Chapitre 6 : Matrices

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 6 : Matrices"

Transcription

1 Chapitre 6 : Matrices Ce chapitre est consacré à l'étude des matrices Nous y introduisons les bases du calcul matriciel : somme, produit, inverse et transposée Table des matières 1 Matrice à n lignes, p colonnes 2 2 Addition de matrices 4 3 Multiplication d'une matrice par un réel 5 4 Multiplication matricielle 6 5 Matrices carrées 9 6 Transposition 13 4 octobre Pierre-Yves Madec - 1

2 1 Matrice à n lignes, p colonnes Dénition (Matrice à n lignes, p colonnes) Soit (n, p) (N ) 2, Matrice à n lignes, p colonnes de type (n, p) ˆ i est l'indice de ligne de la matrice A = tout tableau de réels : a 11 a 12 a 1j a 1p a 21 a 22 a 2j a 2p A = a i1 a i2 a ij a ip a n1 a n2 a nj a np ˆ j est l'indice de colonne de la matrice A Notation condensée de A : A = (a ij ) 1 i n, se lit : "A est la matrice de coecients a ij, i décrivant 1, n, j décrivant 1, p " Exemple(s) ˆ ˆ est une matrice à 2 lignes et 3 colonnes, ou encore une matrice de type (2, 3) , est une matrice à 4 lignes et 2 colonnes, ou encore une matrice de type (2, 4) e

3 Dénition (Matrices carrées d'ordre n) Matrice carrée d'ordre n = toute matrice de type (n, n) : a 11 a 12 a 1n a 21 a 22 a 2n A = a n1 a n2 a nn Les coecients a ii sont appelés les coecients diagonaux de A La diagonale de A est l'ensemble {a ii, i 1, n } Notation (Deux ensembles de matricess) ˆ M n,p (R) = l'ensemble des matrices à n lignes, p colonnes à coecients dans R ˆ M n (R) = l'ensemble des matrices carrées d'ordre n à coecients dans R Quelques matrices particulières : ˆ Matrices carrées particulières : matrice identité d'ordre n : I n = matrice diagonale d'ordre n = matrice (a ij ) 1 i,j n telle que (i, j) 1, n 2, i j a ij = 0, a a 22 = toute matrice de la forme a nn matrice scalaire d'ordre n = toute matrice de la forme λi n, λ R 3

4 λ = toute matrice de la forme λ 0 0 λ matrice triangulaire supérieure d'ordre n = toute matrice (a ij ) 1 i,j n telle que (i, j) 1, n 2, i > j a ij = 0 a 11 a 12 a 1,n a 22 = toute matrice de la forme : 0 matrice triangulaire inférieure d'ordre n = toute matrice (a ij ) 1 i,j n telle que (i, j) 1, n 2, i < j a ij = 0 a nn a 21 a 22 0 = toute matrice de la forme : a n1 a nn a 11 ˆ matrice ligne (ou vecteur ligne) = toute matrice de type (1, p), ) = toute matrice de la forme (a 11 a 12 a 1n ˆ matrice colonne (ou vecteur colonne) = toute matrice de type (n, 1) = toute matrice de la forme a 11 a 21 a n1 2 Addition de matrices Dénition Soit A = (a ij ) 1 i n et B = (b ij ) 1 i n, alors A + B = (a ij + b ij ) 1 i n 4

5 Exemple(s) Soit A = B = Calculer A + B A + B = Propriété 1 (Élément neutre pour l'addition) 0 0 L'addition de matrices admet un élément neutre : 0 Mn,p(R) =, 0 0 càd A = M n,p (R), A + 0 Mn,p(R) = A Démonstration A = (a ij ) 1 i n M n,p (R), A + 0 Mn,p(R) = (a ij + 0) 1 i n = (a ij ) 1 i n = A 3 Multiplication d'une matrice par un réel Dénition Soit A = (a ij ) 1 i n et soit λ R, alors on dénit la multiplication d'une matrice par un réel de la manière suivante : On dénit de même Aλ, : Il est clair que λa = Aλ λa = (λa ij ) 1 i n Aλ = (a ij λ) 1 i n ) Exemple(s) ( ( 1 Soit A = 2 3 ) Calculer 3A puis A ( 3) A = ( ) De même A ( 3) = alors 3A = 5

6 4 Multiplication matricielle Dénition Soit (m, n, p) (N ) 3 A = (a ij ) 1 i n M n,p (R), Soit B = (b ij ) 1 i m M m,n (R) 1 j n Alors on dénit le produit matriciel de B par A de la manière suivante : BA = (c ij ) 1 i m, avec n (i, j) 1, m 1, p, c ij = b ik a kj k=1 Calcul pratique : b i1 b i2 b ik b in a 1j a 2j a kj a 2n c ij c ij = b i1 a 1j + b i2 a 2j + + b ik a kj + + b in a kn n = b ik a kj k=1 Remarque(s) 1 Pour obtenir le terme c ij de la matrice BA, il faut eectuer la somme des produits des termes de la ligne i de la matrice B par les termes correspondants de la colonne j de la matrice A 2 Pour pourvoir calculer BA, IL FAUT QUE le nombre de colonnes de B soit égal au nombre de lignes de A 6

7 Exemple(s) B =, A = 2 1 Calculer, si cela a un sens AB et BA ( ) Soit A = 3 1 1, B =, C = 2 Si cela a un sens, calculer tous les produits possibles deux à deux : AB, AC, etc 3 A = 1 2 3, C = Calculer, si cela a un sens AC et CA Remarque(s) Le produit matriciel n'est pas commutatif! Exemple : si A = et B =,

8 alors AB = BA = 2 Le produit de deux matrices non nulles peut être nul! Exemple : si A = 1 1, 1 1 alors AB = et B = Propriété 2 (du produit matriciel) 1 Si les produits (CB)A et C(BA) ont un sens, alors (CB)A = C(BA) (associativité) 2 Si les produits C(A + B), CA et CB ont un sens alors C(A + B) = CA + CB (distributivité à gauche) 3 Si les produits (A + B)C, AC et BC ont un sens alors (A + B)C = AC + BC (distributivité à droite) 4 Si les produits A(λB), (λa)b et λab ont un sens alors λ R, A(λB) = (λa)b = λab Démonstration Admis 5 Matrices carrées Propriété 3 (Élément neutre pour la multiplication) A M n (R), AI n = I n A = A Démonstration Admis Exemple(s) Soit A =

9 Calculer AI 3 puis I 3 A Dénition (Puissance p-ième d'une matrice carrée) Soit A M n (R) et soit p N La puissance p-ième de A est A p = A A A }{{} Par convention A 0 = I n p fois Exemple(s) ˆ Soit A = Calculer A 2 et A ˆ Soit B = Calculer A 2 et A

10 Propriété 4 (Puissance d'une matrice diagonale) d 1 d 2 Si D =, alors, pour tout p N, d n D p = d p 1 d p 2 d p n Démonstration Nous allons établir ce résultat par récurrence Notons, pour tout p N, P(p) : D p = d p 1 d p 2 Initialisation : P(0) est vraie car, d'une part, D 0 = I n (convention) et, d'autre part, d p n d 0 1 d 0 2 = 1 1 = I n 1 d 0 n Hérédité : Soit p N Supposons que P(p) est vraie Montrons que P(p + 1) est vraie D p+1 = D p D = d p 1 d p 2 d 1 d 2 (hypothèse de récurrence) = d p+1 1 d p+1 2 d p n d p+1 n d n 10

11 Dénition (Inverse d'une matrice carrée) Soit A une matrice de M n (R) On dit que A est inversible ssi il existe B M n (R) tel que AB = BA = I n LORSQUE B existe, B est noté A 1 Exemple(s) A = A est inversible en prenant B = 1 2 Vérication : Propriété 5 (Unicité de l'inverse) L'inverse d'une matrice, s'il existe, est unique Démonstration Démonstration Soit A une matrice admettant deux inverses B 1 et B 2 Alors, en 11

12 utilisant l'associativité du produit matriciel : { (B1 A)B 2 = I n B 2 = B 2, B 1 AB 2 = B 1 (AB 2 ) = B 1 I n = B 1 Théorème 6 (Inverse à gauche = Inverse à droite = Inverse) Soit A M n (R), les assertions suivantes sont équivalentes : 1 A est inversible 2 A est inversible à droite, càd D M n (R), AD = I n 3 A est inversible à gauche, càd G M n (R), GA = I n Démonstration Remarque(s) (Unicité de l'inverse) On peut remarquer que SI A admet un inverse à droite D et un inverse à gauche G, alors : ce qui prouve que D = G GAD = { (GA)D = In D = D G(AD) = GI n = G, Propriété 7 (Inverse d'un produit) Soit (A, B) M n (R) 2 Si A et B sont inversibles alors AB est inversible et (AB) 1 = B 1 A 1 Démonstration B 1 A 1 (AB) = B 1 (A 1 A)B = B 1 I n B = B 1 B = I n Donc AB admet un B 1 A 1 comme inverse à gauche Or admettre un inverse à gauche est équivalent à être inversible Ceci prouve que AB est inversible d'inverse B 1 A 1 12

13 6 Transposition Dénition (Transposée) Soit A = (a ij ) 1 i n M n,p (R) On appelle transposée de A la matrice t A M p,n (R) dont les lignes sont les colonnes de A et vice versa, càd t A = (a ij) 1 i p avec : (i, j) 1, p 1, n, a ij = a ji 1 j n Exemple(s) A = alors t A = Remarque(s) n N, t I n = t = = I n Donc t I n = I n Propriété 8 (Linéarité de la transposée) λ R, (A, B) M n,p (R) 2, t (λa + B) = λ t A + t B Remarque(s) Conséquence de le propriété précédente : ˆ Prenant λ = 1, il vient, pour toute m t (A + B) = t A + t B, ˆ t(λa) = λ t A 13

14 Propriété 9 (Transposée du produit) (A, B) M n,p (R) M m,n (R), t (BA) = t A t B Démonstration Admis Propriété 10 (Transposée de l'inverse d'une matrice carée) Soit A M n (R) On suppose que A est inversible, alors ( t A) 1 = t (A 1 ) Démonstration Si A est inversible, alors il existe B = A 1 M n (R) tel que AB = BA = I n En particulier, AB = I n = = t (AB) = t I n t B t A = I n Par conséquent, t A admet un inverse à gauche qui est t B = t (A 1 ) Autrement dit : ( t A) 1 = t (A 1 ) Dénition (Matrice symétrique) A = (a ij ) 1 i n M n (R) est dite symétrique ssi (i, j) 1, n 2, a ij = a ji 1 j n Exemple(s) Donner un exemple de matrice symétrique de type (2, 2), de type (3, 3) Propriété 11 (Caractérisation par la transposée) A M n (R) est symétrique ssi t A = A 14

15 Démonstration Conséquence directe de la dénition d'une matrice symétrique Fin du chapitre 15

Notations du chapitre. Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble.

Notations du chapitre. Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble. Matrices Notations du chapitre Dans tout ce chapitre, n et p sont deux entiers naturels non nuls. désigne l ensemble ou l ensemble. Ensemble des matrices Définition 1.1 Matrice à n lignes et p colonnes

Plus en détail

Chap. I. Calcul Matriciel

Chap. I. Calcul Matriciel Printemps 2010 Chap. I. Calcul Matriciel 1 Chap. I. Calcul Matriciel Printemps 2010 Printemps 2010 Chap. I. Calcul Matriciel 2 Dans tout ce qui suit, K désigne R ou C. 1 Dénitions et propriétés Un tableau

Plus en détail

Chapitre 3 : Matrices

Chapitre 3 : Matrices Chapitre 3 : Matrices Sommaire I Notion de matrice et vocabulaire II Opérations de base sur les matrices 3 1 Addition de matrices et multiplication d un réel par une matrice 3 Multiplication matricielle

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C.

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (K) Dans tout ce chapitre, K désigne R ou C. Matrices Dans tout ce chapitre, K désigne R ou C Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes à coefficients dans K tout tableau rectangulaire

Plus en détail

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C.

Calcul matriciel CHAPITRE L'ensemble des matrices Dénitions. Dans tout le chapitre, K désigne le corps R ou C. CHAPITRE 0 Calcul matriciel Dans tout le chapitre, K désigne le corps R ou C 0 L'ensemble des matrices 0 Dénitions Dénition Soient n, p N On appelle matrice à coecients dans K à n lignes et p colonnes

Plus en détail

Calcul matriciel. Systèmes linéaires. I.1 Reconnaître un système linéaire. Dénition 1

Calcul matriciel. Systèmes linéaires. I.1 Reconnaître un système linéaire. Dénition 1 MTB - ch1 Page 1/11 Calcul matriciel Dans tout ce chapitre, K désigne soit l'ensemble R des nombres réels, soit l'ensemble C des nombres complexes. On appelle scalaire un nombre réel lorsque K = R ou complexe

Plus en détail

Maths en PCSI Année Chapitre n 12. Calcul matriciel

Maths en PCSI Année Chapitre n 12. Calcul matriciel Chapitre n 12 Calcul matriciel Dans tout ce chapitre, K désigne R ou C, et n, p et q des entiers naturels non nuls Les éléments de K seront aussi appelés des scalaires 1 Ensembles de matrices Définition

Plus en détail

10.1 L ensemble des matrices et son vocabulaire

10.1 L ensemble des matrices et son vocabulaire Chapitre 10 Matrices Sommaire 10.1 L'ensemble des matrices et son vocabulaire................... 93 10.1.1 Dénitions...................................... 93 10.1.2 Quelques cas particuliers...............................

Plus en détail

Matrices. Chapitre 7. Sommaire

Matrices. Chapitre 7. Sommaire Chapitre 7 Matrices Sommaire 7.1 Notion de matrice et vocabulaire..................... 109 7.1.1 Définitions.................................. 109 7.1.2 Quelques cas particuliers...........................

Plus en détail

Calcul matriciel. Chapitre Généralités Premières dénitions

Calcul matriciel. Chapitre Généralités Premières dénitions Table des matières 8 Calcul matriciel 2 81 Généralités 2 811 Premières dénitions 2 812 Matrices carrées particulières 4 82 Somme et produit par un réel 5 83 Produit 7 84 Transposée 10 85 Puissance d'une

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre 2 : Matrices 1 Notion de matrice et vocabulaire Notation 1 Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini

Plus en détail

Chapitre 2 : Matrices

Chapitre 2 : Matrices Chapitre : Matrices Notion de matrice et vocabulaire Notation Dans tout le chapitre n, p, q sont des entiers naturels non nuls Définition Une matrice A à n lignes et p colonnes est un tableau défini par

Plus en détail

Chapitre 10. Matrices Définitions

Chapitre 10. Matrices Définitions Chapitre 10 Matrices Nous allons dans ce chapitre découvrir la notion fondamentale de matrice Dans ce chapitre, on note K = R ou C 101 Définitions Définition 1011 On appelle matrice à n lignes et p colonnes

Plus en détail

Chapitre n o 12. Matrices

Chapitre n o 12. Matrices Lycée Roland Garros Mathématiques BCPST 1ère année 2013-2014 Chapitre n o 12 Matrices Dans ce chapitre K désignera R ou C Un élément de K est appelé un scalaire 1 Dénitions Dénition 1 Soient n, p N Une

Plus en détail

Matrices. Table des matières. Cours de É. Bouchet ECS1. 23 novembre 2017

Matrices. Table des matières. Cours de É. Bouchet ECS1. 23 novembre 2017 Matrices Cours de É. Bouchet ECS novembre 07 Table des matières Ensemble de matrices M n,p (K. Premières dénitions............................................... Matrices carrées.................................................

Plus en détail

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2

I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 Matrice p. 1/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement complexes). p. 2/2 I-Définitions: A matrice à n lignes et p colonnes : np éléments réels (ou éventuellement

Plus en détail

Matrices à coecients réels

Matrices à coecients réels Matrices à coecients réels Dans tout ce chapitre d, n, p et q sont des entiers naturels non nuls 1 Systèmes linéaires : 11 Généralités : Dénition 1 : On appelle système linéaire de n équations à p inconnues

Plus en détail

MATRICES. Ensemble des matrices et opérations. 1 o ) Définition et matrices particulières

MATRICES. Ensemble des matrices et opérations. 1 o ) Définition et matrices particulières MATRICES I Ensemble des matrices et opérations Dans toute cette partie, K désigne indifféremment R ou C, et n et p désignent des entiers naturels non nuls 1 o Définition et matrices particulières Définition

Plus en détail

Matrices. () Matrices 1 / 45

Matrices. () Matrices 1 / 45 Matrices () Matrices 1 / 45 1 Matrices : définitions 2 Calcul matriciel 3 Opérations élémentaires sur les lignes d une matrice 4 Transposition On va principalement travailler avec R Mais on peut remplacer

Plus en détail

Matrices. Chapitre 4. I - Notion de matrice et vocabulaire. Dans tout le chapitre n, p, q sont des entiers naturels non nuls.

Matrices. Chapitre 4. I - Notion de matrice et vocabulaire. Dans tout le chapitre n, p, q sont des entiers naturels non nuls. Chapitre 4 Matrices I - Notion de matrice et vocabulaire Dans tout le chapitre n, p, q sont des entiers naturels non nuls. Définition 1 Une matrice A à n lignes et p colonnes est un tableau défini par

Plus en détail

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44

Chapitre 13. Calcul matriciel. Mathématiques PTSI. Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 Chapitre 13 Calcul matriciel Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Calcul matriciel 1 / 44 On note K = R ou C Mathématiques PTSI (Lycée Déodat de Séverac)

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Révisions sur les matrices

Révisions sur les matrices BCPST2 9 5 2 10Révisions sur les matrices I Dénition et structure A) Ensemble des matrices Soient n, p N des entiers xés On appelle matrice à n lignes et p colonnes et à coecients à K la donnée d'une famille

Plus en détail

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R)

Matrices. 1 Matrices rectangulaires. 1.2 L espace vectoriel M n,p (R) Matrices Matrices rectangulaires Soient n, p deux nombres entiers non-nuls On appelle matrice à n lignes et p colonnes un tableau rectangulaire de nombres réels comportant n lignes et p colonnes } }{{}

Plus en détail

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3

Calcul matriciel. 1.1 Définitions Matrices carrées particulières... 3 Chapitre 10 Calcul matriciel 1 Généralités 2 11 Définitions 2 12 Matrices carrées particulières 3 2 Opérations sur les matrices 4 21 L espace vectoriel M np (R 4 22 Produit de deux matrices 5 23 Transposée

Plus en détail

Matrices. Antoine Louatron

Matrices. Antoine Louatron Matrices Antoine Louatron 2/10 Table des matières Table des matières I Calcul sur les matrices 3 I1 Opérations 3 I2 Propriétés des opérations 4 I3 Matrices carrées 6 I4 Matrices particulières 6 II Matrices

Plus en détail

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations

4.1 Définitions et notations 1 CHAPITRE 4. Matrices Définitions et notations 4 Définitions et notations CHAPITRE 4 Matrices 4 Définitions et notations On désigne par K un des deux ensembles R ou C et par n et p deux entiers strictement positifs 4 Matrices Définition On appelle

Plus en détail

Chapitre 2. Introduction aux matrices

Chapitre 2. Introduction aux matrices L1 2012-2013 Université Paris 13 Algèbre linéaire Chapitre 2 Introduction aux matrices Référence: Liret-Martinais [2], chapitre 4 Nous avons déjà rencontré des tableaux de nombres, ou matrices Nous allons

Plus en détail

CH XIII : Calcul matriciel

CH XIII : Calcul matriciel CH XIII : Calcul matriciel I Généralités sur les matrices Soient n et p deux entiers naturels non nuls On appelle matrice à n lignes et p colonnes à cœfficients dans R un tableau de nombres réels Si A

Plus en détail

Chapitre 11 : Systèmes linéaires

Chapitre 11 : Systèmes linéaires Chapitre 11 : Systèmes linéaires Dans ce chapitre, nous nous intéressons à la résolution pratique de systèmes linéaires Nous appliquons ensuite nos résultats pour inverser des matrices carrées inversibles

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice.

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY. Les nombres contenus dans ce tableau sont appelés les coefficients de la matrice. Les matrices chapitre 2 : calcul matriciel I / Définitions Soit n et p deux entiers naturels non nuls Une matrice n p (on dit aussi de format n ; p ( ) est un tableau de nombres réels à n lignes et p colonnes

Plus en détail

MATRICES - DEFINITION 1 Une matrice est un tableau rectangulaire de nombres.

MATRICES - DEFINITION 1 Une matrice est un tableau rectangulaire de nombres. MATRICES - DEFINITION 1 Une matrice est un tableau rectangulaire de nombres. Exemple: A = 1 17 1.12 3 π 6. Une matrice est de format mxn ssi elle a m lignes et n colonnes (m,n IN 0) Exemple : A est de

Plus en détail

MATRICES. I- Définitions

MATRICES. I- Définitions MATRICES I- Définitions Une matrice A de format n, p est un tableau de nombres à n lignes et p colonnes Ces nombres sont appelés coefficients de la matrice Le coefficient de la i ème et de la j ème est

Plus en détail

Chapitre A8 : Matrices et systèmes linéaires

Chapitre A8 : Matrices et systèmes linéaires Chapitre A8 : Matrices et systèmes linéaires 1 Matrices Dans tout le chapitre n, p, q, r N et K = R ou C 1 a) Définitions Définition 11 On appelle matrice à n lignes et p colonnes une application de 1,

Plus en détail

Chapitre 12. Matrices

Chapitre 12. Matrices Chapitre 12 Matrices. I Dans la suite, n, p, q, r désignent des entiers naturels non nuls. K désigne R ou C. Matrices 1 Dénition Dénition 1 On appelle matrice à n lignes et p colonnes, ou matrice de type

Plus en détail

Matrices. 5 février 2018

Matrices. 5 février 2018 Matrices 5 février 218 Table des matières 1 Généralités 3 11 Généralités 3 111 Définitions 3 112 Notation 3 113 Egalité entre deux matrices : 3 114 Ensemble de matrices 3 12 Des cas particuliers 4 121

Plus en détail

2 Diverses interprétations des matrices

2 Diverses interprétations des matrices 1 Rappels Espace vectoriel M p,n (K) : Addition : dénition et propriétés élémentaires : commutativité, associativité, existence d'un neutre, toute matrice admet un(e) opposé(e) pour + Multiplication par

Plus en détail

Matrices et opérations

Matrices et opérations Matrices et opérations I Matrices et opérations I1 definitions Définition 1 Soient n et p deux entiers naturels non nuls Une matrice de format (n, p est un tableau de nombres réels comportant n lignes

Plus en détail

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22...

Chapitre 3. Matrices. Définition 1.1. Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a a. 1q a 21 a 22... Chapitre 3 Matrices 1 Définitions et généralités Définition 11 Un tableau rectangulaire de la forme ci-dessous est appelé matrice : a 11 a 12 a 1q a 21 a 22 a 2q A a p1 a p2 a ps Les coefficients a ij,

Plus en détail

Matrices à coefficients dans R ou C.

Matrices à coefficients dans R ou C. BCPST1 B 2015/2016 Matrices à coefficients dans R ou C Dans ce chapitre n, r, q et p sont des entiers naturels non nuls, Les éléments de R ou de C sont appelés nombres ou scalaires I) Définition et vocabulaire

Plus en détail

Matrices. Chapitre V. 1 Révisions. a) Généralités

Matrices. Chapitre V. 1 Révisions. a) Généralités Chapitre V Matrices 1 Révisions a) Généralités Définitions Soient m, n et un corps commutatif Une matrice de type m, n à coefficients dans est un tableau de mn éléments de à m lignes et n colonnes, que

Plus en détail

a 1,1 x a 1,m x m = b 1 a 2,1 x a 2,m x m = b 2. . = b n

a 1,1 x a 1,m x m = b 1 a 2,1 x a 2,m x m = b 2. . = b n Chapitre Calcul matriciel Dans tout ce chapitre la lettre K désignera Q,R, ou C Systèmes et point de vue matriciel Rappelons qu un système d équations linéaires (disons, à n équations et m inconnues x,,x

Plus en détail

Chapitres 5. Les matrices. Définition et notations: on appelle matrice m par n à coefficients dans K tout tableau. a 11 a 1n a 21 a 2n A = a m1 a mn

Chapitres 5. Les matrices. Définition et notations: on appelle matrice m par n à coefficients dans K tout tableau. a 11 a 1n a 21 a 2n A = a m1 a mn Université Lyon 1 Classes préparatoires 2015-2016 Algèbre linéaire Serge Parmentier 1 L ensemble des matrices Soit K un corps et n, m N \ {0} Chapitres 5 Les matrices Définition et notations: on appelle

Plus en détail

LES MATRICES. Chapitre Premières définitions

LES MATRICES. Chapitre Premières définitions Chapitre 1 LES MATRICES 11 Premières définitions Définition Une matrice à n lignes et p colonnes et à coefficients dans R est un tableau de np éléments de R que l on représente sous la forme : a 11 a 12

Plus en détail

Chapitre 8. Matrices. 1 Vocabulaire et Notations

Chapitre 8. Matrices. 1 Vocabulaire et Notations ECE 1 - Année 2016-2017 Lycée français de Vienne Mathématiques - F Gaunard http://fredericgaunardcom Chapitre 8 Matrices Ce Chapitre introduit la notion de matrice ainsi que les règles de calcul matriciel

Plus en détail

Al 6 -Systèmes linéaires - Calcul matriciel

Al 6 -Systèmes linéaires - Calcul matriciel Al 6 -Systèmes linéaires - Calcul matriciel Dans ce chapitre K désignera R ou C, et n, p, q, r désigneront des entiers naturels non nuls 1 Matrices Définition 1 1 On appelle matrice de taille n p à coefficients

Plus en détail

Cours d algèbre 2. CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed. UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz

Cours d algèbre 2. CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed. UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH FACULTÉ DES SCIENCES Dhar El Mehraz Cours d algèbre 2 CHOULLI Hanan, MOUANIS Hakima et ZENNAYI Mohammed Département de Mathématiques Filières SMP-SMC (Semèstre 1) Module

Plus en détail

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices

Chapitre 6. Algèbre matricielle. 6.1 Opérations linéaires sur les matrices Chapitre 6 Algèbre matricielle En plus d être des tableaux de nombres susceptibles d être manipulés par des algorithmes pour la résolution des systèmes linéaires et des outils de calcul pour les applications

Plus en détail

Table des matières. Cours PCSI ( ) Les matrices Lycée Baimbridge

Table des matières. Cours PCSI ( ) Les matrices Lycée Baimbridge Table des matières Introduction...2 I- Opérations sur les matrices...3 1- s et ensembles de matrices...3 2- Structure d'espace vectoriel de Mnp(K)...4 a- Somme de deux matrices de même dimension...4 b-

Plus en détail

Matrices. Chapitre Définition d une matrice

Matrices. Chapitre Définition d une matrice Chapitre 17 Matrices 171 Définition d une matrice Définition 171 : Soit un corps commutatif K et deux entiers n,p 1 On appelle matrice n p à coefficients dans K, une application { [[1,n]] [[1,p]] K A :

Plus en détail

Chapitre 1: Matrices

Chapitre 1: Matrices Chapitre 1: Matrices Définition Matrice M de dimensions (m,n) = «Tableau à deux dimensions» avec m lignes et n colonnes Exemple : M est une matrice (4,3) à coefficients dans R M 1 6.4 3 3 8 2 = 2 4 9 1.1

Plus en détail

Chapitre 1 MATRICES TES-spécialité

Chapitre 1 MATRICES TES-spécialité Chapitre 1 MATRICES TES-spécialité I Généralités sur les matrices Définition Une matrice de taille m n est un tableau de nombres réels formé de m lignes et n colonnes. On note a i, j l'élément (appartenant

Plus en détail

Calcul matriciel. 1 Ensemble des matrices Définitions Opérations sur les matrices Matrices carrées... 7

Calcul matriciel. 1 Ensemble des matrices Définitions Opérations sur les matrices Matrices carrées... 7 Chapitre 2 Calcul matriciel Ensemble des matrices 2 Définitions 2 2 Opérations sur les matrices 3 3 Matrices carrées 7 2 Opérations élémentaires de pivot et calcul matriciel 2 Matrices d opérations élémentaires

Plus en détail

Chapitre 13 : Matrices

Chapitre 13 : Matrices Chapitre 13 : Matrices ECE3 Lycée Carnot 4 janvier 011 Introduction Pour introduire le concept de matrice, intéressons-nous au problème très concret suivant : dans le village de Trouperdu, le boulanger

Plus en détail

Chapitre 13 : Matrices

Chapitre 13 : Matrices Chapitre 13 : Matrices ECE3 Lycée Carnot 9 février 01 Introduction Pour introduire le concept de matrice, intéressons-nous au problème très concret suivant : dans le village de Trouperdu, le boulanger

Plus en détail

Ch. 03 MATRICES et SUITES

Ch. 03 MATRICES et SUITES Ch 03 MATRICES et SUITES I Notion de matrice Une matrice est un tableau de nombres réels à n lignes et p colonnes, de taille (n, p) ou n p Notation La matrice M ci-dessous peut être notée M = (a ij ) où

Plus en détail

Matrice et vocabulaire associé

Matrice et vocabulaire associé I Matrice et vocabulaire associé I1 Définitions Définition 1 Deux entiers naturels m et n étant donnés non nuls, on appelle matrice de format m, n tout tableau rectangulaire ayant m n éléments, disposés

Plus en détail

Chapitre 9. Matrices

Chapitre 9. Matrices Lycée Benjamin Franklin PTSI 2014-2015 D Blottière Mathématiques Chapitre 9 Matrices Table des matières 1 Notations 2 2 Matrices de format n p 2 3 Structure de K-espace vectoriel sur M n,p (K 3 31 Addition

Plus en détail

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne.

L p B calculer le produit matriciel ligne par ligne, ou bien colonne par colonne. 40 CHAPITRE 4. MATRICES ligne L M 1,n (K) et d une matrice B M n,q (K) est encore une matrice ligne. De plus, si on note L i la i-ième ligne de A, alors le produit AB est la L 1 B L 2 B matrice (la juxtaposition

Plus en détail

Dans tout ce qui suit, n, m et p sont des entiers naturels supérieurs ou égaux à 1.

Dans tout ce qui suit, n, m et p sont des entiers naturels supérieurs ou égaux à 1. I Généralités sur les matrices Activité 1 Dans tout ce qui suit, n, m et p sont des entiers naturels supérieurs ou égaux à 1 Une matrice A de dimensions m p est un tableau de nombres à m lignes et p colonnes

Plus en détail

1) Définitions, exemples

1) Définitions, exemples Terminales S 2017 / 18 spécialité maths 1) s, exemples On appelle matrice d ordre n p ou (n ; p) un tableau de nombres réels possédant n lignes et p colonnes. On note la matrice A sous la forme (a ij )

Plus en détail

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si

Matrices. 6 On appelle matrice triangulaire inférieure toute matrice carrée d ordre n telle que, si Agrégation interne UFR MATHÉMATIQUES Matrices On note K un corps commutatif. n et p représentent deux entiers naturels non nuls. 1. Notion de matrice 1.1. Définitions Définition 1 On appelle matrice d

Plus en détail

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice

[ [ [ ] 1. Définitions et Vocabulaire. Chapitre 3 Calcul matriciel. a. Définitions d'une matrice Chapitre Calcul matriciel. Définitions et Vocabulaire a. Définitions d'une matrice Définition Une matrice de dimension n p est un tableau de nombres comportant n lignes et p colonnes s [ 8 6 0 [ 6 8 0

Plus en détail

12 Matrices. 3 Opérations élémentaires et calcul matriciel Matrices élémentaires Échelonnement et rang d'une matrice...

12 Matrices. 3 Opérations élémentaires et calcul matriciel Matrices élémentaires Échelonnement et rang d'une matrice... 12 Matrices 1 Matrices rectangulaires et opérations 2 11 Ensemble de matrices rectangulaires Transposition 2 12 Combinaisons linéaires de matrices 3 13 Produit matriciel 4 14 Application à l'écriture de

Plus en détail

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL

Lycée Dominique Villars ECE 1 CALCUL MATRICIEL Lycée Dominique Villars ECE 1 COURS CALCUL MATRICIEL 1 Définitions et Notations Soit n N et m N On appelle matrice à n lignes et m colonnes tout tableau de la forme suivant : a 1,1 a 1,2 a 1,m a 2,1 a

Plus en détail

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2...

Calcul matriciel. λa n,1 λa n,2... λa n,p. a 2,1 a 2,2... a 2,p... a n,1 a n,2... a n,p ... a n,1 + b n,1 a n,2 + b n,2... 11 mars 014 Calcul matriciel I IA Matrices : définition, opérations et propriétés Définitions et structure d espace vectoriel Définition 1 (Définition Une matrice de type (n, p est un tableau à n lignes

Plus en détail

Mathématiques - ECS1. Matrices. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année.

Mathématiques - ECS1. Matrices. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année. Mathématiques - ECS1 7 Matrices Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 2015, Polycopié du cours de mathématiques de première année 7 Matrices Dans tout ce qui suit, K désigne R ou C 71

Plus en détail

Définition (Rappel) On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note

Définition (Rappel) On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note Chapitre Matrices Matrices Règles de calcul Définition Rappel On appelle matrice à n lignes et p colonnes, ou matrice n p un tableau d éléments de K que l on note On note en abrégé a i,j i n j n a, a,

Plus en détail

VII. Systèmes linéaires - Matrices

VII. Systèmes linéaires - Matrices Systèmes d équations linéaires Définition d un système d équations linéaires Définition On appelle système linéaire de n équations à p inconnues le système d équations : a, u + a,2 u 2 + + a,p u p = v

Plus en détail

1. Définition Dénition.

1. Définition Dénition. MATRICES Les matrices sont des tableaux de nombres. La résolution d'un certain nombre de problèmes d'algèbre linéaire se ramène à des manipulations sur les matrices. Ceci est vrai en particulier pour la

Plus en détail

Chapitre 1 - Calcul matriciel

Chapitre 1 - Calcul matriciel Lycée Maximilien Sorre Année 2018-2019 BTS SIO 2 1 Notion de matrice 1.1 Généralités Chapitre 1 - Calcul matriciel Une matrice est un tableau rectangulaire de nombres appelés coecients (ou termes, ou éléments).

Plus en détail

Michel Rigo. October 7, 2009

Michel Rigo. October 7, 2009 MATRICES (INTRODUCTION) Michel Rigo Premiers bacheliers en sciences mathématiques October 7, 2009 champ K fixé une fois pour toutes matrice m n à coefficients dans K a 11 a 1n A =... a m1 a mn L élément

Plus en détail

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER

ISET Jerba wwww.isetjb.rnu.tn Département Génie Électrique. Cours d algèbre2. Haj Dahmane DHAFER ISET Jerba wwwwisetjbrnutn Département Génie Électrique Cours d algèbre2 Haj Dahmane DHAFER 19 février 2015 Chapitre I Généralités sur les matrices Sommaire I Définitions et notations 1 II Opérations sur

Plus en détail

1 Ensemble de matrices

1 Ensemble de matrices 1 Ensemble de matrices Définition 1 : M n,p (R) désigne l ensemble des matrices à n lignes et p colonnes à coefficients a 11 a 1p dans R, c est à dire de tableaux d éléments de R A = notés de manière condensée

Plus en détail

Matrices. Hervé Hocquard. 25 février Université de Bordeaux, France

Matrices. Hervé Hocquard. 25 février Université de Bordeaux, France Matrices Hervé Hocquard Université de Bordeaux, France 25 février 2013 Définitions Matrice On appelle matrice de taille n p à coefficients dans R (K = R ou C) toute famille A de np éléments de R présentée

Plus en détail

Chapitre 6 Matrices. descend! Table des matières

Chapitre 6 Matrices. descend! Table des matières descend! Chapitre 6 Matrices Version du 25-09-2017 à 06:15 Table des matières 1 Matrices de format n p 2 Structure de K-espace vectoriel sur M n,p (K 3 Produit matriciel 4 Matrices carrées 5 Matrices carrées

Plus en détail

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C.

XIII. Matrices. 1 Opérations sur les matrices. On note K = R ou C. XIII Matrices 1 Opérations sur les matrices On note K = R ou C Définition 1 On appelle matrice à n lignes et p colonnes à coefficients réels ou complexes un tableau rectangulaire à n lignes et p colonnes

Plus en détail

Matrices. Résolution de systèmes linéaires

Matrices. Résolution de systèmes linéaires Chapitre 4 Matrices Résolution de systèmes linéaires K désigne Q, R ou C 41 Matrices, opérations sur les matrices 411 Définition et règles de calcul Définition 41 Soit n N + Un vecteur colonne (resp ligne

Plus en détail

17. MATRICES. 1 Tableaux et matrices.

17. MATRICES. 1 Tableaux et matrices. 17. MATRICES 1 Tableaux et matrices. 1. 1 Dénitions et notations. Un tableau est une généralisation de la notion de suite à plusieurs indices : utilisant Maple, on déclarera par exemple TABLE:= array [1..2,

Plus en détail

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier

Calcul matriciel. matrices-ligne et colonne : on appelle matrice-ligne toute matrice n ayant qu une seule ligne. On peut identifier Calcul matriciel Dans ce qui suit, K désigne R ou C. 1 Petite visite au zoo matriciel 1.1 matrices générales notion de matrice : une matrice à coefficients dans K est une liste d éléments de K disposés

Plus en détail

MAT1702B CH2 - P1 L algèbre des matrices

MAT1702B CH2 - P1 L algèbre des matrices MAT1702B CH2 - P1 L algèbre des matrices Mercredi 11 Février 2015 Définition Soit A une matrice de type (m, n), a 11 a 1n A =.. = [a ij ] 1 i m 1 j n a m1 a mn Les éléments a ij sont appelés les entrées

Plus en détail

Matrices. Hervé Hocquard. 18 novembre Université de Bordeaux, France

Matrices. Hervé Hocquard. 18 novembre Université de Bordeaux, France Matrices Hervé Hocquard Université de Bordeaux, France 18 novembre 2015 Définitions Matrice On appelle matrice de taille n p à coefficients dans R (K = R ou C) toute famille A de np éléments de R présentée

Plus en détail

Chapitre I : MATRICES ET OPERATIONS

Chapitre I : MATRICES ET OPERATIONS I- Notion de matrice Chapitre I : MATRICES ET OPERATIONS Définition 1 : et désignent deux entiers naturels non nuls. On appelle matrice de format (,) tout tableau de nombres réels à lignes et colonnes.

Plus en détail

Chapitre 8. Matrices. 1 Vocabulaire et Notations

Chapitre 8. Matrices. 1 Vocabulaire et Notations ECE 1 - Année 2017-2018 Lycée français de Vienne Mathématiques - F Gaunard http://fredericgaunardcom Chapitre 8 Matrices Ce Chapitre introduit la notion de matrice ainsi que les règles de calcul matriciel

Plus en détail

Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction des exercices

Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction des exercices Séance de soutien PCSI2 numéro 7 : Calcul matriciel - Correction des exercices Tatiana Labopin-Richard 21 janvier 2015 1 Somme et produit Exercice 1 : Pour A M n (K), on note σ(a) la somme des termes de

Plus en détail

Rappel d'algèbre linéaire

Rappel d'algèbre linéaire Rappel d'algèbre linéaire 1 Chapitre 1 Rappel d'algèbre linéaire R et C désignent respectivement le corps des nombres réels et le corps des nombres complexes. S'il n'y a pas lieu de les distinguer, on

Plus en détail

INTRODUCTION À L ALGÈBRE LINÉAIRE

INTRODUCTION À L ALGÈBRE LINÉAIRE CHAPITRE II INTRODUCTION À L ALGÈBRE LINÉAIRE Sommaire A Systèmes linéaires 2 A1 Généralités sur les systèmes linéaires 2 A2 Échelonnement et algorithme du pivot de Gauss 7 B Calcul matriciel 12 B1 Ensembles

Plus en détail

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur

Plan (1/2) Support au cours. Plan (2/2) Vecteurs de R N et opérations Produit scalaire de deux vecteurs de R N Norme d un vecteur Plan (1/2) Mathématique Élémentaire Introduction à l algèbre linéaire Support au cours S. Bridoux Université de Mons-Hainaut 1 L espace R N Vecteurs de R N et opérations Produit scalaire de deux vecteurs

Plus en détail

colonne j ligne i Proposition 12.1: Deux matrices sont égales ssi elles ont même taille et mêmes coefficients.

colonne j ligne i Proposition 12.1: Deux matrices sont égales ssi elles ont même taille et mêmes coefficients. Chapitre 12 : Matrices - résumé de cours Dans tout le chapitre désigne ou, n et p deux entiers naturels non nuls. 1. L'ensemble M n,p() 1.1 Définition et vocabulaire Déf: On appelle matrice à n lignes

Plus en détail

COURS CHAPITRE VII CALCUL MATRICIEL

COURS CHAPITRE VII CALCUL MATRICIEL COURS CHAPITRE VII CALCUL MATRICIEL 07-08 I) Définitions : ) Définitions Une matrice est un tableau à double entrées où chaque élément du tableau est repéré par son indice de ligne i et son indice de colonne

Plus en détail

CHAPITRE 2 : Matrices.

CHAPITRE 2 : Matrices. CHAPITRE 2 : Matrices. 1 Généralités sur les matrices... 2 1.1 Définition d une matrice... 2 1.2 Egalité de deux matrices... 2 1.3 Addition de deux matrices... 2 1.4 Multiplication d une matrice par un

Plus en détail

Opérations élémentaires et déterminants

Opérations élémentaires et déterminants 10 Opérations élémentaires et déterminants On note toujours K le corps de réels ou des complexes On se donne un entier n 1 et M n (K désigne l espace vectoriel des matrices carrées d ordre n à coefficients

Plus en détail

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016.

1/2 2/2. 2. Matrices. Sections 2.4 et 2.5 MTH1007. J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016. 2. Matrices Sections 2.4 et 2.5 MTH1007 J. Guérin, N. Lahrichi, S. Le Digabel École Polytechnique de Montréal A2016 (v4) MTH1007: algèbre linéaire 1/18 Plan 1. Les règles des opérations matricielles 2.

Plus en détail

SMARTCOURS TES MATHS MATRICES - COURS. Une matrice est un tableau de nombres ordonnés composé de m lignes et n

SMARTCOURS TES MATHS MATRICES - COURS. Une matrice est un tableau de nombres ordonnés composé de m lignes et n Page sur 5 SMARTCOURS TES MATHS MATRICES - COURS I. DIFFERENTS TYPES DE MATRICES. Définition Une matrice est un tableau de nombres ordonnés composé de m lignes et n colonnes. Les nombres du tableau sont

Plus en détail

Matrices. Matrices. Paris Descartes Mathématiques et calcul 1. Matrices. 1 Matrices

Matrices. Matrices. Paris Descartes Mathématiques et calcul 1. Matrices. 1 Matrices Matrices Matrices Matrices 1 Matrices Définitions Espace vectoriel des matrices n p Multiplication des matrices Inverse d une matrice Systèmes linéaires Applications linéaires Changement de bases Matrices

Plus en détail