C algèbre d un certain groupe de Lie nilpotent.

Dimension: px
Commencer à balayer dès la page:

Download "C algèbre d un certain groupe de Lie nilpotent."

Transcription

1 Université Paul Verlaine - METZ LMAM 6 décembre 2011

2 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion.

3 G un groupe de Lie, Ĝ l ensemble des classes d équivalence de représentations unitaires irréductibles. (π, H π ) une représentation unitaire irréductible de G sur l espace de Hilbert H π. Soit F L 1 (G), on lui associe sa transformée de Fourier en π définie par l opérateur π(f ) := F (g)π(g)dg, G cette représentation de L 1 (G), appelée représentation intégrée est définie sur H π. Elle vérifie : π(f ) op := sup π(f )ξ Hπ F 1, ξ Hπ 1

4 et π(f ) = π(f ) où F (x) = G (x 1 )F (x 1 ) pour tout x G, avec G la fonction module de G qui est définie par la relation F (gx 1 )dg = G (x) F (g)dg, pour tout x G. G G On réalise sur L 1 (G) la norme. C Définition définie par F C := sup π(f ) op. π G b La C algèbre de G notée C (G) est définie comme le complété de L 1 (G) pour la norme. C. Le dual unitaire de C (G) est en bijection avec Ĝ. C algèbre d un certain groupe de Lie nilpotent.

5 Nous notons par l (Ĉ (G)) = l (Ĝ) l algèbre de tous les champs d opérateurs bornés définie par : l (Ĝ) := {A = (A(π) B(H π)) π G b, A := sup A(π) op < }. π La transformée de Fourier F est définie par F(a) := â := (π(a)) π b G pour a C (G). Le problème maintenant est de reconnaître l algèbre F(C (G)) comme une sous-algèbre de l (Ĝ). Soit (π k ) k Ĝ une suite proprement convergente, alors lim k π k (a) op = sup σ(a) op σ L(π k ) pour a C (G).

6 Par suite pour tout champ d opérateur A F(C (G)) on a lim k A(π k ) op = sup A(σ) op. σ L(π k ) On cherche un espace D (G) consistant de tous champs d opérateurs dans l (Ĝ) qui satisfont certains conditions tel que D (G) C (G), alors le seul représentation irréductible de D (G) doit être de la forme δ π (A) = A(π) pour A D (G), (π Ĝ).

7 On considère maintenant l algèbre de Lie g = vect{a, B, H, U, V, Z} munie de crochets de Lie [A, B] = H, [A, H] = U, [A, V ] = Z, [B, H] = V, [B, U] = Z, (1) Notons par G = exp(g) son groupe de Lie muni de la loi de groupe suivante : (a, X ) (a, X ) = (a + a, b + b, h + h a b, u + u a h + a 2 b 2, v + v + bh 2 b h 2 + a b b 2, z + z a v + bu 2 b u 2 + a b h a 2 b b ), 2 4 avec (a, X ), (a, X ) G. (2)

8 L action adjoint de G Ad(exp(a, X ) 1 )(a, X ) := log(exp(a, X ) 1 exp(a, X ) exp(a, X )) = (a, b, h ab + a b, u ah + a h aa b 2 + a2 b 2, v bh +b h a b ab b 2, z av + a v bu + b u + abh ab h 2 a bh 2 + aa b 2 3 a2 bb ). (3) 3

9 Alors pour l = (α, β, ρ, µ, γ, λ) g l orbite co-adjointe est O l = {(α + bρ + hµ µ ab 2 γ b2 2 + λv λbh 2 + λab2 3, β ρa + γh γ ab 2 + µa2 2 + λu λah 2 + b λa2, ρ µa γb 3 + λab, µ λb, γ λa, λ), (a, b, h, u, v, z) R 6 }. (4)

10 1 er Cas générique : si λ 0, d après (4) on a α = β = µ = γ = 0, soit l ρ,λ = (0, 0, ρ, 0, 0, λ) alors nous obtenons, O lρ,λ = {(a, b, ρλ + uv, u, v, λ), (a, b, u, v) R 4 }. (5) λ 2 eme Cas : si λ = 0, µ 0 ou γ 0 soit l α,µ,γ = (α, 0, 0, µ, γ, 0), alors d après (4) nous obtenons, O lα,µ,γ = {( ou bien O lα,µ,γ = {(a, 2αγ + 2µb h2, b, h, µ, γ, 0), b, h R }, (6) 2γ 2γa 2αγ + h2 2µ, h, µ, γ, 0) a, h R}. (7)

11 3 eme Cas : si λ = 0, γ = 0, µ = 0 et ρ 0, soit l ρ = (0, 0, ρ, 0, 0, 0), alors O lρ = {(a, b, ρ, 0, 0, 0) a, b R}, 4 eme Cas caractère si λ = γ = µ = ρ = 0, soit l α,β = (α, β, 0, 0, 0, 0) alors, O lα,β = {l α,β }.

12 Le description de la C algèbre de G dépend beaucoup de la détermination de l ensemble de limite des suites dans les espaces des orbites co-adjointes. Nous notons par L(O k ) l ensemble de tout point limite de O k dans g /G. Théorème Soit (O k ) k N une suite d éléments dans (g /G) gen tel que lim k λ k = λ R, alors O k proprement convergente et l ensemble de limite L(O k ) = {O lρ,λ }.

13 Théorème Soit O k (g /G) gen tel que lim λ k = 0, alors O k est une suite k proprement convergente si et seulement si pour chaque k N il exist un élément l k = (α k, β k, ρ kλ k +u k v k λ k, u k, v k, λ k ) O k on a u k et v k convergent dans R et lim u kv k = lim ρ kλ k = c R. Ses k k ensembles de limites sont : L(O k ) = (g /G) char (g /G) 3 si c = 0. L c (O k ) = {O lb,c (g /G) 4,5 où l b,c = (α, 0, 0, b, c b, 0) b R, α R} si c 0.

14 Théorème Soit O lk une suite des orbites dans (g /G) 4,5 où l k = (α k, 0, 0, µ k, γ k, 0). 1. Si lim µ k = µ 0 et lim γ k = γ 0, alors O lk proprement k k convergente dans (g /G) 4,5 ; aussi ses ensembles des limites sont L(O lk ) = {O lµ,γ } où l µ,γ = (α, 0, 0, µ, γ, 0). 2. Si lim µ k = 0 et lim γ k = 0 avec γ k k k µ k 0 pour k suffisamment grand et α k γ k 0 pour tout k N, alors O lk proprement convergente si et seulement si pour tout k N il exist un élément l k = ( 2α kγ k +2µ k b k hk 2 2γ k, b k, h k, µ k, γ k, 0) O lk on a (h k ) k convergent dans R et lim (2α kγ k hk 2 ) = 0, ses ensembles k des limites sont :

15 L(O lk ) = (g /G) char, si lim α kγ k = 0 et k L(O lk ) = {O lh, O l h }, si lim α kγ k = h2 k 2, où l h = (0, 0, h, 0, 0, 0). Théorème Soit O k = {(a, b, ρ k, 0, 0, 0) a, b R} une suite des orbites dans (g /G) 3. Alors (O k ) k N proprement convergente dans (g /G) 3 et les ensembles de limites L(O k ) = {O ρ } si lim k ρ k = ρ R et L(O k ) = (g /G) char si lim k ρ k = 0.

16 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Théorème Sur les sous-ensembles (g /G) gen et (g /G) 4,5 l application ϕ : l π l (F ) est continue en norme d operateur pour tout F L 1 c. Théorème Soit O ρk,λ k une suite de (g /G) gen avec lim λ k = + ou k λ k C > 0 k N et lim ρ k = 0, alors k lim π l k (F ) op = 0 F L 1 (G). k

17 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Définition 1.) Pour un élément F L 1 c(g), s S = exp(ra)exp(rb) R 2 et ξ L 2 (R 2 ) soit π lk (F )ξ(s) = F P (st 1, t.p k )ξ(t)dt. R 2 2.) Pour tout j I k, F L 1 c(g), ξ L 2 (R 2 ) et s R 2, soit ν j,k (F )ξ(s) := F P (st 1, t.p b k )ξ(t)e i (t g k j ).p k,b,ζj k(s,t) dt, R 2 j où ζ k j est une application de R 4 R 6.

18 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Proposition Soit F C (G) et j I k tel que lim k bk j = b. Alors on a, U((gj k ) 1 ) π lk (F ) U(gj k ) M R ε k ν j,k (F ) M R ε k op 0, (8) k uniformement en j.

19 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Définition La transformée de Fourier ˆς = F(ς) d un élément ς C (G) est défini comme le champ d opérateurs linéaires bornés définis sur l ensemble (g /G) par A(l) = ˆς(l) = F(ς)(l) := π l (ς) K pour l (g /G) gen A(0) = ˆς(0) = F(ς)(0) := ζ 0 (ς) C (R 2 ). (g /G) 4,5 ; où ζ 0 = indp G 1 la représentation régulière à gauche de G sur l espace de Hilbert L 2 (G/P).

20 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Définition (1) Soit F (G) l espace de champs d opérateurs uniformément bornés A définis sur l ensemble (g /G) vérifiant : (1) A(l) K pour l (g /G) gen (g /G) 4,5 (2) A(0) C (R 2 ), et (3) A satisfait les conditions générique, infini et de continuité. On définit le norme. sur F (G) par : A := sup A(l) op. l Ω Proposition L espace vectoriel F (G) est une C algèbre qui contient l algèbre F(C (G)).

21 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Définition (2) On note par D (G 5 ) l espace de tous les champs d opérateurs A définis sur O b O b, b R qui satisfont les conditions suivantes : (1) A(l) B(L 2 (R)) for l O b O b. (2) L application l A(l) est continu en norme sur (g /G) 4,5. (3) A et A satisfont la condition générique et lim k U( tk b ) A(l k) U(t k b ) M S R k A(l b ) M S R k op = 0 lim k U( tk b ) A(l k) U(t k b ) M S R k A(l b ) M S R k op = 0,

22 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Définition Nous définissons la transformée de Fourier F : C (G 5 ) D (G 5 ) par, π l (ς) K, si l (g /G) 4,5 F(ς)(l) := ς(l) := π l (ς) B(L 2 (R)) si l O b O b ζ 0 (ς) C (R 2 ). Proposition L espace D (G 5 ) est une C algèbre contenant F(C (G 5 )) comme une sous C algèbre.

23 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Soit H 1 = G 5 / vect{u,v } le groupe de Heisenberg de dimension 3. Il a été étudié dans [Lud-Tur]. Définition (3) Soit F 1 la famille composée de tous les champs d opérateurs (A = A(ρ)) ρ R qui satisfont les conditions suivantes : 1. A(ρ) est un opérateur compact sur L 2 (R) pour tout ρ R, 2. A(0) C (R 2 ), 3. L application R B(L 2 (R)) : ρ A(ρ) est continue en norme d opérateur, 4. lim ρ A(ρ) op = 0. Théorème (Lud-Tur) Le C algèbre de Heisenberg C (H 1 ) est isomorphe à D ν (H 1 ).

24 Les transformations de Fourier. Le C algèbre de G/ Z. Le C algèbre du sous-groupe G 5 / vect{u,v }. Conclusion. Définition Soit D (G) le sous-espace de F (G) composé de tous les champs d opérateurs A définis sur l ensemble g /G tel que A(l) K pour l (g /G) gen (g /G) 4,5, A(l) B(L 2 (R)) pour l (g /G) 3 et A(0) C (R 2 ) tel que : A vérifie les conditions des définitions (1),(2) et (3) Théorème L espace vectoriel D (G) est une C -algèbre, qui est isomorphe avec C (G).

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Intégration et probabilités TD1 Espaces mesurés

Intégration et probabilités TD1 Espaces mesurés Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?

Plus en détail

2 Opérateurs non bornés dans un espace de Hilbert

2 Opérateurs non bornés dans un espace de Hilbert 2 Opérateurs non bornés dans un espace de Hilbert 2. Opérateurs non bornés: définitions et propriétés élémentaires Soit H un espace de Hilbert et A un opérateur dans H, c est-à-dire, une application linéaire

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Amphi 3: Espaces complets - Applications linéaires continues

Amphi 3: Espaces complets - Applications linéaires continues Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Mesures gaussiennes et espaces de Fock

Mesures gaussiennes et espaces de Fock Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première

Plus en détail

Dualité dans les espaces de Lebesgue et mesures de Radon finies

Dualité dans les espaces de Lebesgue et mesures de Radon finies Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

Opérateurs non-bornés

Opérateurs non-bornés Master Mathématiques Analyse spectrale Chapitre 4. Opérateurs non-bornés 1 Domaine, graphe et fermeture Soit H un espace de Hilbert. On rappelle que H H est l espace de Hilbert H H muni du produit scalaire

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires

Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires Utilisation d espaces de Sobolev fractionnaires en reconstruction tomographique d objets binaires M. Bergounioux & E. Trélat MAPMO Université d Orléans Journées du GDR - MOA Porquerolles 19-21 Octobre

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Rapport sur l oral de mathématiques 2009

Rapport sur l oral de mathématiques 2009 Rapport sur l oral de mathématiques 2009 Oral spécifique E.N.S. Paris : Thomas Duquesne Oral commun Paris-Lyon-Cachan : Romain Abraham, Sorin Dumitrescu, Philippe Gille. 1 Remarques générales sur la session

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Calcul Différentiel. I Fonctions différentiables 3

Calcul Différentiel. I Fonctions différentiables 3 Université de la Méditerranée Faculté des Sciences de Luminy Licence de Mathématiques, Semestre 5, année 2008-2009 Calcul Différentiel Support du cours de Glenn Merlet 1, version du 6 octobre 2008. Remarques

Plus en détail

Anneaux, algèbres. Chapitre 2. 2.1 Structures

Anneaux, algèbres. Chapitre 2. 2.1 Structures Chapitre 2 Anneaux, algèbres 2.1 Structures Un anneau est un ensemble A muni de deux opérations internes + et et d éléments 0 A et 1 A qui vérifient : associativité de l addition : commutativité de l addition

Plus en détail

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E

Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie

Plus en détail

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5.

Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. DÉVELOPPEMENT 32 A 5 EST LE SEUL GROUPE SIMPLE D ORDRE 60 Proposition. Si G est un groupe simple d ordre 60 alors G est isomorphe à A 5. Démonstration. On considère un groupe G d ordre 60 = 2 2 3 5 et

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................

Plus en détail

Cours d Analyse 3 Fonctions de plusieurs variables

Cours d Analyse 3 Fonctions de plusieurs variables Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet pujo@math.univ-lyon1.fr

Plus en détail

Fiche n 2: Morphisme, sous-groupe distingué, quotient

Fiche n 2: Morphisme, sous-groupe distingué, quotient Université Lille 1 Algèbre 2010/11 M51.MIMP Fiche n 2: Morphisme, sous-groupe distingué, quotient Exercice 1 Soient G, G deux groupes et f un homomorphisme de G dans G. Montrer que si A G, alors f( A )

Plus en détail

Mesures et Intégration

Mesures et Intégration Mesures et Intégration Marc Troyanov - EPFL - Octobre 2005 30 avril 2008 Ce document contient les notes du cours de Mesure et Intégration enseigné à l EPFL par Marc Troyanov, version 2005-2006. Table des

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Mathématiques autour de la cryptographie.

Mathématiques autour de la cryptographie. Mathématiques autour de la cryptographie. Index Codage par division Codage série Code cyclique Code dual Code linéaire Corps de Galois Elément primitif m séquence Matrice génératrice Matrice de contrôle

Plus en détail

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples

Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Groupoïdes quantiques mesurés : axiomatique, étude, dualité, exemples Franck LESIEUR Mathématiques et Applications, Physique Mathématique d Orléans UMR 6628 - BP 6759 45067 ORLEANS CEDEX 2 - FRANCE e-mail

Plus en détail

Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 2003 C.I.R.

Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 2003 C.I.R. EXEMPLE DE DOSSIER Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 23 C.I.R. STRATEGIE & ACCOMPAGNEMENT FINANCIER 7 Rue DENFERT-ROCHEREAU 38 GRENOBLE France Tél fax : ( 33 ) 4 76 43 47 11 SIRET

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT

Plus en détail

CHAPITRE IV. L axiome du choix

CHAPITRE IV. L axiome du choix CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans

Plus en détail

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits.

Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits. Les calculatrices, téléphones, tablettes, ordinateurs et autres appareils électroniques similaires, ainsi que les documents sont interdits 1 La qualité de la rédaction est un facteur important dans l appréciation

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche

Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Le théorème de Perron-Frobenius, les chaines de Markov et un célèbre moteur de recherche Bachir Bekka Février 2007 Le théorème de Perron-Frobenius a d importantes applications en probabilités (chaines

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.

Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. 14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,

Plus en détail

3. Conditionnement P (B)

3. Conditionnement P (B) Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte

Plus en détail

X-ENS PSI - 2009 Un corrigé

X-ENS PSI - 2009 Un corrigé X-ENS PSI - 009 Un corrigé Première partie.. Des calculs élémentaires donnent χ A(α) = χ B(α) = X X + et χ A(α)+B(α) = X X + 4α + 4 On en déduit que Sp(A(α)) = Sp(B(α)) = {j, j } où j = e iπ 3 Sp(A(α)

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Chapitre 7 : Intégration sur un intervalle quelconque

Chapitre 7 : Intégration sur un intervalle quelconque Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction

Plus en détail

Algèbres de von Neumann et théorie ergodique des actions de groupes

Algèbres de von Neumann et théorie ergodique des actions de groupes Algèbres de von Neumann et théorie ergodique des actions de groupes Séminaire Tripode, ENS Lyon, Juin 2008. Stefaan Vaes 1/22 Sujet de l exposé 1 Introduction aux relations d équivalence dénombrables,

Plus en détail

Approximations variationelles des EDP Notes du Cours de M2

Approximations variationelles des EDP Notes du Cours de M2 Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation

Plus en détail

Classification des structures CR invariantes pour les groupes de Lie compacts.

Classification des structures CR invariantes pour les groupes de Lie compacts. Journal of Lie Theory Volume 14 (2004) 165 198 c 2004 Heldermann Verlag Classification des structures CR invariantes pour les groupes de Lie compacts. Jean-Yves Charbonnel et Hella Ounaïes Khalgui Communicated

Plus en détail

Séminaire BOURBAKI Janvier 2012 64ème année, 2011-2012, n o 1048. par Pierre DELIGNE

Séminaire BOURBAKI Janvier 2012 64ème année, 2011-2012, n o 1048. par Pierre DELIGNE Séminaire BOURBAKI Janvier 2012 64ème année, 2011-2012, n o 1048 MULTIZÊTAS, D APRÈS FRANCIS BROWN par Pierre DELIGNE 0. INTRODUCTION Soient k 0 et s = (s 1,..., s k ) une suite de k entiers 1. Le nombre

Plus en détail

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent

TABLE DES MATIÈRES CHAPITRE I. Les quanta s invitent TABLE DES MATIÈRES AVANT-PROPOS III CHAPITRE I Les quanta s invitent I-1. L Univers est en constante évolution 2 I-2. L âge de l Univers 4 I-2.1. Le rayonnement fossile témoigne 4 I-2.2. Les amas globulaires

Plus en détail

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,

Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples, Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Groupe symétrique. Chapitre II. 1 Définitions et généralités

Groupe symétrique. Chapitre II. 1 Définitions et généralités Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations

Plus en détail

0 0 0 0 1 0 0 1 0 0 0 A = B =

0 0 0 0 1 0 0 1 0 0 0 A = B = 2 ALGÈBRE Exercice 2.1. Soit n un entier supérieur ou égal à 2 et A, B les deux matrices de M n (R) définies par : 0 0 0 0 1 0 0 0 0... 0 1 0 0 0 A =.......... B = 0 0... 0 0 0...... 0 0 0 1. Déterminer

Plus en détail

THÉORIE DE LA MESURE ET DE L INTÉGRATION.

THÉORIE DE LA MESURE ET DE L INTÉGRATION. THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

1 Première section: La construction générale

1 Première section: La construction générale AMALGAMATIONS DE CLASSES DE SOUS-GROUPES D UN GROUPE ABÉLIEN. SOUS-GROUPES ESSENTIEL-PURS. Călugăreanu Grigore comunicare prezentată la Conferinţa de grupuri abeliene şi module de la Padova, iunie 1994

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Yamina Yagoub-Zidi. Inconditionnalité et propriétés du point fixe dans les espaces de fonctions lisses

Yamina Yagoub-Zidi. Inconditionnalité et propriétés du point fixe dans les espaces de fonctions lisses MINISTERE DE L ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE MOULOUD MAMMERI, TIZI-OUZOU FACULTE DES SCIENCES DEPARTEMENT DE MATHEMATIQUES THESE DE DOCTORAT SPECIALITE : MATHEMATIQUES

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Construction de l'intégrale de Lebesgue

Construction de l'intégrale de Lebesgue Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale

Plus en détail

Mesure et Intégration (Notes de cours de L3)

Mesure et Intégration (Notes de cours de L3) Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr

Automatique (AU3): Précision. Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: vincent.choqueuse@univ-brest.fr Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Espace II. Algèbres d opérateurs et Géométrie non commutative.

Espace II. Algèbres d opérateurs et Géométrie non commutative. Chapitre 2 Espace II. Algèbres d opérateurs et Géométrie non commutative. Dans le formalisme de la mécanique quantique, les observables ne sont plus des grandeurs ou fonctions numériques, que l on peut

Plus en détail

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin.

Exo7. Matrice d une application linéaire. Corrections d Arnaud Bodin. Exo7 Matrice d une application linéaire Corrections d Arnaud odin. Exercice Soit R muni de la base canonique = ( i, j). Soit f : R R la projection sur l axe des abscisses R i parallèlement à R( i + j).

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle

Plus en détail

Théorie de la Mesure et Intégration

Théorie de la Mesure et Intégration Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2

Corrigé Problème. Partie I. I-A : Le sens direct et le cas n= 2 33 Corrigé Corrigé Problème Théorème de Motzkin-Taussky Partie I I-A : Le sens direct et le cas n= 2 1-a Stabilité des sous-espaces propres Soit λ une valeur propre de v et E λ (v) le sous-espace propre

Plus en détail

P (X) = (X a) 2 T (X)

P (X) = (X a) 2 T (X) Université Bordeaux I - année 00-0 MHT0 Structures Algébriques Correction du devoir maison Exercice. Soit P (X) Q[X]\Q.. Soit D(X) := pgcd(p (X), P (X)). a) Montrer que si deg D alors il existe α C tel

Plus en détail

NOTATIONS PRÉLIMINAIRES

NOTATIONS PRÉLIMINAIRES Pour le Jeudi 14 Octobre 2010 NOTATIONS Soit V un espace vectoriel réel ; l'espace vectoriel des endomorphismes de l'espace vectoriel V est désigné par L(V ). Soit f un endomorphisme de l'espace vectoriel

Plus en détail

Eléments de théorie des corps finis.

Eléments de théorie des corps finis. Université de Rouen Agrégation de mathématiques 2005-2006 Eléments de théorie des corps finis. Application : les codes correcteurs. Nicolas Bruyère Table des matières I Les corps finis 1 1 Corps finis

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr

Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr Résumé du cours d algèbre 1, 2013-2014 Sandra Rozensztajn UMPA, ENS de Lyon, sandra.rozensztajn@ens-lyon.fr CHAPITRE 0 Relations d équivalence et classes d équivalence 1. Relation d équivalence Définition

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

aux différences est appelé équation aux différences d ordre n en forme normale.

aux différences est appelé équation aux différences d ordre n en forme normale. MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire

Plus en détail

Éléments d analyse convexe

Éléments d analyse convexe Éléments d analyse convexe Cours de M1 Mathématiques Fondamentales Université Paul Sabatier Pierre Maréchal Table des matières 1 Préliminaires 2 1.1 Notations et définitions élémentaires................

Plus en détail

Théorie de la mesure. S. Nicolay

Théorie de la mesure. S. Nicolay Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................

Plus en détail

Equations aux Dérivées Partielles

Equations aux Dérivées Partielles Equations aux Dérivées Partielles Tony Lelièvre 29-2 Après avoir considéré dans le capitre précédent des équations d évolution pour des fonctions ne dépendant que du paramètre temps, nous nous intéressons

Plus en détail

Premiers exercices d Algèbre. Anne-Marie Simon

Premiers exercices d Algèbre. Anne-Marie Simon Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,

Plus en détail

Algorithmes pour la planification de mouvements en robotique non-holonome

Algorithmes pour la planification de mouvements en robotique non-holonome Algorithmes pour la planification de mouvements en robotique non-holonome Frédéric Jean Unité de Mathématiques Appliquées ENSTA Le 02 février 2006 Outline 1 2 3 Modélisation Géométrique d un Robot Robot

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours

MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail