Biomécanique. Chapitre 1. Vecteurs et système de vecteurs

Dimension: px
Commencer à balayer dès la page:

Download "Biomécanique. Chapitre 1. Vecteurs et système de vecteurs"

Transcription

1 Biomécanique Chapitre 1 Vecteurs et système de vecteurs 1

2 Repère 1. Définition Un repère est défini par la donnée d'un point O, son origine et de trois axes (x, y, z). Si ces trois axes sont perpendiculaires, le repère est orthogonal. On notera le repère R (O / x, y, z). z R (O / x, y, z) x O y 2

3 2. Coordonnées Un repère R (O / x, y, z) permet de positionner un point matériel M dans l'espace. On définit alors les coordonnées (X, Y, Z) du point M dans le repère R (O / x, y, z) comme les projections du point M sur les trois axes (O, x), (O, y) et (O, z). R (O / x, y, z) z Z M (X, Y, Z) O Y y X x 3

4 Vecteur 1. Définition Un vecteur est un être mathématique défini par : Une origine ou point d'application Une direction ou droite support Un sens Un module ou norme On notera le vecteur de la manière suivante : 4

5 2. Exemple Soient deux points de l'espace A et B, on peut définir le vecteur par Son origine : A Sa direction : droite (AB) B Son sens : A B A Sa norme : longueur AB ou 5

6 3. Différents types de vecteurs Vecteur libre : Il est défini par une direction, un sens et une norme Vecteur glissant : Il est assujetti à glisser sur une droite support ( ) ( ) Vecteur lié : B Il est défini par une direction, un sens, 6 une norme et une origine A

7 4. Composantes d'un vecteur Soit R (O / x, y, z) une repère de l'espace et les vecteurs unitaires définissant les axes, un vecteur libre est défini par ses projections, et sur les axes du repère qui sont appelées les composantes du vecteur, on note alors : ou 7

8 Opérations sur les vecteurs 1. Relations de Chasles C'est une relation géométrique : 2. Addition La somme de deux vecteurs et est un vecteur qui peut se représenter géométriquement de la manière suivante : 8 On obtient pour le vecteur :

9 3. Multiplication par un scalaire Définition : Soient un vecteur libre et λ un scalaire (nombre), le produit de par λ est un vecteur noté λ λ de composantes λ λ Remarque : Si λ, on dit que les vecteurs et sont colinéaires 9

10 4. Produit scalaire Définition : Soient deux vecteurs et faisant un angle α entre eux, le produit scalaire de par est un scalaire m défini par α Propriétés : Le produit scalaire est commutatif : Si et sont perpendiculaires alors 10

11 11 Calcul : Soient les vecteurs de composantes et de composantes alors Module : On définit le module ou la norme du vecteur de composantes par la quantité notée On dit qu'un vecteur est unitaire si sa norme vaut 1.

12 5. Produit vectoriel Définition : Le produit vectoriel de deux vecteurs et est un vecteur perpendiculaire au plan formé par et, de norme α et de sens tel que le trièdre soit direct. On le note :. α 12

13 13 Propriétés : Si et sont colinéaires Le produit vectoriel est anticommutatif : En général, le produit vectoriel n'est pas associatif :

14 Repère : z R (O / x, y, z) y O x 14

15 15 Calcul du produit vectoriel Soient les vecteurs de composantes et On peut montrer que :

16 16 Technique de calcul du produit vectoriel

17 Moment d un vecteur 1. Définition Le moment d'un vecteur par rapport au point O est un vecteur, noté et défini par 2. Loi de transport des moments Connaissant le moment d'un vecteur en un point O, on peut le calculer en un point I par la relation de transport des moments 17

18 Définition d un système de vecteurs Soient un ensemble de vecteurs appliqués au point, on définit alors les grandeurs suivantes : La somme des vecteurs ou résultante : Le moment résultant du système de vecteurs par rapport à un point M : 18

19 On remarque que le vecteur résultante ne dépend pas du point M, c est donc un vecteur libre alors que le moment résultant est dépendant du point M. On construit alors le système de vecteurs ou torseur { } { } { } On le note { } ou [ ] 19

20 On conserve la relation de transport des moments : { } { } En conclusion, un système de vecteurs est donc défini par un vecteur libre non dépendant de M, la résultante et un vecteur dépendant du point M, le moment. { } { } { } 20

21 21 Exemple appliqué au point appliqué au point On peut calculer le système de vecteurs résultants au point A 1 { } { } { }

22 22 Donc { } Et { } Finalement : { } { } { }

23 23 Systèmes de vecteurs particuliers On distingue : Glisseur { } { } { } Couple { } { } { }

24 Opérations sur les systèmes de vecteurs 1. Système de vecteurs nul { } { } s'il existe un point M tel que : { } { } { } 2. Egalité { } { } s'il existe un point M tel que : { } { } { } { } 24

25 25 3. Somme On peut réaliser la somme de deux torseurs si ces deux torseurs sont exprimés au même point M, on a alors : { } { } { } { } { } { } { } { } { } 4. Multiplication par un scalaire Soient un scalaire λ et un torseur { }, on définit la multiplication par un scalaire par : { } { } { } { } { } { } λ λ λ

26 5. Produit scalaire Le produit scalaire de deux torseurs { } et { } que si les deux torseurs sont exprimés au même point M : est un scalaire et ne peut se calculer { } { } { } { } { } { } 6. Invariant scalaire On définit l'invariant scalaire du torseur { } par la quantité : { } { } 26

27 Invariants Ce sont des quantités vectorielles ou scalaires qui ne dépendent pas du point de calcul du torseur. 1. Résultante Par définition la résultante du torseur { } ne dépend pas du point de calcul du torseur. 2. Invariant scalaire La quantité scalaire { } { } ne dépend pas du point M. 3. Produit scalaire { } { } { } { } { } { } ne dépend pas de M. 27

28 Internet 28

S.I.I. Calcul vectoriel Annexe Calcul vectoriel

S.I.I. Calcul vectoriel Annexe Calcul vectoriel Calcul vectoriel Contenu I Vers l espace euclidien... 2 I.1 Notions de groupe... 2 I.2 Espace vectoriel... 2 I.3 Espace affine... 2 II Les Produits de l espace euclidien... 3 II.1 Le produit scalaire...

Plus en détail

Cours de Mécanique du Solide

Cours de Mécanique du Solide 2010 2011 Cours de Mécanique du Solide Amelie Caissial Quentin Grandemange ESSTIN 2A S2 2010 2011 Chapitre 1 : Opérations Vectorielles, Torseurs Rappels. Sommaire I. Opérations sur les vecteurs Rappels...

Plus en détail

Mathématique et Mécanique de Base

Mathématique et Mécanique de Base Mathématique et Mécanique de Base Pauline GERUS - Leila LEFEVBRE - Violaine SEVREZ Licence 1 STAPS BMC 51 2009-2010 Définition Repère = zone de référence Etablit en fonction des objectifs On choisit une

Plus en détail

CHAMPS DES VECTEURS VITESSE D UN SOLIDE

CHAMPS DES VECTEURS VITESSE D UN SOLIDE PCSI/MPSI CHAMPS DES VECTEURS VITESSE D UN SOLIDE 1 Point lié à un solide En cinématique du solide indéformable, on s intéresse au mouvement des solides et donc des points qui les constituent. On dit qu

Plus en détail

Les vecteurs. Remarque1 : Le vecteur de coordonnées correspond à un déplacement de 1 carreau vers la droite.

Les vecteurs. Remarque1 : Le vecteur de coordonnées correspond à un déplacement de 1 carreau vers la droite. Les vecteurs I. Notion de Translation Exercice Sur le quadrillage ci-dessus : a. Faire «glisser» l objet (qu on appellera figure 1)de 8 carreaux vers la droite et 2 vers le haut (on appellera la figure

Plus en détail

I- Définition d un Vecteur:

I- Définition d un Vecteur: 1 I- Définition d un Vecteur: Un vecteur est une grandeur définie par trois paramètres: - Une direction : qui désigne le support du vecteur - Un sens : qui désigne l orientation du vecteur - un module

Plus en détail

Chapitre trois : Rappel sur les vecteurs. 3.1 Introduction 3.2 Produit scalaire 3.3 Produit vectoriel 3.4 Produit mixte. 3.

Chapitre trois : Rappel sur les vecteurs. 3.1 Introduction 3.2 Produit scalaire 3.3 Produit vectoriel 3.4 Produit mixte. 3. Chapitre trois : Rappel sur les vecteurs 3.1 Introduction 3.2 Produit scalaire 3.3 Produit vectoriel 3.4 Produit mixte 3.1 Introduction Un vecteur est un outil mathématique, très utilisé en physique. Il

Plus en détail

PLAN DE LECON CALCUL VECTORIEL

PLAN DE LECON CALCUL VECTORIEL PLAN DE LECON CALCUL VECTORIEL Objectifs spécifiques : A la fin de la séance l étudiant doit être capable de : Comprendre la notion de vecteur et ses propriétés. Pré requis : L étudiant est supposé connaître

Plus en détail

Vecteurs de l espace

Vecteurs de l espace Vecteurs de l espace Définitions règles de calcul On étend à l espace la notion de vecteur définie dans le plan, ainsi que les opérations associées : somme de vecteurs multiplication par un réel Définition-

Plus en détail

L'algèbre des vecteurs

L'algèbre des vecteurs L'algèbre des vecteurs Mise en situation On peut représenter de simples quantités vectorielles géométriquement. Toutefois, certaines applications sont plus complexes ou font intervenir une troisième dimension.

Plus en détail

Géométrie vectorielle

Géométrie vectorielle Géométrie vectorielle L1 SPC, semestre 2 Année 2012 1 Généralités L objectif de ce chapitre est de faire un rapide survol des éléments essentiels de géométrie vectorielle (et un peu affine). Il s agit

Plus en détail

L algèbre des vecteurs

L algèbre des vecteurs L algèbre des vecteurs MAT 1739 X Été 2010 Département de mathématiques et de statistique Université d Ottawa Plan Revue 1 Revue 2 3 Revue Un vecteur dans l espace tridimensionnel (un vecteur à 3-D) peut

Plus en détail

Annexe A. Algèbre vectorielle

Annexe A. Algèbre vectorielle Annexe A Algèbre vectorielle Un vecteur est une quantité comportant plus d une dimension. Dans ce cours, un vecteur a une grandeur et une direction. Par exemple, le vecteur vitesse comporte une grandeur

Plus en détail

Terminale S Géométrie dans l espace

Terminale S Géométrie dans l espace Terminale S Géométrie dans l espace 1 Positions relatives de droites et de plans 1.1 Positions relatives de deux droites Deux droites de l espace sont : soit..................... elles sont alors soit...............

Plus en détail

Chapitre 10 : Le Produit Scalaire

Chapitre 10 : Le Produit Scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur. Par exemple, la norme du vecteur AB la longueur AB, ou encore

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan CH 1 Géométrie : 3 ème Sciences Septembre 009 A LAATAOUI Produit scalaire dans le plan 1 ) PRODUIT SCALAIRE A) DEFINITION Ce n est pas une multiplication Soit u et v deux vecteurs non nuls du plan Le produit

Plus en détail

Les torseurs. 1 Définition. 2 Notation. 3 Opérations sur les torseurs. Lycée Leconte de Lisle

Les torseurs. 1 Définition. 2 Notation. 3 Opérations sur les torseurs. Lycée Leconte de Lisle Lcée Leconte de Lisle Les torseurs Définition n considère un champ de vecteurs, noté, qui à tout point associe le vecteur. Les propositions suivantes sont alors équivalentes : Le champ de vecteurs est

Plus en détail

MAT 1739 A : Calcul et Vecteurs - Revue

MAT 1739 A : Calcul et Vecteurs - Revue MAT 1739 A : Calcul et Vecteurs - Revue Enseignante : Caroline El-Chaâr Table des matières 1 Vecteurs 1 1.1 Opérations des vecteurs.......................... 1 1.2 Applications du produit scalaire.....................

Plus en détail

VECTEURS, PRODUIT SCALAIRE

VECTEURS, PRODUIT SCALAIRE VECTEURS, PRODUIT SCALAIRE 1 Généralités sur les vecteurs : B a Notion de vecteur : A Deux points A et B distincts pris dans cet ordre représentent un vecteur noté. A est, B est. Les caractéristiques du

Plus en détail

1. Les vecteurs. En classe de seconde, vous avez défini la translation, qui est une transformation.

1. Les vecteurs. En classe de seconde, vous avez défini la translation, qui est une transformation. 1. Les vecteurs 1. Notion de vecteur En classe de seconde, vous avez défini la translation, qui est une transformation. Elle permet de déplacer une figure dans le plan avec la règle suivante : Si est transformé

Plus en détail

Cinématique des solides

Cinématique des solides Cinématique des solides 1- Positions Définir une position n a un sens que si l on précise par rapport à quoi se réfère cette position. Le référent est un repère ou un solide. Pour définir une position

Plus en détail

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2.

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Chapitre 3 Les angles 3.1 Angles orientés de vecteurs du plan 3.1.1 Groupe des rotations Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Définition 3.1 On appelle

Plus en détail

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6

Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 Seconde Chapitre 1 : Les vecteurs (1) Page 1 sur 6 I ) Translation : Activité : Une télécabine se déplace le long d un câble de A vers B. Dessiner ci dessus la télécabine lorsqu elle sera arrivée au terminus

Plus en détail

Ils permettent d'établir avec rigueur les écritures recherchées. Ils sont à compléter, en autonomie, au fur et à mesure des besoins et des cours.

Ils permettent d'établir avec rigueur les écritures recherchées. Ils sont à compléter, en autonomie, au fur et à mesure des besoins et des cours. OUTILS MATHEMATIQUES utilisés en SCIENCES DE L'INGENIEUR Ces notions indispensables constituent la base des outils à savoir utiliser aisément lors des études des systèmes et pour résoudre les problèmes

Plus en détail

Transformations. Exemple : Dans une rotation, il y a un seul point invariant : le centre de la rotation.

Transformations. Exemple : Dans une rotation, il y a un seul point invariant : le centre de la rotation. Transformations 1. Généralités 1.1. Transformations Définition : On appelle transformation du plan (respectivement de l'espace), une bijection du plan (respectivement de l'espace) dans lui-même, c'est

Plus en détail

SOMMAIRE CHAPITRE I- Calcul vectoriel & systèmes de coordonnées

SOMMAIRE CHAPITRE I- Calcul vectoriel & systèmes de coordonnées SOMMAIRE CHAPITRE I- Calcul vectoriel & sstèmes de coordonnées I.1- INTRODUCTION I.- DEFINITION DU VECTEUR I..1- VECTEUR LIBRE I..-VECTEURS EQUIPOLLENTS I..3-VECTEUR LIE I..4- VECTEUR GLISSANT I.3- VECTEUR

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1

Chapitre 9 Produit scalaire. Table des matières. Chapitre 9 Produit scalaire TABLE DES MATIÈRES page -1 hapitre 9 Produit scalaire TLE DES MTIÈRES page -1 hapitre 9 Produit scalaire Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

Version du 14 septembre 2015 (12h13)

Version du 14 septembre 2015 (12h13) CHAPITRE 1. BASES, VECTEURS ET OPÉRATIONS SUR LES VECTEURS... - 1.1-1.1. Bases orientées... - 1.1-1.1.1. Axe orienté... - 1.1-1.1.2. Plan orienté... - 1.1-1.1.3. Espace orienté... - 1.2-1.2. Scalaires

Plus en détail

Mouvement d un solide en rotation autour d un axe fixe

Mouvement d un solide en rotation autour d un axe fixe Mouvement d un solide en rotation autour d un axe fixe II. Moment cinétique scalaire d un solide en rotation autour d un axe fixe 1. Moment cinétique d un point matériel par rapport à un point On appelle

Plus en détail

Chapitre X : Torseurs

Chapitre X : Torseurs Chapitre X : Torseurs de : Après une étude attentive de ce chapitre, vous serez capable définir une application linéaire symétrique ou antisymétrique définir la matrice d une application linéaire et de

Plus en détail

Produit d un vecteur par un réel, classe de seconde

Produit d un vecteur par un réel, classe de seconde , classe de seconde F.Gaudon http://mathsfg.net.free.fr 8 avril 2012 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme 1 2 Traduction de propriétés géométriques Milieux

Plus en détail

LES ESPACES VECTORIELS

LES ESPACES VECTORIELS LES ESPACES VECTORIELS Objectifs Savoir ce qu'est un espace vectoriel. Savoir ce qu'est un sous-espace vectoriel. Savoir ce qu'est une base. Le travail sur les espaces vectoriels de dimension nie Dans

Plus en détail

Mise en équation : Analyse géométrique, cinématique et des actions mécaniques.

Mise en équation : Analyse géométrique, cinématique et des actions mécaniques. Extrait du programme officiel MP Mise en équation : Analyse géométrique, cinématique et des actions mécaniques. Définitions : - degré de mobilité d'un mécanisme ; - degré d hyperstatisme d un mécanisme.

Plus en détail

M = b d. a b ou M =. b a

M = b d. a b ou M =. b a Ce texte est extrait du cours optionnel de géométrie de l année universitaire 1999/2000. B.Ingrao Étude du groupe orthogonal dans le cas du plan. Dans ce qui suit, l espace est de dimension 2 ; en conséquence

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. : la perspective cavalière Pour représenter un objet de l espace par une figure plane, on adopte un mode de représentation appelé «perspective cavalière» qui est

Plus en détail

Vecteurs. Christophe ROSSIGNOL. Année scolaire 2015/2016

Vecteurs. Christophe ROSSIGNOL. Année scolaire 2015/2016 Vecteurs Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Notion de vecteur Coordonnées 3 1.1 Définitions................................................. 3 1.2 Égalité de deux vecteurs.........................................

Plus en détail

ProduitScalaire-Cours_standard.nb 8. Géométrie métrique. 2 Produit scalaire

ProduitScalaire-Cours_standard.nb 8. Géométrie métrique. 2 Produit scalaire ProduitScalaire-Cours_standard.nb 8 Géométrie métrique Edition 007-008 / DELM Produit scalaire Liens hypertextes Exercices correspondants de niveau standard: http://www.deleze.name/marcel/sec/cours/produitscalaired/produitscalaire-exercices_standard.pdf

Plus en détail

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie.

Comme son lien avec la Physique le laisse supposer, les vecteurs permettent d'introduire la notion de mouvement dans la Géométrie. Les vecteurs Introduction : Les vecteurs sont fondamentaux : En Mathématiques : Le calcul vectoriel est un outil très puissant apparu à la fin du 19 ième siècle pour effectuer des démonstrations en Géométrie

Plus en détail

GEOMETRIE VECTORIELLE

GEOMETRIE VECTORIELLE Page 1 sur 6 GEOMETRIE VECTORIELLE 1. Géométrie plane 1-1 Vecteurs Soient le repère R = {O ; i, } du plan et u = xi + y un vecteur du plan. i) (x, y) est appelé couple de coordonnées de u. 2 2 ii) u =

Plus en détail

Vecteurs : Produit scalaire et produit vectoriel

Vecteurs : Produit scalaire et produit vectoriel Vecteurs : Produit scalaire et produit vectoriel Voir : http://www.uel.education.fr/consultation/reference/physique/outils_nancy/index.htm I Produit scalaire (de deux vecteurs!) Le produit scalaire de

Plus en détail

V. TRANSFORMATIONS AFFINES ET ISOMÉTRIES

V. TRANSFORMATIONS AFFINES ET ISOMÉTRIES V. TRANSFORMATIONS AFFINES ET ISOMÉTRIES En géométrie du plan cartésien réel R 2, on a étudié des transformations. Notamment les translations, les rotations, les symétries axiales et les homothéties. Ce

Plus en détail

Orthogonalité de droites et de plans

Orthogonalité de droites et de plans Orthogonalité de droites et de plans Par Mathtous Ce mini cours s'adresse en priorité aux élèves de première. Il a pour objectif de rappeler les propriétés essentielles des droites orthogonales et des

Plus en détail

Espaces vectoriels. S2 Mathématiques Générales 1 11MM21

Espaces vectoriels. S2 Mathématiques Générales 1 11MM21 Espaces vectoriels S2 Mathématiques Générales 1 11MM21 Les notes qui suivent sont très largement inspirées du site : http://uel.unisciel.fr/mathematiques/espacevect1/espacevect1/co/espacevect1.html et

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011 Corrigé du baccalauréat S Métropole La Réunion 16 septembre 11 EXERCICE 1 Partie A 1 La loi suivie par la variable aléatoire X prenant pour valeur le nombre de moteurs tombant en panne est une loi binomiale

Plus en détail

A O. sont des représentants du même vecteur. BA = OF. sont des représentants d un autre vecteur. BC et EF

A O. sont des représentants du même vecteur. BA = OF. sont des représentants d un autre vecteur. BC et EF 8 Vecteurs Pour caractériser certaines grandeurs, il suffit d un nombre et d une unité : un arbre de 8 m de haut, deux villes distantes de 60 km, un sac de 36 kg, de l eau à 28. Les grandeurs caractérisées

Plus en détail

6. Géométrie et trigonométrie, produit scalaire

6. Géométrie et trigonométrie, produit scalaire 6. Géométrie et trigonométrie, produit scalaire ans ce chapitre, nous allons mêler la géométrie vectorielle et la trigonométrie. e mélange est fait à l aide du produit scalaire, qui permet de calculer

Plus en détail

Mécanique MPSI PCSI : synthèse

Mécanique MPSI PCSI : synthèse Objectifs de cette synthèse : Restructurer les connaissances acquises, Remémorer les méthodes classiques, Redéfinir les outils nécessaires au cours de dynamique. Remarque : ceci n est pas un cours! Il

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

Chapitre 1. Géométrie

Chapitre 1. Géométrie Chapitre 1 Géométrie 1.1. On donne les points a = (1, ), b = (4, 4) et c = (4, 3) du plan. Déterminer a. les composantes des vecteurs ab et ba ; b. les coordonnées du milieu du segment ab ; c. les coordonnées

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

LIAISONS 2 : ETUDE DES CHAINES DE SOLIDES ETUDE DU CONTACT ENTRE 2 SOLIDES

LIAISONS 2 : ETUDE DES CHAINES DE SOLIDES ETUDE DU CONTACT ENTRE 2 SOLIDES LIAISONS : ETUDE DES CHAINES DE SOLIDES ETUDE DU CONTACT ENTRE SOLIDES ETUDE DES CHAINES DE SOLIDES.. Les différentes chaines de solides. Selon la forme du graphe de structure d'un mécanisme, on parle

Plus en détail

Algèbre linéaire et géométrie vectorielle

Algèbre linéaire et géométrie vectorielle Statut provincial: 201-105 pondération: 3-2-3 bloc ministériel préalable: 064-536 Algèbre linéaire et géométrie vectorielle L objet et la place du cours dans le programme En Sciences humaines, c est pendant

Plus en détail

Chapitre 4: Valeurs propres et vecteurs propres

Chapitre 4: Valeurs propres et vecteurs propres VALEURS PROPRES ET VECTEURS PROPRES 91 Chapitre 4: Valeurs propres et vecteurs propres 4.1 Introduction et définitions Introduction : S il est vrai qu une transformation linéaire v Av peut faire bouger

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. Applications.

LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. Applications. LEÇON N 35 : Produit vectoriel dans l espace euclidien orienté de dimension trois. Point de vue géométrique, point de vue analytique. pplications. Pré-requis : Généralités sur les espaces euclidiens affines

Plus en détail

Géométrie dans l'espace

Géométrie dans l'espace Géométrie dans l'espace 1. Rappels de géométrie dans l'espace 1.1. Positions relatives de droites et plans 1.1.1. Position relative de deux plans Définition : On dit que deux plans sont strictement parallèles

Plus en détail

PRODUIT SCALAIRE. 1. Produit scalaire de deux vecteurs. v dans. 1) Norme d un vecteur

PRODUIT SCALAIRE. 1. Produit scalaire de deux vecteurs. v dans. 1) Norme d un vecteur PRODUIT SCALAIRE Cours Première S Hermann Grassmann (1809 1877) Au XIX e siècle, le mathématicien allemand Grassmann étudiant le phénomène des marées, développe le calcul vectoriel et définit le produit

Plus en détail

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace»

Géométrie dans l espace. Complément au chapitre «géométrie élémentaire du plan et de l espace» Chapitre 9 truc Géométrie dans l espace Complément au chapitre «géométrie élémentaire du plan et de l espace» Prérequis On suppose ici connue toute la géométrie de collège et de lycée, en particulier les

Plus en détail

Cours de Première S /Produit scalaire. E. Dostal

Cours de Première S /Produit scalaire. E. Dostal Cours de Première S /Produit scalaire E. Dostal mars 016 Table des matières 11 Produit scalaire 11.1 Définition............................................. 11. Expression analytique......................................

Plus en détail

RAPPELS SUR LES VECTEURS

RAPPELS SUR LES VECTEURS RAPPELS SUR LES VECTEURS 1 re S Ce chapitre est constitué d une part de rappels de Seconde (les exemples y seront donc limités et les propriétés ne seront par re-démontrées) et d autre part d exercices

Plus en détail

Rappels sur les (tri)angles. Module II: rappels de trigonométrie. Rappels sur les (tri)angles. Rappels sur les (tri)angles

Rappels sur les (tri)angles. Module II: rappels de trigonométrie. Rappels sur les (tri)angles. Rappels sur les (tri)angles Rappels sur les (tri)angles Module : rappels de trigonométrie. ngles Les angles opposés par le sommet sont égaux Deux angles dont les cotés sont parallèles sont égaux Deux angles dont les cotés sont perpendiculaires

Plus en détail

Principe fondamental de la Statique 1

Principe fondamental de la Statique 1 Principe Fondamental de la Statique Principe fondamental de la Statique 1 REVENONS AU PB Résultante mécanique = Résultante dynamique Moment mécanique = Moment dynamique On peut aussi écrire en utilisant

Plus en détail

Les vecteurs dans l'espace tridimensionnel. Mise en situation. Feb 15 7:40 PM. Exploration

Les vecteurs dans l'espace tridimensionnel. Mise en situation. Feb 15 7:40 PM. Exploration Les vecteurs dans l'espace tridimensionnel Mise en situation La force, la vitesse vectorielle, et d'autres quantités vectorielles comportent souvent une troisième dimension. Comment peut on représenter

Plus en détail

IV CINEMATIQUE DU SOLIDE

IV CINEMATIQUE DU SOLIDE IV CINEMATIQUE DU OLIDE La cinématique du solide concerne l étude du mouvement des solides supposés indéformables. Elle tient une place importante dans les applications quotidiennes de la mécanique. 1.

Plus en détail

Qu est-ce qu un tenseur?

Qu est-ce qu un tenseur? Qu est-ce qu un tenseur? On connait les : - scalaire (ex : norme X, produit scalaire e 1.X,...) - vecteur V = V 1 e 1 +V 2 e 2 +V 3 e 3 = V i e i ( sommation sur les indices repétés! ) Pratique : matrice

Plus en détail

Algèbre vectorielle. L objet et la place du cours dans le programme. Les objectifs généraux du cours

Algèbre vectorielle. L objet et la place du cours dans le programme. Les objectifs généraux du cours Statut provincial: 201-401 pondération: 3-2-3 bloc ministériel préalable: 064-536 Algèbre vectorielle L objet et la place du cours dans le programme Le cours Algèbre vectorielle (MAT 401) s adresse spécifiquement

Plus en détail

Notions de géométrie

Notions de géométrie IUT Orsay Mesures Physiques Notions de géométrie Cours du 1 er semestre A. Les systèmes de coordonnées dans le plan A-I. Coordonnées cartésiennes Le plan étant muni d un repère orthonormé ( O, i, j) nombres

Plus en détail

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base MATHÉMATIQUES II Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base canonique (, ij) On notera o = (,) 00 l origine du plan Tout élément ( xy, ) de IP peut s interpréter

Plus en détail

L espace vectoriel n. 1. Vecteurs de n Opérations sur les vecteurs

L espace vectoriel n. 1. Vecteurs de n Opérations sur les vecteurs L espace vectoriel n Vidéo partie Vecteurs de n Vidéo partie Eemples d'applications linéaires Vidéo partie Propriétés des applications linéaires Ce chapitre est consacré à l ensemble n vu comme espace

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment

1 Calcul vectoriel. 2 Vecteurs colinéaires. 1.1 coordonnées d un vecteur dans un repère. 1.2 Caractérisation du milieu d un segment Chapitre : Géométrie plane 1 Calcul vectoriel 1.1 coordonnées d un vecteur dans un repère Définition 1. Soit #» u un vecteur du plan. Pour tout point O du plan, il existe un unique point M tel que OM #»

Plus en détail

i, j, k ) un repère orthonormal direct de l'espace.

i, j, k ) un repère orthonormal direct de l'espace. EXERCICES DE CLCUL VECTORIEL DNS LE PLN ET L'ESPCE EUCLIDIEN Exercice 1 On considère, dans l'espace, les points (0 ; 1 ; 1), B(6 ; 1 ; 9) et C(1 ; 0 ; 0) 1. Déterminer une équation cartésienne du plan

Plus en détail

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications 1 Le produit scalaire et ses applications Table des matières 1 Définitions et propriétés 1.1 Définition initiale............................. 1. Définition dans un repère orthonormal................. 1.3

Plus en détail

Leçon Addition numérique de deux ou de plusieurs vecteurs

Leçon Addition numérique de deux ou de plusieurs vecteurs Leçon Addition numérique de deux ou de plusieurs vecteurs L applet fait l addition de deux ou de plusieurs vecteurs spécifiés numériquement, et affiche la résultante graphiquement et numériquement. Préalables

Plus en détail

I) Fiche : Transformations du plan et de l'espace.

I) Fiche : Transformations du plan et de l'espace. I) Fiche : Transformations du plan et de l'espace. E désigne l espace affine euclidien orienté associé à l'espace vectoriel euclidien orienté E muni d'une base orthonormale directe canonique B. On fixe

Plus en détail

Le dipôle électrostatique

Le dipôle électrostatique Cours d électromagnétisme 1 Définition, potentiel et champ créés 1.1 Définition du dipôle électrostatique On appelle dipôle électrostatique le système constitué de deux charges ponctuelles opposées et

Plus en détail

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 2 MATHÉMATIQUES

UNIVERSITÉ DE CERGY. U.F.R. Économie & Gestion. LICENCE d ÉCONOMIE et GESTION. Première année - Semestre 2 MATHÉMATIQUES Année 011-01 UNIVERSITÉ DE CERGY U.F.R. Économie & Gestion LICENCE d ÉCONOMIE et GESTION Première année - Semestre MATHÉMATIQUES MATH10 : Fonctions de plusieurs variables Enseignant responsable : C. Andrianasitera

Plus en détail

Carnet de bord de 5M4 de Ir D. Vandenberge Athénée Royal Jean Absil 1/7

Carnet de bord de 5M4 de Ir D. Vandenberge Athénée Royal Jean Absil 1/7 Chapitre 1 : Calcul vectoriel dans l espace (2h/s) reporté en 6 ième - I-C1-1) 1. Rappels et introduction AD (1 4) 2. Représentation d un vecteur 3. Egalité de deux vecteurs 4. Translation 5. Addition

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

Minimum vital pour des études scientifiques à l université

Minimum vital pour des études scientifiques à l université Faculté des Sciences & Techniques de Limoges 2012-2013 Portails MASS et SI- Premier Semestre Mathématiques Minimum vital pour des études scientifiques à l université La lecture active de ce document fait

Plus en détail

Produit scalaire de l'espace. Applications.

Produit scalaire de l'espace. Applications. 1.... p2 2. Équations cartésienne d'un plan... p4 3. Perpendiculaire commune à deux droites non coplanaires... p9 Copyright meilleurenmaths.com. Tous droits réservés 1. Produit scalaire de l'espace 1.1.

Plus en détail

Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications.

Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications. Produit vectoriel dans l espace euclidien orienté de dimension 3. Point de vue géométrique, point de vue analytique. Applications. Chantal Menini 18 mai 2009 Avant de vous lancer dans cet exposé assurez-vous

Plus en détail

Espaces vectoriels euclidiens. () Espaces vectoriels euclidiens 1 / 40

Espaces vectoriels euclidiens. () Espaces vectoriels euclidiens 1 / 40 Espaces vectoriels euclidiens () Espaces vectoriels euclidiens 1 / 40 1 Produit scalaire, norme, espace euclidien 2 Orthogonalité Dans tout ce cours, E désigne un R espace vectoriel. () Espaces vectoriels

Plus en détail

Géométrie Chapitre 1 : Vecteurs et droites du plan

Géométrie Chapitre 1 : Vecteurs et droites du plan Géométrie Chapitre 1 : Vecteurs et droites du plan I- Rappels et compléments sur les vecteurs 1) Vecteurs égaux La translation qui transforme en est appelée la translation de vecteur. Le point s appelle

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Statique. Modélisation des actions mécaniques

Statique. Modélisation des actions mécaniques écanique Statique Statique S Objectifs : - odéliser mathématiquement une action mécanique ; - Calculer un moment ; - Décrire une action mécanique par un torseur en un point ; - Déterminer l action mécanique

Plus en détail

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN

LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN LYCEE MICHEL-RODANGE LUXEMBOURG PROGRAMMES DE MATHEMATIQUES POUR LE CYCLE MOYEN Introduction. page 2 Classe de cinquième page 3 Classe de quatrième page 7-1 - INTRODUCTION D une manière générale on mettra

Plus en détail

Distance entre deux droites non coplanaires

Distance entre deux droites non coplanaires Distance entre deux droites non coplanaires Hédi Abderrahim Cette notion dans les programmes officiels et les manuels scolaires. Programmes officiels Les textes des programmes officiels stipulent:.. Section:

Plus en détail

sin ( π + x ) = sin x sin ( π 2 + x ) = cos x

sin ( π + x ) = sin x sin ( π 2 + x ) = cos x CH3 Géométrie : Trigonométrie 3 ème Maths Novembre 009 A. LAATAOUI 1 ) COSINUS ET SINUS D UN REEL Sauf contre indication, l unité utilisée est le radian. Le plan orienté est muni d un repère orthonormé

Plus en détail

Espace. + β v = 0. On dit aussi que les deux vecteurs sont

Espace. + β v = 0. On dit aussi que les deux vecteurs sont I Vecteurs dans l espace. II Notion de plan. III Coordonnées. IV Equations dans l espace. Espace. «Espace, frontière de l'infini vers lequel voyage notre vaisseau spatial. Sa mission: Explorer de nouveaux

Plus en détail

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez

Les vecteurs. Année 2014/2015. Lycée du golfe de Saint Tropez Les vecteurs Lycée du golfe de Saint Tropez Année 2014/2015 Seconde ( Lycée du golfe de Saint Tropez) Vecteurs Année 2014/2015 1 / 21 1 Notion de vecteur s Égalité de deux vecteurs 2 s Propriétés 3 Construction

Plus en détail

Ch. V DYNAMIQUE DU SOLIDE

Ch. V DYNAMIQUE DU SOLIDE Ch. V DYNAMQUE DU SOLDE Dynamique : Etude d un mouvement en tenant compte des causes qui le produisent.. Actions mécaniques Action mécanique : toute cause (force, moment) capable de provoquer le mouvement

Plus en détail

Les angles orientés ( En première S )

Les angles orientés ( En première S ) Les angles orientés ( En première S ) Dernière mise à jour : Mercredi 4 Septembre 008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Lycée Stendhal, Grenoble ( Document de : Vincent Obaton )

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Chapitre 11 Géométrie dans l espace Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Droites et plans Positions relatives de droites et de plans : intersection

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Transformations anes du plan et de l'espace

Transformations anes du plan et de l'espace Transformations anes du plan et de l'espace PCSI 2 Dans tous le chapitre, (E, ( )) désigne un espace vectoriel euclidien de dimension 2 (parties 1 et 2) ou 3 (partie 3). On notera la norme euclidienne

Plus en détail

Classe de Terminale S

Classe de Terminale S Pˆr o dˆuˆiˆt Œs c a l aˆiˆr e d e l e sœp a c e Classe de Terminale S I. GÉNÉRALISATION DU PRODUIT SCALAIRE À L ESPACE. Exercice 1 ABCDEFGH est un cube d arête 1, O est le centre de la face EFGH. 1. a)

Plus en détail

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur Plan (1/2) Mathématique Élémentaire Introduction à l algèbre linéaire Support au cours S. Bridoux Université de Mons-Hainaut 1 L espace R N Vecteurs de R N et opérations Produit scalaire de deux vecteurs

Plus en détail