) t B t A t ; (A 2 ) t, par définition du produit; (A) t, puisque A 2 A. 15. Soit A, une matrice nilpotente d indice 2, c est-à-dire A 2 0. On doit montrer que (A t ) 2 0. Or, (A t ) 2 A t A t (A A) t, puisque (A B) t B t A t (A 2 ) t 0 t 0, puisque A Soit A, une matrice nilpotente d indice 3, c est-à-dire A 3 0. On doit montrer que (A t ) 3 0. Or, (A t ) 3 A t A t A t, par définition; (A t A t ) A t, par associativité; (A A) t A t, puisque (A B) t B t A t ; [ A (A A)] t, puisque (A B) t B t A t ; [A A A] t, par associativité; (A 3 ) t, par associativité; 0 t 0, puisque A a) B R Ë et Ë B + R Ë ( 1 1 1) Ë ( ) L opération donne le nombre total de chaque sorte de jus de fruits vendus durant la fin de semaine, soit 243 jus d orange, 396 jus de raisin et 341 jus de pomme. d) Ë Ë1 Ë. 345 L opération donne le nombre de jus de fruits vendus pour chacune des journées de la fin de semaine, soit 272 jus le vendredi, 363 jus le samedi et 345 jus le dimanche.

5 Chapitre1 Matrices e) ( 111) Ë ( ). L opération donne le total des ventes durant la fin de semaine, soit 980 jus. On peut également effectuer l opération suivante : ( ) Ë ( ). 1 f) P 100, C Ë 040, 140, et Ë 060,. g) A 100, 040, 060, 120, 050, Ë 140, 060, 080, 120, 050, 070, h) , 040, 060, ,,,,,, Ë Ë Ë,,,,,, 424, , , 50 L opération donne les revenus, les coûts et les profits pour chacune des journées de la fin de semaine. Revenus Coûts Profits Vendredi 335, , , 80 Samedi 447, , , 00 Dimanche Ë 424, , , 50 i) ( 111),,, Ë,,, (,,, ) 424, , , 50 j) Le produit donne 1, , ; Ë Ë , Ë k) 115, 040, 046, 060, 069, Ë050, Ë l) 120, 058, 100, 120, 140, 120, 046, 074, 168, Ë120, Ë m) 168, 069, 099, 144, Ë144, 058, 086, n) , 046, 074, ,,,,,, Ë Ë Ë,,,,,, 763, , , , , , 45 o) ( 111) 805, , , , , , 48 Ë763, , , 52 ( )

6 6 Chapitre 1 Matrices

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes.

Calcul matriciel ... Il est impossible de faire la somme de 2 matrices de tailles différentes. Chapitre : Calcul matriciel Spé Maths - Matrices carrées, matrices-colonnes : opérations. - Matrice inverse d une matrice carrée. - Exemples de calcul de la puissance n-ième d une matrice carrée d ordre

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

La fonction carré Cours

La fonction carré Cours La fonction carré Cours CHAPITRE 1 : Définition CHAPITRE 2 : Sens de variation CHAPITRE 3 : Parité et symétrie CHAPITRE 4 : Représentation graphique CHAPITRE 5 : Equation du type CHAPITRE 6 : Inéquation

Plus en détail

Correction. Mathématique Élémentaire. Test n 5 (14 octobre 2013) Question 1. Soit n N \ {0}. Prouvez par récurrence que

Correction. Mathématique Élémentaire. Test n 5 (14 octobre 2013) Question 1. Soit n N \ {0}. Prouvez par récurrence que Test n 5 (1 octobre 1 Question 1. Soit n N \ {}. Prouvez par récurrence que ( n x 1 x ( x n x (x n x n. Voir Test 5, 17 octobre 11, question. Question. (a On dit que A R n n est une matrice antisymétrique

Plus en détail

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A

MAT1702 A - SOLUTIONS DU TEST #2 - VERSION A MAT702 A - SOLUTIONS DU TEST #2 - VERSION A. (5 points) Étant donné A 3 et B. 0 Pour chacune des opérations matricielles ci-dessous, calculez la matrice résultante si elle existe. Si l opération n est

Plus en détail

Cet ouvrage vous montre et vous explique tous les calculs rencontrés dans les différents concours paramédicaux et sociaux.

Cet ouvrage vous montre et vous explique tous les calculs rencontrés dans les différents concours paramédicaux et sociaux. - Cet ouvrage vous montre et vous explique tous les calculs rencontrés dans les différents concours paramédicaux et sociaux. Vous allez pouvoir apprendre ou réviser toutes les notions de calcul abordées

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Arthur Cayley (1821-1895)

Arthur Cayley (1821-1895) Arthur Cayley (1821-1895) Mathématicien britannique, il fait partie des fondateurs de l'école britannique moderne de mathématiques pures. Il est considéré comme l'inventeur des matrices. Dès 1854, il a

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Cours Diagonalisation

Cours Diagonalisation Cours Diagonalisation par Pierre Veuillez 1 Objectif Pour une matrice A donnée, déterminer une matrice D diagonale et une matrice P inversible telle que A = P D P 1. Interprètation : Quelle relation reconnaît-on?

Plus en détail

Plusieurs exercices de la douzième séance de TD

Plusieurs exercices de la douzième séance de TD Plusieurs exercices de la douzième séance de TD Décembre 2006 1 Offre du travail 1.1 énoncé On considère un ménage dont les préférences portent sur la consommation et le temps consacré aux activités non

Plus en détail

Apllication au calcul financier

Apllication au calcul financier Apllication au calcul financier Hervé Hocquard Université de Bordeaux, France 1 er novembre 2011 Intérêts Généralités L intérêt est la rémunération du placement d argent. Il dépend : du taux d intérêts

Plus en détail

Partie D. Les avantages sociaux

Partie D. Les avantages sociaux Partie D Les avantages sociaux Partie D Les avantages sociaux L assurance-emploi Partie D Les avantages sociaux D-15 Assurance-emploi - Loger la demande de chômage dès la fin de l emploi, même si l employeur

Plus en détail

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an

nous pouvons calculer l intérêt obtenu par ce capital au bout d un an (n =1). 1an Chapitre IV : Les intérêts composés I. Généralités et définition Avec les intérêts composés, nous abordons les mathématiques financières de moyen et long terme. Pour gérer les comptes de moyen et long

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels.

Licence de Sciences et Technologies. Fiche de cours 1 - Nombres réels. Licence de Sciences et Technologies EM21 - Analyse Fiche de cours 1 - Nombres réels. On connaît les ensembles suivants, tous munis d une addition, d une multiplication, et d une relation d ordre compatibles

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R.

Activité 1. Activité 2. M. Wissem Fligène Activités numériques II 1 A- Cours I. Opérations de base Calculs dans R : 1- Opérations dans R. I. Opérations de base Calculs dans R : 1- Opérations dans R Activité 1 Compléter : 3 1 1) + =... 2 4 3 On dit que est la. de 2 et 1 4 (3 2 et 1 sont les de cette ) 4 3 2 3 2) =... ; On dit que est la de

Plus en détail

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION

x x² = y x -3-2 -1-0,5 0 0,5 1 2 3 y CHAPITRE 12 I. INTRODUCTION CHAPITRE 2 FONCTIONS I. INTRODUCTION Une fonction est «une machine à transformer des nombres». Par eemple, la fonction «carré» désigne la «machine» qui transforme les nombres en leurs carrés. Ainsi elle

Plus en détail

Contrôle final de Thermique,

Contrôle final de Thermique, Contrôle final de Thermique, GM3C mars 08 2heures, tous documents autorisés Calculatrices autorisées Problèmes de refroidissement d un ordinateur On se donne un ordinateur qui dissipe une certaine puissance,

Plus en détail

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard

Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Devoir maison Info 2 A rendre pour le 15 décembre au plus tard Exercice 1 : Exécutez un algorithme Considérez l algorithme suivant. Variables A, B, C en Entier; Début Lire A; Lire B; TantQue B 0 C A; TantQue

Plus en détail

Application: 15 points) 2) Un point M est le symétrique d'un point N par rapport à un point O lorsque le point O est le milieu du segment [MN]

Application: 15 points) 2) Un point M est le symétrique d'un point N par rapport à un point O lorsque le point O est le milieu du segment [MN] Correction du contrôle 3 niveau 5e Cours:( 3points) 1) Pour ajouter deux nombres relatifs de signes opposés on soustrait les distances à zéro et devant le résultat on met le signe qui précède la plus grande

Plus en détail

Leçon N 2C Fonctions de calcul

Leçon N 2C Fonctions de calcul Leçon N 2C Fonctions de calcul Cette deuxième leçon concerne les fonctions de calcul dans les tableurs. 1 Structure des formules de calcul Que vous utilisiez EXCEL ou que vous utilisiez CALC, la méthode

Plus en détail

Chapitre 9. La théorie du choix du consommateur

Chapitre 9. La théorie du choix du consommateur Chapitre 9 La théorie du choix du consommateur Le consommateur Comment sont prises les décisions de consommation? La théorie économique propose un modèle Le consommateur a un comportement maximisateur

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

Chapitre 2. 1 2.3. Réciproque d une application linéaire

Chapitre 2. 1 2.3. Réciproque d une application linéaire Chapitre 2 2 Réciproque d une application linéaire On commence par rappeler le concept d application inversible Fonctions inversibles Une application T : X Y est dite inversible si, pour tout y Y, l équation

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1

Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015. Test 1 Cours de Théorie des groupes Bachelor Semestre 3 Prof. E. Bayer Fluckiger 26 octobre 2015 Test 1 Exercice 1. (1) Donner la liste des sous-groupes de Z/24Z. Justifier. (2) Est-ce que Z/24Z a un sous-groupe

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Résumé des changements apportés à la convention collective des Opérations des enquêtes statistiques - Bureaux régionaux

Résumé des changements apportés à la convention collective des Opérations des enquêtes statistiques - Bureaux régionaux 10 avril 2015 Résumé des changements apportés à la convention collective des Opérations des enquêtes statistiques - Bureaux régionaux Article 53 Durée de la convention Le Conseil d arbitrage déclare que

Plus en détail

L offre de travail à CT

L offre de travail à CT L offre de travail à CT I. Le choix travail/loisir : 1. Le cadre général : 2. La statique comparative du modèle : a) L influence d une hausse du revenu non-gagné : b) Effet d une modification du taux de

Plus en détail

Pégase 3 L état des congés payés. Dernière révision le 05/07/2006. http://www.micromegas.fr pegase3@micromegas.fr

Pégase 3 L état des congés payés. Dernière révision le 05/07/2006. http://www.micromegas.fr pegase3@micromegas.fr Pégase 3 L état des congés payés Dernière révision le 05/07/2006 http://www.micromegas.fr pegase3@micromegas.fr Sommaire Principe...3 Description des colonnes du tableau...3 Pégase 3 L état des congés

Plus en détail

Problèmes de transport

Problèmes de transport Problèmes de transport formulation des problèmes d affectation Hugues Talbot Laboratoire A2SI 31 mars 2009 Problèmes de Transport Introduction Distribution Théorie Équilibrage Modélisation Plan Solution

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Ma banque, mes emprunts et mes intérêts

Ma banque, mes emprunts et mes intérêts Ma banque, mes emprunts et mes intérêts Alexandre Vial 0 janvier 2009 Les intérêts cumulés Je place 00 e à 4% par an pendant un an. Donc au bout d un an, j ai 00 + 00. 4 = 00 00( + 4 ) =04 e. 00 Cependant,

Plus en détail

ELE1300 Automne 2012 - Examen final 1/12 0001 + 0101 = 1.01 + 0110.1 = - 00110 = 0111 + 0011 = - 11001 = 1000 + 0010 = 01.01-1101.

ELE1300 Automne 2012 - Examen final 1/12 0001 + 0101 = 1.01 + 0110.1 = - 00110 = 0111 + 0011 = - 11001 = 1000 + 0010 = 01.01-1101. ELE1300 Automne 2012 - Examen final 1/12 Question 1 Arithmétique binaire (6 pts - 15 min) a) Calculez les opérations suivantes (tous les nombres sont signés et représentés au format complément à deux).

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

Opérations Arithmétiques

Opérations Arithmétiques 1 Addition en Binaire 1.1 Principe Opérations Arithmétiques L addition de deux nombres binaires est réalisée de la même façon que l addition décimale. L addition est l opération qui consiste à effectuer

Plus en détail

Annuités. Administration Économique et Sociale. Mathématiques XA100M

Annuités. Administration Économique et Sociale. Mathématiques XA100M Annuités Administration Économique et Sociale Mathématiques XA100M En général, un prêt n est pas remboursé en une seule fois. Les remboursements sont étalés sur plusieurs périodes. De même, un capital

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

c) Quel est le prix d un litre de jus d orange? Donner la valeur exacte puis l arrondi au centime. II - Soit la fonction linéaire f : x -3,5x

c) Quel est le prix d un litre de jus d orange? Donner la valeur exacte puis l arrondi au centime. II - Soit la fonction linéaire f : x -3,5x Classe ème Sujet A NOM : CONTROLE n NOTE : /0 I - Marie a paé 9 litres de jus d orange 5. a) Combien coûtent litres de ce jus d orange? b) Combien de litres peut-on avoir avec 50? c) Quel est le pri d

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27

CUEEP Département Mathématiques E 821 : Problèmes du premier degré 1/27 Problèmes du premier degré à une ou deux inconnues Rappel Méthodologique Problèmes qui se ramènent à une équation à une inconnue Soit l énoncé suivant : Monsieur Duval a 4 fois l âge de son garçon et sa

Plus en détail

Fonctions de référence Variation des fonctions associées

Fonctions de référence Variation des fonctions associées DERNIÈRE IMPRESSION LE 9 juin 05 à 8:33 Fonctions de référence Variation des fonctions associées Table des matières Fonction numérique. Définition.................................. Ensemble de définition...........................3

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

Le MATRIX est un détecteur à boucle à induction. Ce produit détecte la présence de pièces métalliques comme des véhicules, des camions ou des vélos.

Le MATRIX est un détecteur à boucle à induction. Ce produit détecte la présence de pièces métalliques comme des véhicules, des camions ou des vélos. APPLICATION NOTE Paramétrisation des sorties d un Matrix-D Le MATRIX est un détecteur à boucle à induction. Ce produit détecte la présence de pièces métalliques comme des véhicules, des camions ou des

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Cours fonctions, expressions algébriques

Cours fonctions, expressions algébriques I. Expressions algébriques, équations a) Développement factorisation Développer Développer un produit, c est l écrire sous forme d une somme. Réduire une somme, c est l écrire avec le moins de termes possibles.

Plus en détail

BJ - RELATIONS BINAIRES

BJ - RELATIONS BINAIRES BJ - RELATIONS BINAIRES Définitions Soit A et B deux ensembles non vides, et G une partie de A B. On dit qu un élément x de A est relié à un élément y de B par une relation binaire de graphe G, si le couple

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Matrices. 1. Définition. Exo7. 1.1. Définition

Matrices. 1. Définition. Exo7. 1.1. Définition Exo7 Matrices Vidéo partie 1 Définition Vidéo partie 2 Multiplication de matrices Vidéo partie 3 Inverse d'une matrice : définition Vidéo partie 4 Inverse d'une matrice : calcul Vidéo partie 5 Inverse

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

SYSTEMES D EQUATIONS

SYSTEMES D EQUATIONS SYSTEMES D EQUATIONS I Définition: Un système de deux équations du premier degré à deux inconnues x et y est de la forme : a x + b y = c a' x + b' y = c' où a, b, c, et a', b', c' sont des nombres donnés.

Plus en détail

Le contrat de travail a pour but de satisfaire la loi en matière d activités, de rémunération

Le contrat de travail a pour but de satisfaire la loi en matière d activités, de rémunération Fiche 1 Le contrat de travail et sa rémunération I. Les contraintes juridiques II. La fixation du salaire Définition Le contrat de travail est une «convention par laquelle une personne s engage à exécuter,

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Résolution des équations linéaires à deux variables. Octobre 2012

Résolution des équations linéaires à deux variables. Octobre 2012 Résolution des équations linéaires à deux variables Dédou Octobre 2012 Equations à deux inconnues? Une équations à deux inconnues réelles c est quoi? Equations à deux inconnues! Une équation à deux inconnues

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16

Chapitre 1. La valeur et le temps. 1 Exercice 01-16. 2 Corrigé rigé de l exercice 01-16 Chapitre 1 La valeur et le temps 1 Exercice 01-16 16 Échéance commune de plusieurs effets Définition. L échéance commune de plusieurs effets est l échéance d un effet unique qui, le jour de l équivalence,

Plus en détail

Cours de Mathématiques Seconde. Généralités sur les fonctions

Cours de Mathématiques Seconde. Généralités sur les fonctions Cours de Mathématiques Seconde Frédéric Demoulin 1 Dernière révision : 16 avril 007 Document diffusé via le site www.bacamaths.net de Gilles Costantini 1 frederic.demoulin (chez) voila.fr gilles.costantini

Plus en détail

Chapitre 2 : Evaluation des obligations Pourquoi évaluer les titres (contrats à revenus fixes) Actualisation d une séquence de flux (rappel)

Chapitre 2 : Evaluation des obligations Pourquoi évaluer les titres (contrats à revenus fixes) Actualisation d une séquence de flux (rappel) Chapitre 2 : Evaluation des obligations Pourquoi évaluer les titres (contrats à revenus fixes) une obligation peut être revendue avant son échéance un emprunt peut être renégocié Actualisation d une séquence

Plus en détail

INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ

INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ INTRODUCTION À LA MICROÉCONOMIE INTERROGATION RÉCAPITULATIVE DU 16 DÉCEMBRE 2015 CORRIGÉ Question 1 : Soit la firme A dont vous possédez des actions. Sachant que l élasticité de la demande pour le produit

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

DiVA. Calculs - Produit Offres du marché

DiVA. Calculs - Produit Offres du marché Page 1/9 DiVA Calculs - Produit Offres du marché Copyright Asaïs / REDV / SICAE de la Somme 2002-2003. Toute communication, reproduction, publication, même partielle, est interdite sauf autorisation écrite.

Plus en détail

ASSOCIATION CANADIENNE DES PAIEMENTS RÈGLE 7 DU STPGV FILE D ATTENTE DE PAIEMENT

ASSOCIATION CANADIENNE DES PAIEMENTS RÈGLE 7 DU STPGV FILE D ATTENTE DE PAIEMENT ASSOCIATION CANADIENNE DES PAIEMENTS RÈGLE 7 DU STPGV, décembre 1998: révisée le 19 novembre 2001, et le 31 mars 2003. Révisée : le 19 novembre 2001 TABLE DES MATIÈRES FONDEMENT... 1... 1 OPTIONS DE FILE

Plus en détail

Espaces vectoriels. Espace vectoriel. Exemples

Espaces vectoriels. Espace vectoriel. Exemples Espaces vectoriels Espace vectoriel Définition Un espace vectoriel (réel) est un ensemble abstrait V non vide aux éléments notés a, b,, appelés vecteurs et muni des opérations Somme vectorielle : associant

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme

Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle

Plus en détail

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale.

La fonction logique réalisée par un opérateur binaire peut toujours être définie par une expression littérale. GM Sciences et Techniques Industrielles Page sur 5 Automatique et Informatique Industrielle Génie Mécanique Cours Première & - LA VARIABLE BINAIRE L électrotechnique, l électronique et la mécanique étudient

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Correction du premier sujet

Correction du premier sujet Correction du premier sujet Problème 1 1. Soit (u n ) la suite arithmétique de premier terme u 1 = 3 et de raison. Donner la somme des 0 premiers termes de cette suite. Préciser la formule utilisée.. Soit

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Assurance-Emploi. Admissibilité

Assurance-Emploi. Admissibilité Assurance-Emploi Admissibilité Admissibilité 1 er cas : Vous n avez pas fait une demande depuis 2 ans 910 heures travaillées dans les 52 dernières semaines OU 400 à 700 heures (selon le taux de chômage

Plus en détail

OPÉRATIONS SUR LES FRACTIONS

OPÉRATIONS SUR LES FRACTIONS OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication

Plus en détail

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines

Fonctions affines. exercices corrigés. 8 janvier 2012. Fonctions affines eercices corrigés 8 janvier 2012 Eercice 1 Eercice 2 Eercice Eercice 4 Eercice 5 Eercice 6 Eercice 7 Eercice 1 Enoncé Soit la fonction f : + 1 Représenter graphiquement la fonction f. 2 Donner le sens

Plus en détail

TD d exercices de calculs numériques.

TD d exercices de calculs numériques. TD d exercices de calculs numériques. Exercice 1. (Brevet 2008) On donne le programme de calcul suivant : Choisir un nombre. a) Multiplier ce nombre par 3 b) Ajouter le carré du nombre choisi. c) Multiplier

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Chapitre 4. 4.1 Introduction

Chapitre 4. 4.1 Introduction Chapitre 4 Circuits triphasés déséquilibrés Ce chapitre concerne les circuits triphasés déséquilibrés, où une ou plusieurs charges triphasées ne sont pas balancées (l impédance n est pas la même dans les

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

1. NON SALARIE AGRICOLE EXERÇANT PLUSIEURS ACTIVITES DE NATURE AGRICOLE

1. NON SALARIE AGRICOLE EXERÇANT PLUSIEURS ACTIVITES DE NATURE AGRICOLE Les chefs d exploitation ou d entreprise agricole peuvent exercer plusieurs activités simultanément, sous forme d entreprise individuelle ou sous forme sociétaire. Ces activités peuvent être : 1- de nature

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Pré-requis : Etude de fonctions dérivées logarithmes et exponentielles continuité Plan du cours 1. Intégrales 2. Primitives 1. Intégrales A. Aire sous la courbe Méthode des rectangles : Pour

Plus en détail

Corrigé de l examen partiel du 19 novembre 2011

Corrigé de l examen partiel du 19 novembre 2011 Université Paris Diderot Langage Mathématique (LM1) Département Sciences Exactes 2011-2012 Corrigé de l examen partiel du 19 novembre 2011 Durée : 3 heures Exercice 1 Dans les expressions suivantes, les

Plus en détail

Interrogation d une BD

Interrogation d une BD Interrogation d une BD PRINCIPES D INTERROGATION Le résultat d une requête a toujours la forme d une table Résultat d une requête sous forme de table BD=ensemble de tables Algèbre relationnelle n OPERATIONS

Plus en détail

Enquête globale transport

Enquête globale transport Enquête globale transport N 20 Janvier 2013 La mobilité en Île-de-France Week-end Les déplacements du week-end Samedi Transports collectifs Voiture 3,33 déplacements par jour et par personne 35,3 millions

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Chapitre 1. Ensembles et sous-ensembles

Chapitre 1. Ensembles et sous-ensembles Chapitre 1 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Un ensemble est une collection d objets satisfaisant un certain nombre de propriétés et chacun de ces objets est appelé

Plus en détail

Cours Mathématiques PACES UHP-Nancy

Cours Mathématiques PACES UHP-Nancy Cours Mathématiques PACES UHP-Nancy V. Latocha PACES UHP septembre 2010 remerciements à D. Schmitt et V. Ries V. Latocha (PACES UHP) Cours mathématiques Paces septembre 2010 1 / 48 1 Fonctions d une variable

Plus en détail

1 Définition et premières propriétés des congruences

1 Définition et premières propriétés des congruences Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon

Plus en détail