Calcul de champ électrique : le théorème de Gauss
|
|
|
- Marie-Anne Beauregard
- il y a 8 ans
- Total affichages :
Transcription
1 Calcul de champ électrique : le théorème de Gauss Le Flux du champ électrique à travers toute surface fermée est égal à la charge contenue dans le volume délimité par la surface fermée, divisée par la permi;vité du vide. Dans des cas géométriquement «simples» (présentant des symétries et invariances), il est souvent plus simple d u<liser le théorème de Gauss que de calculer des intégrales mul<ples.
2 Notion de flux et d angle solide On introduit l angle solide : Propriétés : l angle solide d une surface fermée vue depuis l intérieur de celle- ci vaut 4π. Vue depuis l extérieur de celle- ci vaut zéro.
3 Démonstration du théorème de Gauss Le flux du champ crée par une charge q à travers une surface vue sous un angle solide Ω vaut Le flux à travers une surface d un ensemble de charges q i vaut donc Si l on considère une surface fermée, Ω i ne peut prendre que 2 valeurs : zéro si la charge q i est extérieure au volume délimité par la surface, et 4π si elle est à l intérieur. On ob<ent donc le résultat souhaité
4
5 Théorème de Gauss Les surfaces A, B, C et D sont supposées fermées. Quelle surface possède le plus grand flux du champ électrique? A C B D 1 A=B=C=D 2 C>B>A>D 3 A>B=D>C 4 C>B>A=D 5 Aucune de ces solutions
6 Théorème de Gauss On considère une charge q et une surface de Gauss sphérique S de rayon R légèrement décentrée par rapport à la charge q. À quelle étape le raisonnement suivant est-il faux? Z!! Z Q 1 E ds = int 4 E S # ds = q Z 0 S # 0!! q 2 E ds = 5 E4pR 2 = q S # Z 0 # 0 3 EdS = q 6 toutes les étapes sont S # 0 correctes
7 La charge ponctuelle On a démontré le théorème de Gauss en s appuyant sur l expression du champ crée par une charge ponctuelle. Le théorème de Gauss est donc une reformula<on (plus compacte et pra<que) de l expression du champ électrosta<que, ou de la force de Coulomb, qui provient de la varia<on de celle- ci en 1/r 2. On peut bien sûr faire le «chemin inverse» :
8 Le plan infini uniformément chargé Analyse des symétries et invariances : Invariances par transla<on suivant x et y : ~E = ~ E(z) On définit un point M de côte z, au niveau duquel on cherche à calculer le champ électrique. Plans de symétrie : Tout plan passant par M et perpendiculaire au plan chargé est plan de symétrie : ~E = E(z)~u z Le plan chargé (z=0) est lui même un plan de symétrie : E( z) = E(z)
9 Le plan infini uniformément chargé On choisit une surface fermée (surface de Gauss) «pra<que» étant données les symétries du problème : ici, un cylindre à cheval sur le plan chargé et symétrique par rapport à ce plan convient bien. On calcule le flux du champ électrique à travers ce]e surface, orientée de l intérieur vers l extérieur Pour z>0, on a : = = E(z) R 2 +0 E( z) R 2 On calcule la charge Q int totale à l intérieur de la surface : Q int = R 2 Le théorème de Gauss nous donne : ~ E(z >0) = 2 0 ~u z et ~E(z <0) = 2 0 ~u z
10 Le plan infini uniformément chargé On peut calculer le poten<el associé : D où V (z) =± z 2" 0 (+ Const)
11 Le plan infini uniformément chargé mais avec une fissure (infinie aussi) dedans Comment s y prendre? Exercice corrigé par B. Lamine (niveau ++) : h]p://video.upmc.fr/differe.php?collec=e_c_correc<on_cours_lp_205_2012&video=4
12 Discontinuité du champ à la traversée d une surface chargée On peut généraliser le calcul fait pour le plan infini à toute surface chargée, en prenant une surface de Gauss de taille infinitésimale Th. Gauss : Flux : d = ds/ 0 d = ~ E 1 ~ ds 1 + ~ E 2 ~ ds 2 d =( ~ E 2 ~ E1 ) ~n 12 ds On ob<ent le résultat suivant, valable pour la composante normale du champ électrique dans un voisinage «infiniment» proche du plan :
13 Plan chargé On considère trois plans infinis chargés. A B C D Quelle est la direction du champ électrique au point B? 1 vers la droite 2 vers la gauche 3 le champ est nul
14 Plan chargé On considère trois plans infinis chargés. A B C D Quelle est la direction du champ électrique au point D? 1 vers la droite 2 vers la gauche 3 le champ est nul
15 Plan chargé On considère trois plans infinis chargés. A B C D Quelle est la valeur de l amplitude du champ électrique au point B? s 2s # 0 s 2# 0 3s 2# # 0 3s # 0 s 3# 0
16 Calcul du cylindre infini uniformément chargé? Autres cas géométriquement «simples» et typiques : boule, sphère, fil etc. seront vus en TD
17 Modèle atomique de Thomson (1904) (pour vous amuser chez vous) Thomson découvre l électron en 1897, il cherche un modèle d atome incluant ces «corpuscules» : il propose que la charges des électrons soit neutralisée par un nuage de «substance» de charge posi<ve Charge volumique du nuage sphérique =3e/4 R 3 Champ électrique interne (cf TD 5) Dynamique (1D) de l électron donnée par
18 Modèle atomique de Thomson (1904) (pour vous amuser chez vous) On cherche à es<mer l énergie d ionisa<on : pour cela on commence par calcule le poten<el électrosta<que dans l atome La condi<on de con<nuité de V en r = R nous donne Cte = 3e 8 " 0 R D où V (r <R)= e 8 " 0 R 3 (3R2 r 2 ) Cf TD5 L énergie à fournir pour ioniser l atome dans le cadre de ce modèle vaut donc environ E ionisation E p (r = 0) = 3e2 8 " 0 R
19 Modèle atomique de Thomson (1904) (pour vous amuser chez vous) Le seul paramètre libre est R : environ 1 Angström : Longueur d onde associée : = ct ' 118nm Radia<on UV Lyman- alpha = 121 nm Energie d ionisa<on : E 20 ev Energie d ionisa<on «constatée» de l atome d hydrogène : E = 13.6 ev On ne tombe pas trop loin! Le modèle est bien sûr incompa<ble avec la découverte ultérieure du noyau par Rutherford (1911) dans le cadre d expériences menées justement pour tester ce modèle de Thomson.
20 Relation locales entre champ et source : l équation de Maxwell-Gauss On a vu et démontré le théorème de Gauss. Il s agit d une relagon intégrale entre le champ E et sa source. On peut réécrire le théorème de Gauss en introduisant la charge volumique Qui peut se réécrire, selon le théorème de Green- Ostogradsky (Théorème Flux- Divergence) : Il s agit de l équagon de Maxwell- Gauss, valable en tout point de l espace, à tout instant, dans un cadre stagque comme dynamique.
21 Réécriture pour le potentiel : équations de Poisson et de Laplace Dans le cas sta<que, on a vu que le champ dérivait d un poten<el scalaire, L équa<on de Maxwell- Gauss s écrit donc pour le poten<el sous la forme Ce]e équa<on n est à priori valable que dans le cas sta<que. Cependant, on peut se placer dans une jauge (c est à dire faire un choix par,culier de rela<on entre V et le poten<el vecteur A) telle que ce]e équa<on soit valable tout le temps. Ce choix de jauge est appelé jauge de Coulomb. En l absence locale de charge volumique, l équa<on de Poisson prend la forme de l équa<on de Laplace
22 Interprétation physique : La divergence du champ E Lien entre présence locale de charge et no<on de divergence
23 Maxwell-Gauss : calcul-express? Cylindre? Sphère? 1. Choix du système de coordonnées adéquat 2. Invariances : dépendance sur les coordonnées 3. Plan de symétrie : direc<on du vecteur E 4. Maxwell- Gauss : Equa<on différen<elle du premier ordre 5. Résolu<on de l équa- diff avec des condi<ons aux limites déterminées par les symétries ou la con<nuité du champ (si pas de charges surfaciques).
24 Densité d énergie électrostatique On a vu précédemment que l énergie poten<elle d une distribu<on volumique de charge peut s écrire On se propose de montrer qu on peut exprimer cene énergie sans faire apparaitre la source ρ(r), donc uniquement en foncgon du champ E. D après l équagon de Maxwell- Gauss : E p = " 0 2 ZZZ div ~ E(~r )V (~r )d
25 Densité d énergie électrostatique On u<lise l iden<té vectorielle : div(v ~ E)= ~ gradv ~E + V.div( ~ E) Et on ob<ent : E p = " 0 2 ZZZ T div(v ~ E)d " 0 2 ZZZ T ~ gradv ~Ed Le théorème de Green- Ostogradsky nous donne le premier terme : T T Elle tend vers 0 lorsque le rayon typique R de ce]e surface tend vers l infini, puisque «loin» de la distribu<on de charge, E décroit en R^2 et V en R, tandis que S augmente en R^2. Il reste donc : E p = 1 2 ZZZ Vd = ZZZ espace 1 2 " 0 ~ E 2 d
26 Energie interne d une sphère chargée uniformément (fait pendant le TD4) Sphère de rayon R, charge volumique ρ constante (calcul de V(r) fait en TD5. Ici, seul V(r<R) est u<le puisqu on intègre que jusqu à R). E int = Z R 0 2 V (r)4 r2 dr D après la rela<on démontrée précédemment, ce]e énergie peut aussi être calculée en intégrant le carré du champ E, mais ce]e fois sur tout l espace (i.e. il faut u<liser les 2 expressions de E, pour r<r et r>r) E int = Dans les deux cas, on ob<ent Z 1 0 " 0 2 E(r)2 4 r 2 dr E int = " 0 R 5
Les Conditions aux limites
Chapitre 5 Les Conditions aux limites Lorsque nous désirons appliquer les équations de base de l EM à des problèmes d exploration géophysique, il est essentiel, pour pouvoir résoudre les équations différentielles,
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Cours 1. Bases physiques de l électronique
Cours 1. Bases physiques de l électronique Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 2005 1 Champ électrique et ses propriétés Ce premier cours introduit
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière
Contenu pédagogique des unités d enseignement Semestre 1(1 ère année) Domaine : Sciences et techniques et Sciences de la matière Algèbre 1 : (Volume horaire total : 63 heures) UE1 : Analyse et algèbre
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE
THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules
TD 9 Problème à deux corps
PH1ME2-C Université Paris 7 - Denis Diderot 2012-2013 TD 9 Problème à deux corps 1. Systèmes de deux particules : centre de masse et particule relative. Application à l étude des étoiles doubles Une étoile
= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m
1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.
Texte Agrégation limitée par diffusion interne
Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse
I - Quelques propriétés des étoiles à neutrons
Formation Interuniversitaire de Physique Option de L3 Ecole Normale Supérieure de Paris Astrophysique Patrick Hennebelle François Levrier Sixième TD 14 avril 2015 Les étoiles dont la masse initiale est
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
Plan du chapitre «Milieux diélectriques»
Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
5. Les conducteurs électriques
5. Les conducteurs électriques 5.1. Introduction Un conducteur électrique est un milieu dans lequel des charges électriques sont libres de se déplacer. Ces charges sont des électrons ou des ions. Les métaux,
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Propriétés électriques de la matière
1 Propriétés électriques de la matière La matière montre des propriétés électriques qui ont été observées depuis l antiquité. Nous allons distinguer les plus fondamentales de ces propriétés. 1 Propriétés
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux. - Section Orthoptiste / stage i-prépa intensif -
POLY-PREPAS Centre de Préparation aux Concours Paramédicaux - Section Orthoptiste / stage i-prépa intensif - 1 Suite énoncé des exos du Chapitre 14 : Noyaux-masse-énergie I. Fission nucléaire induite (provoquée)
Comprendre l Univers grâce aux messages de la lumière
Seconde / P4 Comprendre l Univers grâce aux messages de la lumière 1/ EXPLORATION DE L UNIVERS Dans notre environnement quotidien, les dimensions, les distances sont à l échelle humaine : quelques mètres,
Introduction à l'electromagnétisme
Introduction à l'electromagnétisme 5 novembre 2014 Table des matières 1 Systèmes de coordonnées et vecteurs 6 1.1 Systèmes de coordonnées................................... 6 1.1.1 Repère cartésien...................................
LA PHYSIQUE DES MATERIAUX. Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE
LA PHYSIQUE DES MATERIAUX Chapitre 1 LES RESEAUX DIRECT ET RECIPROQUE Pr. A. Belayachi Université Mohammed V Agdal Faculté des Sciences Rabat Département de Physique - L.P.M [email protected] 1 1.Le réseau
Chap 8 - TEMPS & RELATIVITE RESTREINTE
Chap 8 - TEMPS & RELATIVITE RESTREINTE Exercice 0 page 9 On considère deux évènements E et E Référentiel propre, R : la Terre. Dans ce référentiel, les deux évènements ont lieu au même endroit. La durée
Fiche PanaMaths Calculs avec les fonctions sous Xcas
Fiche PanaMaths Calculs avec les fonctions sous Xcas Cette fiche destinée aux élèves des classes de Terminale requiert un premier niveau de connaissance du logiciel Xcas. Définition d une fonction Fonctions
CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de
HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
DYNAMIQUE DE FORMATION DES ÉTOILES
A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,
SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)
Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance
Molécules et Liaison chimique
Molécules et liaison chimique Molécules et Liaison chimique La liaison dans La liaison dans Le point de vue classique: l approche l de deux atomes d hydrogd hydrogènes R -0,9-1 0 0,5 1 1,5,5 3 3,5 4 R
Décharge électrostatique
Décharge électrostatique F. Rachidi École Polytechnique Fédérale de Lausanne Groupe Compatibilité Électromagnétique [email protected] http://emcwww.epfl.ch 1 Contenu Génération des charges statiques
Cours d électricité. Introduction. Mathieu Bardoux. 1 re année. IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie
Cours d électricité Introduction Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Le terme électricité provient du grec ἤλεκτρον
Interactions des rayonnements avec la matière
UE3-1 : Biophysique Chapitre 2 : Interactions des rayonnements avec la matière Professeur Jean-Philippe VUILLEZ Année universitaire 2011/2012 Université Joseph Fourier de Grenoble - Tous droits réservés.
Chapitre 6 : les groupements d'étoiles et l'espace interstellaire
Chapitre 6 : les groupements d'étoiles et l'espace interstellaire - Notre Galaxie - Amas stellaires - Milieu interstellaire - Où sommes-nous? - Types de galaxies - Interactions entre galaxies Notre Galaxie
Chapitre I- Le champ électrostatique. I.1.1- Phénomènes électrostatiques : notion de charge électrique
Chapitre I- Le champ électrostatique I.- Notions générales I..- Phénomènes électrostatiques : notion de charge électrique Quiconque a déjà vécu l expérience désagréable d une «décharge électrique» lors
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)
0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Atelier : L énergie nucléaire en Astrophysique
Atelier : L énergie nucléaire en Astrophysique Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Une calculatrice, une règle et du papier quadrillé sont nécessaires au bon fonctionnement
Chapitre 02. La lumière des étoiles. Exercices :
Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur
TP 3 diffusion à travers une membrane
TP 3 diffusion à travers une membrane CONSIGNES DE SÉCURITÉ Ce TP nécessite la manipulation de liquides pouvant tacher les vêtements. Le port de la blouse est fortement conseillé. Les essuie tout en papier
INTRODUCTION AUX SYSTEMES D EXPLOITATION. TD2 Exclusion mutuelle / Sémaphores
INTRODUCTION AUX SYSTEMES D EXPLOITATION TD2 Exclusion mutuelle / Sémaphores Exclusion mutuelle / Sémaphores - 0.1 - S O M M A I R E 1. GENERALITES SUR LES SEMAPHORES... 1 1.1. PRESENTATION... 1 1.2. UN
Améliorez et industrialisez vos feedback produit
Améliorez et industrialisez vos feedback produit Jean- Philippe Gillibert, architecte logiciel et coach agile chez Introduc)on Retour d expérience sur un projet à la SNCF Méthode originale de traitement
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Panorama de l astronomie
Panorama de l astronomie 7. Les étoiles : évolution et constitution des éléments chimiques Karl-Ludwig Klein, Observatoire de Paris Gaël Cessateur & Gilles Theureau, Lab Phys. & Chimie de l Environnement
Professeur Eva PEBAY-PEYROULA
3-1 : Physique Chapitre 8 : Le noyau et les réactions nucléaires Professeur Eva PEBAY-PEYROULA Année universitaire 2010/2011 Université Joseph Fourier de Grenoble - Tous droits réservés. Finalité du chapitre
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Lycée Galilée Gennevilliers. chap. 6. JALLU Laurent. I. Introduction... 2 La source d énergie nucléaire... 2
Lycée Galilée Gennevilliers L'énergie nucléaire : fusion et fission chap. 6 JALLU Laurent I. Introduction... 2 La source d énergie nucléaire... 2 II. Équivalence masse-énergie... 3 Bilan de masse de la
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
NOTATIONS PRÉLIMINAIRES
Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel
5.2 Théorème/Transformée de Fourier a) Théorème
. Théorème de Fourier et Transformée de Fourier Fourier, Joseph (788). Théorème/Transformée de Fourier a) Théorème Théorème «de Fourier»: N importe quelle courbe peut être décomposée en une superposition
PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau
PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative
PHYSIQUE 2 - Épreuve écrite
PHYSIQUE - Épreuve écrite WARIN André I. Remarques générales Le sujet de physique de la session 010 comprenait une partie A sur l optique et une partie B sur l électromagnétisme. - La partie A, à caractère
LE VIDE ABSOLU EXISTE-T-IL?
Document professeur Niveau : Seconde LE VIDE ABSOLU EXISTE-T-IL? Compétences mises en œuvre : S approprier : extraire l information utile. Communiquer. Principe de l activité : La question posée à la classe
Équivalence masse-énergie
CHPITRE 5 NOYUX, MSSE ET ÉNERGIE Équivalence masse-énergie. Équivalence masse-énergie Einstein a montré que la masse constitue une forme d énergie appelée énergie de masse. La relation entre la masse (en
Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre)
Chapitre 10 : Radioactivité et réactions nucléaires (chapitre 11 du livre) 1. A la découverte de la radioactivité. Un noyau père radioactif est un noyau INSTABLE. Il se transforme en un noyau fils STABLE
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Travaux dirigés d introduction aux Probabilités
Travaux dirigés d introduction aux Probabilités - Dénombrement - - Probabilités Élémentaires - - Variables Aléatoires Discrètes - - Variables Aléatoires Continues - 1 - Dénombrement - Exercice 1 Combien
TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent
TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année
Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre
Les 10 étapes clés pour trouver des clients par internet
Les 10 étapes clés pour trouver des clients par internet Guide pour les entreprises de Home Staging 1 L auteur : Adrian Measures Adrian Measures est responsable du marke@ng sur internet et fondateur de
Le second nuage : questions autour de la lumière
Le second nuage : questions autour de la lumière Quelle vitesse? infinie ou pas? cf débats autour de la réfraction (Newton : la lumière va + vite dans l eau) mesures astronomiques (Rœmer, Bradley) : grande
Sujet proposé par Yves M. LEROY. Cet examen se compose d un exercice et de deux problèmes. Ces trois parties sont indépendantes.
Promotion X 004 COURS D ANALYSE DES STRUCTURES MÉCANIQUES PAR LA MÉTHODE DES ELEMENTS FINIS (MEC 568) contrôle non classant (7 mars 007, heures) Documents autorisés : polycopié ; documents et notes de
(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»
Chapitre 5 / TP 1 : Contrôle qualité de l'eau de Dakin par dosage par étalonnage à l'aide d'un spectrophotomètre Objectif : Vous devez vérifier la concentration massique d'un désinfectant, l'eau de Dakin.
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Stabilité et Réactivité Nucléaire
Chapitre 1 Stabilité et Réactivité Nucléaire Les expériences, maintes fois répétées, montraient chaque fois que les déflexions subies par les particules chargées en interaction avec les noyaux ne correspondaient
NUAGES INTERSTELLAIRES ET NEBULEUSES
NUAGES INTERSTELLAIRES ET NEBULEUSES P. Sogorb I. INTRODUCTION Les milliards d étoiles qui forment les galaxies, baignent dans un milieu interstellaire qui représente, dans le cas de notre Galaxie, 10
a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov
V. Les réactions r thermonucléaires 1. Principes a. Fusion et énergie de liaison des noyaux b. La barrière Coulombienne c. Effet tunnel & pic de Gamov 2. Taux de réactions r thermonucléaires a. Les sections
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Chapitre 11: Réactions nucléaires, radioactivité et fission
1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette [email protected] Université
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Champ électromagnétique?
Qu est-ce qu un Champ électromagnétique? Alain Azoulay Consultant, www.radiocem.com 3 décembre 2013. 1 Définition trouvée à l article 2 de la Directive «champs électromagnétiques» : des champs électriques
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
Les rayons X. Olivier Ernst
Les rayons X Olivier Ernst Lille La physique pour les nuls 1 Une onde est caractérisée par : Sa fréquence F en Hertz (Hz) : nombre de cycle par seconde Sa longueur λ : distance entre 2 maximum Sa vitesse
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
CHAPITRE 2 : Structure électronique des molécules
CHAPITRE 2 : Structure électronique des molécules I. La liaison covalente 1) Formation d une liaison covalente Les molécules sont des assemblages d atomes liés par des liaisons chimiques résultant d interactions
Erratum de MÉCANIQUE, 6ème édition. Introduction Page xxi (milieu de page) G = 6, 672 59 10 11 m 3 kg 1 s 2
Introduction Page xxi (milieu de page) G = 6, 672 59 1 11 m 3 kg 1 s 2 Erratum de MÉCANIQUE, 6ème édition Page xxv (dernier tiers de page) le terme de Coriolis est supérieur à 1% du poids) Chapitre 1 Page
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE
ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers
Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.
Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).
PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome
PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -
Compression et Transmission des Signaux. Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette
Compression et Transmission des Signaux Samson LASAULCE Laboratoire des Signaux et Systèmes, Gif/Yvette 1 De Shannon à Mac Donalds Mac Donalds 1955 Claude Elwood Shannon 1916 2001 Monsieur X 1951 2 Où
À propos d ITER. 1- Principe de la fusion thermonucléaire
À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet
