M1-Math.-Ens. UE7 : Probabilités-Statistiques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "M1-Math.-Ens. UE7 : Probabilités-Statistiques"

Transcription

1 UNSA-USTV-IUFM M1-Math.-Ens. UE7 : Probabilités-Statistiques Examen du 7 juin 2012 Durée : 3 h Calculatrices autorisées ; documents et tout autre matériel électronique interdits. Ne pas hésiter à traiter les questions dans l ordre de son choix. Ne pas hésiter à utiliser les résultats d une question antérieure. Nous vous demandons de bien prendre soin de justifier vos solutions en employant le formalisme des probabilités. Exercice n o 1 : Questions de cours ( 1,5 pts Soit (Ω, A, P un espace probabilisé (A est la tribu des «événements», X une variable aléatoire réelle définie sur Ω. a R, ω Ω qui admet une densité f. On considère les 6 objets mathématiques suivants (pour la probabilité conditionnelle, on suppose que P ([X a] 0 : X ; X(ω ; [X a] ; f ; P [X a] (encore noté P(. [X a] ; x P(X x. Indiquer l appartenance de chacun de ces six objets à l un des ensembles suivants (s il y a plusieurs choix, prendre le plus petit ensemble : R ; [0, 1] ; A ; F(A; [0, 1] ; F(Ω; [0, 1] ; F(R; R ; C(R; R ; F(Ω; R. Pour cela, vous vous contenterez de mettre des croix dans les cases appropriées du tableau donné en annexe 1. (Aucune justification n est demandée. On rappelle que pour deux ensembles A et B, F(A; B désigne l ensemble des applications de A dans B ; C(R; R désigne l ensemble des fonctions continues de R dans R. Un bonne réponse est comptée 1/4 point, une mauvaise réponse (y compris si l ensemble choisi n est pas le plus petit enlève 1/4 point (le minimum que l on peut obtenir à l exercice restant quand-même 0. Exercice n o 2 : Les quatre tiroirs (3 pts Un professeur de mathématiques recherche la clef de sa voiture dans l un des 4 tiroirs que possède son scriban. On suppose que la probabilité que la clef soit dans l un des 4 tiroirs est p, où p ]0, 1[ est donné. Notez bien qu il est possible que la clef ne soit dans aucun des 4 tiroirs, puisque p < 1. On suppose de plus que les chances de trouver sa clef dans un des 4 tiroirs sont égales. On notera T i l événement «la clef est dans le tiroir i». Le professeur a ouvert les trois premiers tiroirs sans y trouver la clef. Quelle est la probabilité que la clef. se trouve dans le 4 ème tiroir? 4 4 Réponse : On a P( T i P(T i car les T i sont évidemment disjoints puisque la clef ne peut pas être dans deux tiroirs différents. D où pour i 1, , P (T i p 4. 3 Posons A T 3 i. Alors Ā T i et donc P(A 1 3p 4. D autre part, il est clair que T 4 A. Donc, P(A T 4 P(T 4. On trouve ce qui est la probabilité cherchée. P A (T 4 P(A T 4 P(A P(T 4 P(A p 4 3p Exercice n o 3 : Une somme de longueur variable (5 pts Le nombre N de versements d indemnités effectués par une compagnie d assurance en une semaine est 2011/2012 Master cohabilité Nice-Toulon 1/6 IUFM Célestin Freinet

2 donné par une variable aléatoire d espérance n 0. Pour i N, on suppose que le montant du i-ème versement est une variable aléatoire discrète Y i définie sur un espace probabilisé (Ω, F, P à valeur dans N. On suppose que les variables aléatoires Y i sont de même loi et ont une même espérance µ. On fait l hypothèse que les variables aléatoires Y i sont indépendantes, et sont indépendantes de N. Soit U Y 1 + Y Y N la variable aléatoire qui représente les versements totaux effectués par la compagnie en une semaine. La variable aléatoire U est donc définie sur (Ω, F, P par U(ω Y 1 (ω + Y 2 (ω + + Y N(ω (ω (si N(ω 0, on pose U(ω 0. Le but de l exercice est de montrer que E(U n 0 µ. On admettra que pour une série double à termes positifs (u i,j (i,j N 2 on a i0 ( j0 u i,j j0 ( i0 u i,j où les séries peuvent éventuellement être divergentes (on a alors Quelle série doit converger pour que U admette une espérance? Réponse : Par définition de l espérance, il s agit de la série kp(u k. 2. Montrer que pour tout k 0, P(U k (P(N n P(Y Y n k. Réponse : Comme les [N n], n N forment un système complet d événements on peut écrire P (U k P([N n] [U k] Mais on a l égalité [N n] [U k] [N n] [Y Y n k]. On obtient le résultat de la question grâce à l indépendance des Y i et de N. 3. Pour n N, comment peut-on trouver sans grand calcul la valeur de kp(y Y n k en fonction de n et de µ? Justifier votre réponse en citant bien la ou les propriétés utilisées. Réponse : On reconnaît dans la série E(Y Y n. En utilisant la linéarité de l espérance, on trouve que la valeur cherchée est E(Y E(Y n nµ (formule valable aussi si n En déduire que E(U n 0 µ. Réponse : Comme les sommes considérées sont à termes positifs, on peut écrire (sans préjuger au départ de la convergence de la série de droite kp(u k µ k (P(N n P(Y Y n k ( P(N n k P(Y Y n k np(n n µe(n n 0 µ, ce qui montre la convergence de la série de droite et le résultat. Exercice n o 4 : Loi exponentielle (3,5 pts On dispose d un lot d ampoules électriques, toutes de fabrication identique. On suppose que la durée de vie (exprimée en heures de chaque ampoule est une variable aléatoire de loi exponentielle de paramètre λ, c est à dire admettant la densité x f(x I [0,+ [ (xλe λx. 2011/2012 Master cohabilité Nice-Toulon 2/6 IUFM Célestin Freinet

3 1. On note X (variable aléatoire la durée de vie d une ampoule. Quelle est la probabilité qu une ampoule s éteigne avant un temps T de fonctionnement? Application numérique : prendre T 200 et λ 0, 001. Réponse : Il s agit d évaluer ici la probabilité de l événement [X < T ]. Par définition de la densité, on obtient : P(X < T Application numérique : P(X < 200 0, 18. T T f(xdx f(xdx 0 [ e λx] T 0 1 e λt. 2. Montrer qu avec ce type d ampoule, il n est pas malhonnête de revendre des ampoules usagées mais en état de marche. Vous utiliserez les probabilités conditionnelles pour votre démonstration. Réponse : On reprend les notations de la question précédente : supposons que l on ait utilisé une ampoule pendant une durée T > 0 et qu elle soit toujours en état de marche, c est à dire que l événement [X T ] soit réalisé. On veut savoir qu elle est la probabilité qu elle puisse encore fonctionner pendant une durée S suplémentaire. On sait que P(X T e λt d après la question précédente. On obtient en tenant compte du fait que [X S +T ] [X T ] et d après les propriétés algébriques de la fonction exponentielle : P([X T ] [X S + T ] P [X T ] (X S + T P(X T P(X S + T P(X T e λ(t +S e λt e λs P(X S. Sachant qu elle est usagée mais en état de marche, la probabilité qu elle puisse encore fonctionner pendant une durée S est la même que si l ampoule était neuve. (C est une propriété de la loi exponentielle qui modélise les phénomènes dit «sans vieillissement». 3. On allume 2 ampoules en même temps dans une pièce à l instant 0. On note X 1 et X 2 les durées de vies - variables aléatoires supposées indépendantes - des deux ampoules. Déterminer en fonction de T > 0 et λ, la probabilité pour que la pièce ne soit pas dans le noir à l instant T. Applications numérique : prendre T 200 et λ 0, 001. Réponse : La pièce ne sera pas dans le noir à l instant T si et seulement si l une des deux ampoules au moins est en état de marche. Il s agit donc ici d évaluer la probabilité de l événement [X 1 T ] [X 2 T ] (ou non exclusif. On obtient, en tenant compte de l indépendance des deux variables aléatoires : P([X 1 T ] [X 2 T ] P([X 1 T ] + P([X 2 T ] P([X 1 T ] [X 2 T ] P([X 1 T ] + P([X 2 T ] P([X 1 T ] P([X 2 T ] 2e λt e 2λT. (On pouvait aussi calculer la probabilité de l événement complémentaire on trouve : (1 e λt 2. Applications numérique : P([X 1 200] [X 2 200] 0, 967. Exercice n o 5 : Stock de CD (3 pts 2011/2012 Master cohabilité Nice-Toulon 3/6 IUFM Célestin Freinet

4 À l occasion d un concert de musique organisé dans une salle de spectacle, on décide de fabriquer en direct un CD des chansons des artistes qui participent à la manifestation. Le CD sera vendu à l issu du concert (et uniquement à ce moment là. On estime que chaque personne présente à la manifestation a 30% de chance d acheter ce CD. Le nombre de personnes qui seront présentes à la manifestation est de Pour la suite, on donnera des résultats approchés grâce au tableau de la loi normale donné en annexe. On veillera à bien traduire les énoncés grâce au formalisme des probabilités. 1. Pour i {1,..., 4000}, décrire la variable aléatoire X i qui caractérise le choix de la i-ème personne d acheter ou pas le CD. 2. Quelle est la probabilité que les organisateurs vendent au moins 1100 CD? 3. Quel est le nombre maximum de CD que les organisateurs doivent fabriquer pour être sûrs à 95% d écouler la totalité du stock? Réponse : 1. Pour chaque entier i {1,..., 4000} on définit la variable aléatoire X i qui vaut 1 si la i ème personne présente au concert achète le CD et qui vaut 0 sinon. D après l énoncé, on a E(X i 0.3. Comme X i est une variable alétoire de Bernouilli, on déduit aussi V(X i 0.3( On suppose de plus que les variables aléatoires X i sont indépendantes. 2. La probabilité cherchée est ( 4000 ( 4000 P X i 1100 P X i 4000 E(X i V(Xi ( 4000 P X i 4000 E(X i V(Xi Comme les variables aléatoires X i sont indépendantes et indentiquement distribuées et comme de plus n , np et n(1 p , on peut estimer cette probabilité en utilisant le théorème de la limite centrale et en remplaçant loi normale U centrée réduite. On a donc ( 4000 P X i 1100 P(U 3.45 P(U , 97% X i 4000 E(X i 4000V(Xi par la ( On cherche le plus grand N N tel que P X i N 95%, c est à dire le plus grand N N tel que ( 4000 P X i 4000 E(X i N % V(Xi En approximant 4000 X i 4000 E(X i 4000 V(Xi par U comme précédemment, on est amené à chercher le plus grand N tel que, avec π la fonction de répartition de la loi normale centrée réduite, ( ( N , 3 N , 3 1 π 0, 95 π 0, 05, , , 21 Grâce au tableau de la loi normale on a π(1, 65 0, 95 et donc on obtient, compte tenu de la parité de la fonction densité, π( 1, 65 0, 05. On cherche donc le plus grand N tel que et donc N N , , , 2011/2012 Master cohabilité Nice-Toulon 4/6 IUFM Célestin Freinet

5 Exercice n o 6 : Durée de vie d un appareil (4 pts La durée de vie d un certain type d appareil est modélisée par une variable aléatoire suivant une loi normale d espérance µ et d écart-type inconnus. Les spécifications impliquent que 5 % de la production ait une durée de vie inférieure à 120 jours et que 80 % de la production des appareils ait une durée de vie entre 120 et 200 jours. 1. En vous servant de la table de la loi normale donnée en annexe, donner une valeur approchée à l unité près de µ et de. Explicitez votre démarche. 2. Quelle est la probabilité d avoir un appareil dont la durée de vie soit comprise entre 200 jours et 230 jours? Réponse : 1. Soit X la variable aléatoire qui modélise la durée de vie du type d appareil considéré. On sait d après l énoncé que X suit une loi normale de paramètres µ et, i.e, X N (µ,. On sait alors que (X µ/ suit une loi normale centrée réduite dont on peut lire certaines valeurs de la fonction de répartition, que nous noterons π, à l aide de la table de la loi normale donnée en annexe. D après l énoncé on a aussi les deux propriétés suivantes : P(X < 120 0, 05 et P(120 X 200 0, 8. On en déduit alors que P(X 200 P (X < 120 0, 8 soit P(X 200 0, 85. Comme X µ N (0, 1, on a les résultats suivants (avec π fonction de répartition de N (0, 1 : ( ( 120 µ 200 µ π 0, 05 et π 0, 85. La lecture de la table de la loi normale et la prise en compte de la parité de la densité, nous donne alors approximativement 120 µ 1, 64, 200 µ 1, 03 La résolution de ce système donne finalement 29, 96 et µ 169, 14 que l on arrondi respectivement à 30 et à On a, en notant U (X µ/, ( P(200 < X < 230 P < X µ < P(U < 2, 03 P(U < 1, 03 0, , , /2012 Master cohabilité Nice-Toulon 5/6 IUFM Célestin Freinet

6 Annexes Ne pas oublier d insérer cette feuille dans votre copie. Annexe 1 Mettre des croix dans les cases appropriées pour indiquer dans quel ensemble appartiennent les objets mathématiques en début de ligne. S il y a plusieurs choix possibles prendre le plus petit ensemble. R [0, 1] A F(A, [0, 1] F(R; R C(R; R F(Ω; [0, 1] F(Ω; R X(ω X f [X a] x P([X x] P [X a] ( ou P(. [X a] 1 Table de la variable aléatoire Normale réduite Annexe 2 : Table de la variable aléatoire Normale centrée, réduite Fournit la probabilité P(X x pour X N(0,1 P(X! x x x , , , , , , , , , , /2012 Master cohabilité Nice-Toulon 6/6 IUFM Célestin Freinet

Fiche de révision sur les lois continues

Fiche de révision sur les lois continues Exercice 1 Voir la correction Le laboratoire de physique d un lycée dispose d un parc d oscilloscopes identiques. La durée de vie en années d un oscilloscope est une variable aléatoire notée X qui suit

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

Moments des variables aléatoires réelles

Moments des variables aléatoires réelles Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................

Plus en détail

MATHEMATIQUES Option Economique

MATHEMATIQUES Option Economique Concours EDHEC 9 Classes Préparatoires MATHEMATIQUES Option Economique La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour

Plus en détail

Exercices : VAR discrètes

Exercices : VAR discrètes Exercices : VAR discrètes Exercice 1: Une urne contient 2 boules blanches et 4 boules noires. On tire les boules une à une sans les remettre jusqu à ce qu il ne reste que des boules d une seule couleur

Plus en détail

TSTI 2D CH X : Exemples de lois à densité 1

TSTI 2D CH X : Exemples de lois à densité 1 TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun

Plus en détail

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation.

Travaux Dirigés de Probabilités - Statistiques, TD 4. Lois limites ; estimation. Travaux Dirigés de Probabilités - Statistiques, TD 4 Lois limites ; estimation. Exercice 1. Trois machines, A, B, C fournissent respectivement 50%, 30%, 20% de la production d une usine. Les pourcentages

Plus en détail

Modèles à Événements Discrets. Réseaux de Petri Stochastiques

Modèles à Événements Discrets. Réseaux de Petri Stochastiques Modèles à Événements Discrets Réseaux de Petri Stochastiques Table des matières 1 Chaînes de Markov Définition formelle Idée générale Discrete Time Markov Chains Continuous Time Markov Chains Propriétés

Plus en détail

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.

I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème. I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples

Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples 36 Probabilité conditionnelle et indépendance. Couples de variables aléatoires. Exemples (Ω, B, P est un espace probabilisé. 36.1 Définition et propriétés des probabilités conditionnelles Définition 36.1

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

TD 4 : HEC 2001 épreuve II

TD 4 : HEC 2001 épreuve II TD 4 : HEC 200 épreuve II Dans tout le problème, n désigne un entier supérieur ou égal à 2 On dispose de n jetons numérotés de à n On tire, au hasard et sans remise, les jetons un à un La suite (a, a 2,,

Plus en détail

Espérance conditionnelle

Espérance conditionnelle Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets

Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Master Modélisation Statistique M2 Finance - chapitre 3 Modèles financiers discrets Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université de Franche-Comté)

Plus en détail

Cours de Probabilités. Jean-Yves DAUXOIS

Cours de Probabilités. Jean-Yves DAUXOIS Cours de Probabilités Jean-Yves DAUXOIS Septembre 2013 Table des matières 1 Introduction au calcul des probabilités 7 1.1 Espace probabilisable et loi de variable aléatoire........ 8 1.1.1 Un exemple

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Exercices sur le chapitre «Probabilités»

Exercices sur le chapitre «Probabilités» Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. huitième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 huitième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 Soit X une variable aléatoire continue de fonction de densité

Plus en détail

Prix d options européennes

Prix d options européennes Page n 1. Prix d options européennes Une société française tient sa comptabilité en euros et signe un contrat avec une entreprise américaine qu elle devra payer en dollars à la livraison. Entre aujourd

Plus en détail

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr

Introduction à la théorie des files d'attente. Claude Chaudet Claude.Chaudet@enst.fr Introduction à la théorie des files d'attente Claude Chaudet Claude.Chaudet@enst.fr La théorie des files d'attente... Principe: modélisation mathématique de l accès à une ressource partagée Exemples réseaux

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités

Cogmaster, Probabilités discrètes. Feuille de TD n o 1 - Événements et probabilités Cogmaster, Probabilités discrètes Feuille de TD n o 1 - Événements et probabilités Exercice 1 Parmi les ensembles suivants, lesquels sont égaux entre eux? A = {n + 4, n N}, B = {n, n = k + 4, k N}, C =

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme

Plus en détail

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry

Outils mathématiques pour le datamining. http://www.elseware.fr/univevry Outils mathématiques pour le datamining http://wwwelsewarefr/univevry Géométrie Distance Distance entre parties Matrice de variance/covariance Inertie Minimisation Probabilités Définition Théorème de Bayes

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

Probabilités 2009-2010. Licence 2 Sciences économiques et Economie - Langues Année universitaire 2009-2010. Livret d exercices. x k pour tout x R. k!

Probabilités 2009-2010. Licence 2 Sciences économiques et Economie - Langues Année universitaire 2009-2010. Livret d exercices. x k pour tout x R. k! Licence 2 Sciences économiques et Economie - Langues Année universitaire 2009-2010 Probabilités A.L Basdevant, C. Hardouin Livret d exercices 1 Rappels, calculs utiles Exercice 1. 1) On rappelle que e

Plus en détail

Modèles stochastiques et applications à la finance

Modèles stochastiques et applications à la finance 1 Université Pierre et Marie Curie Master M1 de Mathématiques, 2010-2011 Modèles stochastiques et applications à la finance Partiel 25 Février 2011, Durée 2 heures Exercice 1 (3 points) On considère une

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

Leçon 6. Savoir compter

Leçon 6. Savoir compter Leçon 6. Savoir compter Cette leçon est une introduction aux questions de dénombrements. Il s agit, d une part, de compter certains objets mathématiques (éléments, parties, applications,...) et, d autre

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

4 Distributions particulières de probabilités

4 Distributions particulières de probabilités 4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli

Plus en détail

Notes de cours de Probabilités Appliquées. Olivier François

Notes de cours de Probabilités Appliquées. Olivier François Notes de cours de Probabilités Appliquées Olivier François 2 Table des matières 1 Axiomes des probabilités 7 1.1 Introduction................................. 7 1.2 Définitions et notions élémentaires.....................

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités

Préparation à l écrit Année 2008-2009. Liste des fiches de probabilités Capes de Mathématiques Université Joseph Fourier Préparation à l écrit Année 2008-2009 Liste des fiches de probabilités Probabilités 1 : Introduction aux espaces probabilisés Probabilités 2 : Variables

Plus en détail

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin

Exo7. Topologie générale. Enoncés : M. Quéffelec Corrections : A. Bodin Enoncés : M. Quéffelec Corrections : A. Bodin Exo7 Topologie générale Exercice 1 1. Rappeler les définitions d une borne supérieure (inférieure) d un ensemble de nombres réels. Si A et B sont deux ensembles

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points)

SESSION 2006. NOM, Prénom : PROBABILITES 2006 T ES. France septembre 2005 (5 points) SESSION 2006 France septembre 2005 (5 points) Parmi les stands de jeux d une fête de village, les organisateurs ont installé une machine qui lance automatiquement une bille d acier lorsque le joueur actionne

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini.

Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. Chapitre 1: Introduction au calcul des probabilités, cas d un univers fini. 1 Introduction Des actions comme lancer un dé, tirer une carte d un jeu, observer la durée de vie d une ampoule électrique, etc...sont

Plus en détail

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/

Souad EL Bernoussi. Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Recherche opérationnelle Les démonstrations et les exemples seront traités en cours Souad EL Bernoussi Groupe d Analyse Numérique et Optimisation Rabat http ://www.fsr.ac.ma/ano/ Table des matières 1 Programmation

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

Ch.12 : Loi binomiale

Ch.12 : Loi binomiale 4 e - programme 2007 - mathématiques ch.12 - cours Page 1 sur 5 1 RÉPÉTITION D'EXPÉRIENCES INDÉPENDANTES Lancer plusieurs fois un dé et noter les résultats successifs. Ch.12 : Loi binomiale Prélever des

Plus en détail

Simulation de variables aléatoires

Simulation de variables aléatoires Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo

Plus en détail

COUPLES DE VARIABLES ALÉATOIRES

COUPLES DE VARIABLES ALÉATOIRES CHAPITRE 13 COUPLES DE VARIABLES ALÉATOIRES Dans tout le chapitre, (Ω, P) désignera un espace probabilisé fini. 1 Couple de variables aléatoires Définition 13.1 On appelle couple de variables aléatoires

Plus en détail

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Probabilités Index des exercices de probabilité de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date P. condi- Variable Loi bino- Loi uni- Loi expo- Suite tionelle aléatoire

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Introduction à la simulation en probabilité

Introduction à la simulation en probabilité Introduction à la simulation en probabilité Module MATH54 Année universitaire 29 21 L énoncé du TP au format pdf se trouve sur le portail dans votre groupe. 1. Mise en route Principe de simulation. Connectez-vous

Plus en détail

Logique informatique 2013-2014. Examen

Logique informatique 2013-2014. Examen Logique informatique 2013-2014. Examen 30 mai 2013. Durée 3h. Tous les documents sont autorisés. Seuls les résultats du cours peuvent être utilisés sans démonstration. Le barême et la longueur des solutions

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

4. Martingales à temps discret

4. Martingales à temps discret Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chapitre 2. Eléments pour comprendre un énoncé

Chapitre 2. Eléments pour comprendre un énoncé Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données

Plus en détail

EI - EXERCICES DE PROBABILITES CORRIGES

EI - EXERCICES DE PROBABILITES CORRIGES EI 1 EI - EXERCICES DE PROBABILITES CORRIGES Notations 1 Les coefficients du binôme sont notés ( n p 2 Un arrangement de n objets pris p à p est noté A p n 3 Si A est un ensemble fini, on notera A ou card

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

Travaux dirigés d introduction aux Probabilités

Travaux dirigés d introduction aux Probabilités Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien

Plus en détail

Estimation et tests statistiques, TD 5. Solutions

Estimation et tests statistiques, TD 5. Solutions ISTIL, Tronc commun de première année Introduction aux méthodes probabilistes et statistiques, 2008 2009 Estimation et tests statistiques, TD 5. Solutions Exercice 1 Dans un centre avicole, des études

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Probabilités conditionnelles Loi binomiale

Probabilités conditionnelles Loi binomiale Exercices 23 juillet 2014 Probabilités conditionnelles Loi binomiale Équiprobabilité et variable aléatoire Exercice 1 Une urne contient 5 boules indiscernables, 3 rouges et 2 vertes. On tire au hasard

Plus en détail

Compléments sur les couples aléatoires

Compléments sur les couples aléatoires Licence Math et MASS, MATH54 : probabilités et statistiques Compléments sur les couples aléatoires 1 Couple image ans ce paragraphe, on va s intéresser à la loi d un vecteur aléatoire S, T qui s obtient

Plus en détail

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT

Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,

Plus en détail

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions :

Probabilités. I- Expérience aléatoire, espace probabilisé : ShotGun. 1- Définitions : Probabilités I- Expérience aléatoire, espace probabilisé : 1- Définitions : Ω : Ensemble dont les points w sont les résultats possibles de l expérience Des évènements A parties de Ω appartiennent à A une

Plus en détail

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques

Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Fiche TD avec le logiciel : a2-1-c Statistique Descriptive et Inférentielle Méthodes paramétriques et non paramétriques Sylvain Mousset Rappels de probabilités / statistiques Table des matières 1 Probabilités

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

Corrigé du baccalauréat STMG Métropole 18 juin 2015

Corrigé du baccalauréat STMG Métropole 18 juin 2015 orrigé du baccalauréat STMG Métropole 18 juin 215 Durée : 3 heures EXERIE 1 4 points Tous les ans, en août, Maïlys reçoit l échéancier (document indiquant le montant de sa cotisation annuelle) de sa mutuelle

Plus en détail

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau

GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1.

L3-2014/2015 Mercredi 14 janvier Mathématiques Discrètes. Examen. Exercice 1. Examen Exercice 1. Soit N un entier naturel 2. On dispose de trois jeux de N cartes (numérotées de 1 à N), chaque jeu étant d une couleur différente : rouge, bleue et verte. On se propose de distribuer

Plus en détail

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch

2. Probabilité. 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance. http://statwww.epfl.ch 2. Probabilité 2.1: Espaces de probabilité 2.2: Probabilité conditionelle 2.3: Indépendance Probabilité et Statistiques I Chapître 2 1 2.1 Espaces de Probabilité Contenu Exemples élémentaires de probabilité,

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Relations binaires Relations d équivalence Exercice 1 [ 02643 ] [Correction] Soit R une relation binaire sur un ensemble E à la fois réflexive

Plus en détail

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes

Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Master Modélisation Statistique M2 Finance - chapitre 4 Mouvement Brownien et modèle de Black-Scholes Clément Dombry, Laboratoire de Mathématiques de Besançon, Université de Franche-Comté. C.Dombry (Université

Plus en détail

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390

PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas

Plus en détail

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free.

Actuariat I ACT2121. septième séance. Arthur Charpentier. Automne 2012. charpentier.arthur@uqam.ca. http ://freakonometrics.blog.free. Actuariat I ACT2121 septième séance Arthur Charpentier charpentier.arthur@uqam.ca http ://freakonometrics.blog.free.fr/ Automne 2012 1 Exercice 1 En analysant le temps d attente X avant un certain événement

Plus en détail

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I

Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Analyse stochastique de la CRM à ordre partiel dans le cadre des essais cliniques de phase I Roxane Duroux 1 Cadre de l étude Cette étude s inscrit dans le cadre de recherche de doses pour des essais cliniques

Plus en détail

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S)

CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 2009 COMPOSITION DE MATHÉMATIQUES. (Classe terminale S) MA 09 CONCOURS GÉNÉRAL DES LYCÉES SESSION DE 009 COMPOSITION DE MATHÉMATIQUES (Classe terminale S) DURÉE : 5 heures La calculatrice de poche est autorisée, conformément à la réglementation. La clarté et

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Processus aléatoires avec application en finance

Processus aléatoires avec application en finance Genève, le 16 juin 2007. Processus aléatoires avec application en finance La durée de l examen est de deux heures. N oubliez pas d indiquer votre nom et prénom sur chaque feuille. Toute documentation et

Plus en détail

Cours de Probabilités : Modèles et Applications.

Cours de Probabilités : Modèles et Applications. Cours de Probabilités : Modèles et Applications. Anne Philippe & Marie-Claude Viano 2 Niveau Master Université de Nantes Année 2009-200. Anne.Philippe@univ-nantes.fr 2. Marie-Claude.Viano@univ-lille.fr

Plus en détail

Introduction au Calcul des Probabilités

Introduction au Calcul des Probabilités Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus

Plus en détail

Les devoirs en Première STMG

Les devoirs en Première STMG Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Thème 12: Généralités sur les fonctions

Thème 12: Généralités sur les fonctions GÉNÉRALITÉS SUR LES FONCTIONS 69 Thème 12: Généralités sur les fonctions 12.1 Introduction Qu est-ce qu une fonction? Une fonction est une sorte de "machine". On choisit dans un ensemble de départ A un

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S

BACCALAURÉAT GÉNÉRAL. MATHEMATIQUES Série S BACCALAURÉAT GÉNÉRAL Session 2015 MATHEMATIQUES Série S ÉPREUVE DU LUNDI 22 JUIN 2015 Enseignement Obligatoire Coefficient : 7 Durée de l épreuve : 4 heures Ce sujet comporte 7 pages numérotées de 1 à

Plus en détail

Couples de variables aléatoires discrètes

Couples de variables aléatoires discrètes Couples de variables aléatoires discrètes ECE Lycée Carnot mai Dans ce dernier chapitre de probabilités de l'année, nous allons introduire l'étude de couples de variables aléatoires, c'est-à-dire l'étude

Plus en détail

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12

Probabilités. Rappel : trois exemples. Exemple 2 : On dispose d un dé truqué. On sait que : p(1) = p(2) =1/6 ; p(3) = 1/3 p(4) = p(5) =1/12 Probabilités. I - Rappel : trois exemples. Exemple 1 : Dans une classe de 25 élèves, il y a 16 filles. Tous les élèves sont blonds ou bruns. Parmi les filles, 6 sont blondes. Parmi les garçons, 3 sont

Plus en détail

PROBABILITES et STATISTIQUES. Cours et exercices

PROBABILITES et STATISTIQUES. Cours et exercices PROBABILITES et STATISTIQUES Cours et exercices C. Reder IUP2-MIAGE Bordeaux I 2002-2003 1 I- Le modèle probabiliste 1- Evènements SOMMAIRE 2- Loi de probabilité, espace de probabilité 3- Le cas où les

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...

Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie... 1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................

Plus en détail

1 La formule de Black et Scholes en t discret

1 La formule de Black et Scholes en t discret Université de Provence Préparation Agrégation Epreuve de Modélisation, Option Proba. Texte : La formule de Black Scholes en Finance Étienne Pardoux 1 La formule de Black et Scholes en t discret On suppose

Plus en détail