Calcul Différentiel. I Fonctions différentiables 3

Dimension: px
Commencer à balayer dès la page:

Download "Calcul Différentiel. I Fonctions différentiables 3"

Transcription

1 Université de la Méditerranée Faculté des Sciences de Luminy Licence de Mathématiques, Semestre 5, année Calcul Différentiel Support du cours de Glenn Merlet 1, version du 6 octobre Remarques importantes : 1. Tous les énoncés de ce document sont exigibles à l examen, de même que les démonstrations des résultats, mêmes si elles ne sont pas detaillées ici. 2. Les exercices notés (!) sont élémentaires et portent sur les notions de base. Ils doivent absolument vous sembler faciles à la fin du chapitre. Sinon, vous ne maitrisez pas le cours! Table des matières I Fonctions différentiables 3 1 Outils de topologie Espaces vectoriels normés Applications linéaires continues Exercices Applications différentiables Définition - premiers exemples Propriétés élémentaires Cas E = R n, dérivées partielles Cas F = R p, applications composantes Exercices Inégalité de la moyenne Rappels : accroissements finis en dimension Le théorème de la moyenne Applications de classe C Applications de différentielle nulle Exercices Toute remarque ou question est la bienvenue à l adresse 1

2 4 Études locale de fonctions Différentielle seconde Différentielles d ordres supérieurs Une formule explicite pour D 2 f a La formule de Taylor-Young Points critiques - extrema libres Exercices Le théorème d inversion locale Homéomorphismes et difféomorphismes Le théorème d inversion locale Le théorème du point fixe Démonstration du théorème d inversion locale Exercices Théorème des fonctions implicites Énoncé du théorème Interprétation géométrique Démonstration du théorème Exercices Sous-variétés de R n - extrema liés Sous-variétés Submersions Espace tangent à une sous-variété Extrema liés, multiplicateurs de Lagrange Exercices II Équations différentielles 31 8 Généralités Définitions Raccordements des solutions, solutions prolongeables, solutions maximales Théorème de Cauchy-Lipschitz Méthodes d intégration Exercices Équations différentielles linéaires Premier ordre Cas des coefficients constants Atelier : l exponentielle de matrice

3 Première partie Fonctions différentiables 1 Outils de topologie 1.1 Espaces vectoriels normés Définition 1.1. Un espace vectoriel normé (e.v.n.) est un couple (E,. ) où E est un espace vectoriel sur R ou C et où. est une norme sur E i.e. une application. : E R + vérifiant : (N1) x E, x = 0 ssi x = 0 (N2) x E, λ R, λx = λ x (N3) x, y E, x + y x + y (homogénéité) (inégalité triangulaire) Exemples. Sur R n, on emploie souvent les normes suivantes : pour x = (x 1,..., x n ), x = sup( x 1,..., x n ) x 1 = x x n x 2 = x x 2 n Notations. Soit (E,. ) un evn, soit a E et soit r 0 un réel. On note B(a, r) = {x E / x a < r} la boule ouverte de centre a et de rayon r, B(a, r) = {x E / x a r} la boule fermée de centre a et de rayon r, S(a, r) = {x E / x a = r} la sphère de centre a et de rayon r. Définition 1.2. Soient E et F des e.v.n., A un sous-ensemble de E et f : A F une application. Soient a A et b F. On dit que f(x) tend vers b quand x tend vers a si ɛ > 0, η > 0, x A, ( x a < η f(x) b < ɛ) On écrit : lim x a f(x) = b. La fonction f est dite continue en a A si f(x) tend vers f(a) quand x tend vers a. On dit que f est continue si f est continue en tout point de A. 1.2 Applications linéaires continues En calcul différentiel, les applications linéaires continues sont particulièrement importantes, car le calcul différentiel consiste essentiellement à approximer des applications par des applications linéaires continues. Proposition 1.3. Soient E et F deux espaces vectoriels normés sur R ou C et soit f : E F une application linéaire. Les assertions suivantes sont équivalentes : (i) f est uniformément continue sur E (ii) f est continue sur E 3

4 (iii) f est continue en 0 (iv) f est bornée sur la boule fermée unité B(0, 1) (v) il existe M > 0 tel que pour tout x E, f(x) M x Notation. On note L(E, F ) l espace vectoriel des applications linéaires continues de E dans F muni de la norme induite (cf. Exercice 1.5) définie pour f L(E, F ) par : f = sup f(x) F x E 1 Remarque. f = sup x E =1 f(x) F = sup x E\{0} f(x) F x E. Si F est un espace de Banach, alors L(E, F ) aussi. Proposition 1.4. (cf. Exercice 1.5) Soient E, F et G trois e.v.n. et soient f L(E, F ) et g L(F, G). Alors g f L(E, G), et g f g f. Preuve. Exercice 1.5 Proposition 1.5. Toute application linéaire d un espace vectoriel normé de dimension finie dans un espace vectoriel normé quelconque est continue. Preuve. Exercice Exercices Exercice 1.1 (!). Soit E un R-evn, et h E. Montrer que les applications suivantes sont linéaires continues. S : E 2 E tq S(x, y) = x + y, C : E E 2 tq C(x) = (x, x) et α : R E tq α(t, x) = t.h + x Exercice 1.2. Donner un exemple d application linéaire non continue. Exercice 1.3. Soient E 1,..., E n et F des espaces vectoriels normés et soit φ : E 1 E n F une application n-linéaire. Démontrer l équivalence des assertions suivantes. (i) φ est continue sur le produit E 1 E n (ii) φ est continue en 0 (iii) φ est bornée sur le produit des boules unité des E i (iv) il existe C 0 tel que (x 1,..., x n ) E 1 E n, φ(x 1,..., x n ) C x 1 x n Exercice 1.4. Soient E et F des espaces vectoriels. Démontrer que si E est de dimension finie, alors toute application linéaire f : E F est automatiquement continue. Même question pour une application n-linéaire φ : E 1 E n F lorsque les E i sont tous de dimension finie. Exercice Soient E et F des espaces vectoriels normés. Montrer que l on définit la norme induite sur L(E, F ) vaut : f = f(x) sup x E\{0} x 4

5 2. Soient E, F et G des espaces vectoriels normés et soient g L(F, G) et f L(E, F ). Montrer que g f g f Exercice 1.6. On munit successivement R 2 des normes classiques : (x, y) 1 = x + y, (x, y) = max{ x, y }, (x, y) 2 = x 2 + y 2. Vérifier à la main que ces trois normes sont équivalentes. Soit φ une forme linéaire sur R 2 représentée dans la base canonique par la matrice (a b). Montrer que φ vaut successivement max{ a, b }, a + b et (x 2 + y 2 ) 5

6 2 Applications différentiables 2.1 Définition - premiers exemples Définition 2.1. Soient E et F des evn, soit U un ouvert de E et soit f : U F une application. Soit a U. On dit que f est différentiable au point a s il existe une application linéaire continue L L(E, F ) et une application ɛ : U F telles que 1. x U, f(x) = f(a) + L(x a) + x a ɛ(x) 2. lim x a ɛ(x) = 0 Proposition 2.2. Si une telle application L existe, alors elle est unique. On appelle L la différentielle de f au point a, et on la note Df a. Preuve. Cela découle de la proposition 2.3 et de l unicité de la limite. Formulations équivalentes : f(a + h) = f(a) + Df a (h) + h ɛ 1 (h) avec lim x a ɛ 1 (x) ou encore : f(a + h) = f(a) + Df a (h) + o(h) (1) où o(h) se lit petit o de h et désigne une fonction g telle que g(h) h Exemple 1. Fonctions dérivables Lorsque E = R, (1) s écrit : f(a + h) = f(a) + hdf a (1) + o(h), c est-à-dire : f(a + h) f(a) lim = Df a (1) h 0 h Ce qui équivaut à dire que f est dérivable en a et que f (a) = Df a (1). On a alors : h R, Df a (h) = h.f (a) tend vers 0. Exemple 2. Différentielle d une application constante. Soit f : U F une application constante : x U, f(x) = c où c F est une constante. Alors f est différentiable en tout point a de U et Df a = 0. Exemple 3. Différentielle d une application linéaire continue. Soit f : E F une application linéaire continue. Alors f est différentiable en tout point a de E et Df a = f. 2.2 Propriétés élémentaires Proposition 2.3 (Dérivées directionnelles). Soit U un ouvert non vide d un espace vectoriel normé E et soit f : U R une application différentiable en un point a U. Alors, pour tout h E, on a la convergence suivante : 1 lim t 0 + t (f(a + t.h) f(a)) = Df a(h). 6

7 Quand elle existe, la limite de l équation précédente est appelée la dérivée de f en a dans la direction h. Une fonction peut admettre des dérivées directionnelles en un point dans toutes les directions même si elle n est pas différentiable en ce point. (cf. Exercices 2.2 et 2.3.) Théorème 2.4 (Extrema locaux). Soit U un ouvert non vide d un espace vectoriel normé sur R, et soit f : U R une application différentiable en un point a U et admettant un extremum local en ce point a. Alors sa différentielle en ce point Df a est la fonction nulle. Proposition 2.5 (Continuité des applications différentiables). Soient E et F des espaces vectoriels normés, U un ouvert de E et f : U F une application différentiable en un point a de U. Alors f est continue en a. Théorème 2.6. Soient F et G des evn, et f : U F et g : V G des applications. Linéarité Si F = G et si f et g sont différentiables en a U V. Alors pour tous scalaires λ et µ, λ.f + µ.g est différentiable en a et D(λf + µg) a = λdf a + µdg a. Composition Si V est un ouvert de F tel que f(u) V et si f est différentiable en a U et g l est en f(a), alors g f est différentiable en a et vérifie D(g f) a = Dg f(a) Df a. 2.3 Cas E = R n, dérivées partielles Considérons une fonction numérique f : U R définie sur un ouvert U de R n. Soit a = (a 1,..., a n ) U. Fixons i {1,..., n}, et notons I i : R R n l injection I i (x) = (a 1,..., a i 1, x, a i+1,..., a n ) et U i = I 1 i (U). Si la fonction f I i : U i R, (f I i )(x) = f(a 1,..., a i 1, x, a i+1,..., a n ) est dérivable au point a i, on dit que f est dérivable en a par rapport à la i-ème variable. On note (f I i ) (a i ) = f x i (a) la dérivée, et on l appelle i-ème dérivée partielle de f au point a. Proposition 2.7. Si f : U F, U ouvert de R n est différentiable en a, alors f admet des dérivées partielles en a par rapport à toutes les variables, et h = (h 1,..., h n ), Df a (h) = h 1 f x 1 (a) h n f x n (a) Réciproque fausse : Une fonction peut admettre des dérivées partielles en a par rapport à toutes les variables en un point sans être différentiable en ce point (cf. Exercices 2.2 et 2.3). En revanche, la situation change quand les dérivées partielles sont continues. C est une des raisons pour lesquelles on introduira la notion d application de classe C 1 au prochain chapitre. 7

8 2.4 Cas F = R p, applications composantes Soit U un ouvert de l evn E et soit f : U R p une application. Pour tout x U, f(x) = (f 1 (x),..., f p (x)). Les f i : U R s appellent les applications composantes de f. On note f = (f 1,..., f p ). Proposition 2.8. Soit a U. f est différentiable au point a si et seulement si pour tout i = 1,..., p, f i est différentiable au point a, auquel cas, h E, Df a (h) = (Df 1 a(h),..., Df pa (h)) Définition 2.9. La matrice de l application linéaire Df a : R n R p dans les bases canoniques s appelle la matrice jacobienne de f. C est la matrice : f 1 f x 1 (a) 1 f x 2 (a)... 1 x n (a) ( ) f 2 f fi x 1 (a) 2 f x 2 (a)... 2 x n (a) Jf a = (a) = x j... f p f x 1 (a) p f x 2 (a)... p x n (a) 2.5 Exercices Exercice 2.1 (!). Redémontrer la proposition 2.3 à partir des applications dérivables connues et des règles de composition. Exercice 2.2 (!). Soit f : R 2 R définie par f(x, y) = x3 y si y 0 et f(x, 0) = 0 Calculez les dérivées partielles de f en (0, 0). Montrer qu il existe une application linéaire continue L telle que f(t.u) tend vers L(u) t pour tout u R 2 mais que f n est pas continue en 0. f est elle différentiable en (0, 0)? Exercice 2.3. Déduire du premier exercice de la section précédente une fonction f et une application linéaire L telle que f(t.u) tend vers L(u) pour tout u R 2 mais que L t n est pas continue en 0. Exercice ) Soient E 1, E 2 et F des espaces vectoriels normés et soit f : E 1 E 2 F une application bilinéaire continue. Démontrer que f est différentiable sur E 1 E 2 et déterminer sa différentielle. 2) Soient E, F et G trois R-espaces vectoriels normés de dimension finie. On considère l application f : L(F, G) L(E, F ) L(E, G) définie par : f(a, B) = AB(= A B) Démontrer que f est différentiable sur L(F, G) L(E, F ) et déterminer Df (A,B) pour tout (A, B) L(F, G) L(E, F ). 8

9 Exercice 2.5. Soit E un espace vectoriel normé. On considère l application f : L(E) L(E) définie par f(a) = A 2. Démontrer que f est différentiable sur L(E) et déterminer Df A pour tout A L(E). Exercice 2.6 (!). Soit f = (f 1, f 2, f 3 ) l application de R 3 dans R 3 définie par : f 1 (x, y, z) = x + y + z ; f 2 (x, y, z) = x 2 + y 2 + z 2 ; f 3 (x, y, z) = x 3 + y 3 + z 3 On admet que f est différentiable partout. Calculer la matrice jacobienne de f au point (a, b, c). Exercice 2.7. (Coordonnées cylindriques) Calculer la matrice jacobienne de l application de R 3 dans R 3 définie par : (r, θ, z) (r cos θ, r sin θ, z) Exercice 2.8. E 1, E 2,..., E n et F des espaces vectoriels normés et soit f : E 1 E 2 E n F une application n-linéaire continue. Démontrer que f est différentiable sur E 1 E 2 E n et déterminer sa différentielle. 2) Soit E un espace vectoriel normé. On considère l application f n : L(E) L(E) définie par f(a) = A n. Démontrer que f n est différentiable sur L(E) et déterminer Df n (A) pour tout A L(E). 3) On pose E = R n. a) Démontrer que l application déterminant det : L(E) R est différentiable sur L(E) et calculer sa différentielle. b) Soit u Gl(E) et soit h L(E). Démontrer que D det(u).h = det(u)trace(u 1 h) Exercice 2.9. Considérons l application N : R n R définie par x = (x 1,..., x n ) R n, N(x) = n x i i=1 1) Soit a = (a 1,..., a n ) R n tel que i {1,..., n}, a i 0. Démontrer que N est différentiable au point a. 2) Soit a = (a 1,..., a n ) R n tel que i {1,..., n}, a i = 0. Fixons i 0 tel que a i0 = 0. Soit h = (h 1,..., h n ) R n défini par h i0 = 1 et h i = 0, i i 0. Pour t R, calculer N(a + th) N(a). En déduire que N n est pas différentiable au point a. 3) Calculer chaque dérivée partielle de N en précisant son ensemble de définition. Exercice Soit (E, <, >) un espace préhilbertien. 1) Déterminer l ouvert maximal sur lequel l application <, >: E E R est différentiable et déterminer sa différentielle. 2) Même question pour la norme n : E R associée au produit scalaire <, >. 9

10 3 Inégalité de la moyenne 3.1 Rappels : accroissements finis en dimension 1 Théorème 3.1 (des accroissements finis). ( c.f. L1 et L2) Soient a, b R, a < b. Soit f[a, b] R une application continue sur [a, b] et dérivable sur ]a, b[. Alors il existe c ]a, b[ tel que f(b) f(a) = (b a)f (c) Remarque. Ce théorème ne se généralise pas à une application f : [a, b] R n. Contre-exemple : f : [0, π 2 ] R2 définie par f(t) = (cos t, sin t). Nous allons généraliser son corollaire, dit inégalité des accroissements finis (IAF) : Théorème 3.2. (IAF) Soient a, b R, a < b. Soit f : [a, b] R une application continue sur [a, b] et dérivable sur ]a, b[. Supposons qu il existe une constante M 0 telle que t ]a, b[, f (t) M, alors f(b) f(a) M(b a) 3.2 Le théorème de la moyenne Proposition 3.3. (IAF) Soit F un R-evn, [a, b] un intervalle borné de R et une application continue de [a, b] dans F, dérivable sur ]a, b[ et telle qu il existe une constante M 0 telle que t ]a, b[, f (t) F M Alors f(b) f(a) F M(b a) Démonstration. Fixons ɛ > 0, et notons I ɛ l ensemble des points x [a, b] tels que f(x) f(a) (M + ɛ)(x a) + ɛ (2) I ɛ est non vide puisque a I ɛ. Soit c la borne supérieure de I ɛ. Pour tout n N, il existe x n I ɛ tel que c 1/n < x n c. En écrivant l inéquation (2) pour tout n et en faisant tendre n vers +, la continuité de f implique f(c) f(a) (M + ɛ)(c a) + ɛ (3) c est-à-dire c I ɛ. Nous allons montrer que c = b. On a : c > a. En effet, puisque f est continue en a, alors l application φ : x f(x) f(a) (M + ɛ)(x a) est aussi continue en a. Or φ(a) = 0, donc il existe η > 0 tel que x [a, a + η], φ(x) ɛ. D où [a, a + η] I ɛ et c a + η. Supposons que c < b. Alors, c ]a, b[, donc f est dérivable en c. Il existe donc un η > 0 tel que t ] η, +η[, f(c + t) f(c) f (c) < ɛ t 10

11 Pour un tel t ]0, η[, on a donc : ce qui donne, compte tenu de (3) : f(c + t) f(c) f (c) t + ɛt (M + ɛ)t f(c + t) f(a) (M + ɛ)(c + t a) + ɛ Conclusion : c + t I ɛ et donc c n est pas la borne sup de I ɛ. Contradiction. Donc b = c, et donc b I ɛ. On obtient donc f(b) f(a) F (M + ɛ)(b a) + ɛ Ceci étant vrai pour tout ɛ > 0, on conclut par passage à la limite ɛ 0. Théorème 3.4. (Le théorème de la moyenne) Soient E et F des espaces vectoriels normés, soit U un ouvert de E et soit f : U F une application diférentiable sur U. On suppose qu il existe une constante M 0 telle que pour tout a U, Df a M. Soient a et b deux points de U tels que le segment soit contenu dans U. Alors on a : [a, b] = {tb + (1 t)a; t [0, 1]} f(b) f(a) F M b a E Remarque. On voit ici le passage d une propriété locale à une propriété globale. Preuve. On applique la proposition 2.8 à la composée g = f α : [0, 1] F, où α : [0, 1] U désigne l application α(t) = tb + (1 t)a. Corollaire 3.5. Soient E et F des espaces vectoriels normés, soit U un ouvert convexe de E et soit f : U F une application diférentiable sur U. On suppose qu il existe une constante M 0 telle que pour tout a U, Df a M. Alors 3.3 Applications de classe C 1 a, b C, f(b) f(a) F M b a E Définition 3.6. Soient E et F des evn, soit U un ouvert de E et soit f : U F une application. On dit que f est de classe C 1 sur U si f est différentiable en tout point de U et si l application Df : U L(E, F ) définie par a Df a est continue sur U. Lorsque E = R, on retrouve la notion habituelle de classe C 1. Lorsque E = R n, il suffit de vérifier que les dérivées partielles sont continues, d après le théorème suivant. Théorème 3.7. f : U F, U ouvert de R n est de classe C 1 sur U, si et seulement si f admet des dérivées partielles par rapport à toutes les variables en tout point de U et si pour tout i {1,..., n}, la fonction f x i est continue sur U. 11

12 Démonstration. Le sens direct découle des règles de composition des applications différentiables d une part et continues d autre part, appliquées à f I i, où I i est l injection du paragraphe 2.3. Pour la réciproque, on montre par récurrence sur n que si f de R n dans F admet des dériées partielles continues, alors elle est différentiable et en tout point Df a (h) = n i=1 h i f x i (a). (4) Le cas n = 1 est trivial. Pour passer de n à n + 1, considérons une application f de R n+1 dans F admettant des dériées partielles continues. On note x = ( x, x n+1 ), avec x = (x 1,, x n ), les éléments de R n+1. Il faut estimer n+1 f δ(h) = f(a + h) f(a) h i (a) x i i=1 = f(ā + h, a n+1 + h n+1 ) f(ā + h, f a n+1 ) h n+1 (a) x i +f(ā + h, n f a n+1 ) f(ā, a n+1 ) h i (a) x i Applique le théorème de la moyenne au premier morceau et l hypothèse de récurrence au deuxième morceau, et on obtient δ(h) h n+1 sup f (x) f (a) x i x i + o( h) = o(h), x B(a, h ) ce qui conclut la récurrence. La continuité de Df est évidente d après (4). Pour montrer la différentiabilité en a, on a utilisé la continuité des dérivées partielles qu en a. On a donc aussi prouvé le résultat suivant. Proposition 3.8. Si f : U F, U ouvert de R n admet des dérivées partielles sur un voisinage de a et que ces dérivées partielles sont continues en a, alors f est différentiable en a. Lorsque E = R n et F = R p, la proposition 2.8 implique que f = (f 1,..., f p ) est de classe C 1 sur U si et seulement si seulement si ses applications composantes sont de classe C 1 sur U. 3.4 Applications de différentielle nulle Réciproque du théorème de différentiation des applications constantes : Définition 3.9. Un espace topologique X est dit connexe si pour tous les couples (U 1, U 2 ) d ouverts de X tels que U 1 U 2 = et U 1 U 2 = X, on a U 1 = ou U 2 =. 12 i=1

13 Proposition Soit X un connexe. Les seuls sous-ensembles de X à la fois ouverts et fermés de X sont X et. Théorème Soient E et F des R evn, soit U un ouvert connexe de E et soit f : U F une application différentiable sur U telle que x U, Df x = 0. Alors f est constante sur U. Démonstration. Fixons a U. Soit B = {x U /f(x) = f(a)}. B est non vide puisque a B. B = f 1 ({f(a)}), donc B est un fermé de U puisque f est continue. B est un ouvert de U. En effet, soit b B. Puisque U est un ouvert de E, il existe r > 0 tel que B(b, r) U. Appliquons le théorème de la moyenne sur le convexe B(b, r) : pour tout x B(b, r), on obtient : f(x) f(b) 0. x b, donc f(x) = f(b). D où B(b, r) B. Conclusion : B est non vide et à la fois ouvert et fermé dans U. Donc B = U puisque U est connexe. 3.5 Exercices Exercice 3.1 (!). Montrer que les applications polynomiales (i.e. dont toutes les applications composantes sont polynomiales) de R n dans R p sont C 1. Exercice 3.2. Soit E un espace vectoriel normé sur R et soit f : R 2 E une application de classe C 1 sur R 2. On suppose que f vérifie : (s, t) R 2, (m, n) Z 2, f(s + m, t + n) = f(s, t) ( ) a) Démontrer que Df : R 2 L(R 2, E) vérifie aussi la propriété ( ). b) Démontrer qu il existe M 0 tel que x R 2, y R 2, f(x) f(y) M x y Exercice 3.3 (!). Soient E et F espaces vectoriels normés, soit Ω un ouvert convexe de E et soit f : Ω F une application différentiable sur Ω. Démontrer que f est lipschitzienne sur Ω si et seulement si Df est bornée sur Ω. Exercice 3.4. Si A désigne une partie d un espace vectoriel normé, on désigne par δ(a) son diamètre. Soient E et F deux espaces vectoriels normés et soit (f n ) n 1 une suite d applications différentiables de E dans F telles que n 1, x E, Df n (x) x n Soit B une partie bornée de E. Que peut-on dire de lim n δ(f n (B))? Exercice 3.5. Soit E un espace vectoriel normé et soit g : E E une application différentiable vérifiant k ]0, 1[, x E, Dg(x) k 1) Montrer que f = Id E + g est injective. 2) Démontrer que l application réciproque de f est Lipschitzienne. 13

14 Exercice 3.6. Soit n 1 un entier et soit U un ouvert non vide et borné de R n. Soit f : U R une fonction continue sur U (U désignant, l adhérence de U dans R n ), différentiable sur U, telle que u U \ U, f(u) = 0. Démontrer qu il existe u U tel que Df(u) = 0. Ceci généralise un résultat bien connu. Lequel? Exercice 3.7 (!). Dire si les fonctions définies par les formules suivantes sont différentiables en (0, 0). f(x, y) = cos(3x + tan(y)) ; g(0, 0) = 0 et g(x, y) = x3 si (x, y) (0, 0) ; h(x, y) = y 2 +x 2 arcsin( x2 ) x 2 1 Exercice 3.8. Soient x 1, x n [0, 1] et P R[X 1,, X n ]. Montrer que la fonction de C([0, 1]) dans R qui envoie f sur P [f(x 1 ),, f(x n )] est différentiable en tout point. Exercice 3.9 (!). Soient f, g : R n R des applications différentiables (resp. C 1 ) en a et h : R 2 R différentiable (resp. C 1 ) en (f(a), g(a)). Montrer que x h (f(x), g(x)) est différentiable en a (resp. C 1 ). 14

15 4 Études locale de fonctions 4.1 Différentielle seconde Soient E et F des e.v.n., soit U un ouvert de E et soit f : U F une application différentiable sur U. On considère la différentielle Df : U L(E, F ) Définition 4.1. On dit que f est deux fois différentiable en a U si f est différentiable sur un voisinage de a et Df est différentiable en a. Dans ce cas, on note D 2 f a la différentielle de Df en a et on l appelle la différentielle seconde de f au point a. Si f est deux fois différentiable en tout point de U et si l application D 2 f : U L(E, L(E, F )) est continue sur U, on dit que f est de classe C 2 sur U. La différentielle seconde vue comme application bilinéaire Notons L 2 (E, F ) l espace vectoriel normé des applications bilinéaires continues de E E dans F. Alors on a un isomorphisme d espaces vectoriels Φ : L(E, L(E, F )) L 2 (E, F ) défini pour u L(E, L(E, F )) par Φ(u)(h, k) = [u(h)](k). Soit f : U F une application deux fois différentiable en a U. On regardera D 2 f a comme un élément de L 2 (E, F ) en l identifiant avec son image par Φ et on notera D 2 f a (h, k) pour (D 2 f a (h))(k). Théorème 4.2. (Théorème de Schwarz) Soit f : U F une application deux fois différentiable en a U. Alors, l application bilinéaire D 2 f a est symétrique, i.e. Démonstration. (h, k) E E, D 2 f a (h, k) = D 2 f a (k, h) 1. La fonction g est définie dans un voisinage de (0, 0) par g(x, y) = f(a + x.h + y.k) f(a + x.h) f(a + y.k) + f(a). Alors g est deux fois différentiable en (0, 0) et A := 2 g (0) = x y D2 f a (h, k) et B := 2 g (0) = y x D2 f a (k, h). En outre, on a g(0, y) = g(x, 0) = 0, donc g (x, 0) = x g y (0, y) = Fixons ɛ > 0. Par définition de A, il existe un voisinage convexe de (0, 0) (une boule centrée en ce point), sur lequel on a : ( ) g (x, y) y.a x = y 1 g g (x, y) (x, 0) A y x x ɛ y. D après l IAF, on a donc sur ce voisinage g(x, y) xy.a ɛ yx. De même on montre que g(x, y) yx.b ɛ xy, donc yx.b xy.a ɛ yx et enfin B A 2ɛ. En faisant tendre ɛ vers 0, on conclut la preuve. 15

16 4.2 Différentielles d ordres supérieurs On définit de la même façon par récurrence les notions de fonction n fois différentiable en a, sur U et de classe C n sur U : On note L n (E, F ) l e.v.n. des applications n-linéaires de E n dans F muni de la norme usuelle M = sup x (E\{0}) n M(x) F x 1 E... x n E On identifie L(E, L n (E, F ) avec L n+1 (E, F ) (écrire l isomorphisme!). On note D 1 f pour Df. Définition 4.3. Soit n 2. On dit que f est n fois différentiable en a U s il existe un ouvert U U contenant a sur lequel f est n 1 fois différentiable et si l application D n 1 fu L n 1 (E, F ) est différentiable en a, auquel cas on note D n f a L n (E, F ) la différentielle et on l appelle la différentielle n-ième de de f au point a. Si f est n fois différentiable en tout point de U et si l application D n f : U L n (E, F ) est continue sur U, on dit que f est de classe C n sur U. 4.3 Une formule explicite pour D 2 f a Rappel. Soit f : U R n F une application différentiable au point a U. Alors pour tout h = (h 1,..., h n ), Df a (h) = n i=1 f x i (a)h i Cette formule se généralise de la façon suivante : Soit F un e.v.n et soit f : U R n F une application deux fois différentiable en a U. Alors pour tous h = (h 1,..., h n ) et k = (k 1,..., k n ) dans R n, on a : ( La matrice H(f) = ) f x i x j D 2 f a (h, k) = n i=1 n j=1 2 f x i x j (a)h i k j de Df est appelée matrice hessienne de f. Lorsque f est deux fois différentiable sur U, alors le théorème de Schwarz implique : a U, i, j, c est à dire que H a (f) est symétrique et 2 f x i x j (a) = 2 f x j x i (a), D 2 f a (h, k) = hh a (f)k = n i=1 2 f (a)h x 2 i k i + i 1 i<j n 2 f x i x j (a)(h i k j + h j k i ) La forme quadratique q : R n F associée à la forme bilinéaire D 2 f a s exprime donc par : 16

17 h = (h 1,..., h n ) R n, q(h) = D 2 f a (h, h) = 4.4 La formule de Taylor-Young n i=1 2 f x 2 i (a)h 2 i i<j n 2 f x i x j (a)h i h j Théorème 4.4. Soient E et F des e.v.n, soit U un ouvert de E et soit f : U F une application n fois différentiable au point a U. Alors x U, f(x) = f(a) + 1 1! Df a(x a) + 1 2! D2 f a (x a, x a) n! Dn f a (x a,..., x a) + o((x a) n ) Remarque. Pour n = 1, c est la définition de la différentielle Df a. Pour n = 0, c est celle de la continuité en a. Preuve La démonstration se fait par récurrence sur n. La remarque assure l initilisation. Pour l hérédité, on appelle φ la différence f(a + h) n+1 k=0 applique l hypothèse de récurrence à Dφ et l IAF à φ. 4.5 Points critiques - extrema libres 1 k! Dk f a (h,..., h) puis on Définition 4.5. Soit E un e.v.n., soit U une ouvert de E et soit f : U R. On dit que f admet au point a U un minimum local (resp. maximum local) s il existe un ouvert U U contenant a tel que x U, f(x) f(a) (resp. f(x) f(a)). Si les inégalités sont strictes, on parle de minimum (resp. maximum) local strict. Définition 4.6. Un point a U tel que Df a = 0 s appelle un point critique de f. D après le théorème 2.4, les extrema locaux des fonctions réelles différentiables sont atteints en des points critiques. Les autres points critiques sont appelés points-selle. Le résultat suivant donne des conditions suffisantes pour distinguer les extrema et les points-selle. Théorème 4.7. Soit E un e.v.n. de dimension finie, U un ouvert de E et f : U R une application deux fois différentiable en a U. On suppose que a est un point critique de f. 1. Si la forme quadratique q : h E D 2 f a (h, h) est définie positive, alors f admet en a un minimum local strict. 2. Si la forme quadratique q est définie négative, alors f admet en a un maximum local strict. 3. S il existe h, k E tels que D 2 f a (h, h) > 0 et D 2 f a (k, k) < 0, alors a est un point-selle. Corollaire 4.8 (E = R 2, Lagrange, 1759). Soit U un ouvert de R 2 et soit f : U R une application deux fois différentiable en a U telle que Df a = 0. On pose : r = 2 f x 2, t = 2 f y 2, s = 2 f x y 17

18 1. Si rt s 2 > 0, alors f admet au point a un extremum local strict. Si r > 0, il s agit d un minimum ; Si r < 0, il s agit d un maximum. 2. Si rt s 2 < 0, alors f n admet pas d extremum local au point a. 4.6 Exercices Exercice 4.1 (!). Calculer la différentielle seconde d une application linéaire. Même question pour une application bilinéaire. Exercice 4.2 (!). Soit f : R 2 R l application définie par : (x, y) R 2, f(x, y) = (x 2 + y 2 ) 2 2x 2 + 2y 2 Déterminer les points critiques de f et leur nature (extrema, points-selle). Exercice 4.3. Soit f : R 2 R l application définie par : (x, y) R 2, f(x, y) = x 3 + y 3 3xy 1) Déterminer les points critiques de f et leur nature (extrema, points-selle). 2) En déduire une esquisse dans R 2 des lignes de niveau de l application f (i.e. les ensembles d équation f(x, y) = constante). Exercice 4.4. Soit f : R 2 R définie par f(x, y) = (x 2 + y 2 ) 2 8xy 1) Déterminer les points critiques de f et leur nature (extrema, points-selle) 2) En déduire une esquisse de la surface de R 3 d équation z = f(x, y) et l allure des lignes de niveau de f. 18

19 5 Le théorème d inversion locale Dans ce chapitre, les espaces vectoriels normés considérés sont de dimension finie. Nous allons généraliser le résultat suivant : Théorème 5.1. Soit f :]a, b[ R une application de classe C 1 sur ]a, b[ telle que en x 0 ]a, b[, f (x 0 ) 0. Alors il existe un intervalle ouvert I ]a, b[ contenant x 0 et un un intervalle ouvert de J tels que la restriction de f à I soit un difféomorphisme de I sur J. 5.1 Homéomorphismes et difféomorphismes Définition 5.2. Soient E, F et G des evn, U un ouvert de E, V un ouvert de F. Une application f : U V est un homéomorphisme si f est bijective et si f et f 1 sont continues. Une application f : U V est un difféomorphisme si f est bijective et si f et f 1 sont de classe C 1. Remarque. f difféomorphisme f homéomorphisme. Réciproque fausse : une application f : U V de classe C 1 peut admettre une fonction inverse f 1 continue sans être un difféomorphisme. Par exemple f : R R définie par f(x) = x 3 est bijective et C 1. Son inverse est f 1 (y) = x 1/3 qui est continue mais pas différentiable en 0. La proposition suivante donne une condition pour qu un homéomorphisme soit un difféomorphisme : Proposition 5.3. Soient E et F des evn, U E et V F des ouverts. Soit f : U V un homéomorphisme de classe C 1. Alors f est un difféomorphisme si et seulement si pour tout x U, la différentielle Df x est un isomorphisme de E sur F, auquel cas, on a : D(f 1 ) f(a) = (Df a ) 1 Remarque. Si en un point x U, la différentielle est un isomorphisme, alors en particulier dim E = dim F. Preuve. Si f est un difféo, alors en particulier f 1 est inversible et f 1 f = Id U et f f 1 = Id V. Donc pour tout a U et b = f(a), D(f 1 ) b Df a = Id E Ceci prouve que Df a est inversible d inverse D(f 1 ) b. et Df a D(f 1 ) b = Id F Soit a U. Supposons Df a inversible. Posons b = f(a), et A = Df a. a) Supposons que E = F et A est l identité. Montrons que f 1 est différentiable en b de différentielle l identité. Soit k F tel que b + k V. Posons γ(k) = f 1 (b + k) f 1 (b) = f 1 (b + k) a γ 1 (k) = f 1 (b + k) f 1 (b) k = γ(k) k 19

20 On doit montrer que γ 1 (k) lim k 0 k Exprimons la différentiabilité de f en a. Pour h E tel que a + h U, on a : = 0 f(a + h) = b + h + h ɛ(h) avec lim h 0 ɛ(h) = 0. Comme f 1 est continue, lim k 0 γ(k) = 0, donc on peut remplacer h par γ(k) dans la derniere équation, ce qui donne b + k = f(f 1 (b + k)) = f(a + γ(k)) = b + γ(k) + γ(k) ɛ(γ(k)) et donc k = γ(k) + γ(k) ɛ(γ(k)). γ(k) De là on déduit d une part γ 1 (k) = γ(k) ɛ(γ(k)) et d autre part lim k 0 = 1. k En combinant les deux on voit que γ 1 (k) lim k 0 k γ(k) = lim lim ɛ(γ(k)) = 0. k 0 k k 0 b) On obtient le cas général en appliquant le cas précédent à g = A 1 f c) D(f 1 ) : V L(F, E) est continue sur V. En effet, D(f 1 ) y = (Df f 1 (y)) 1, donc D(f 1 ) = Inv Df f 1 où Inv désigne l application Inv : Gl(E, F ) Gl(E, F ) définie par Inv(u) = u 1 dont les coordonnées sont des fractions rationnelles. Donc D(f 1 ) est continue comme composée d applications continues. 5.2 Le théorème d inversion locale Définition 5.4. Soient E et F des evn, U un ouvert de E. Une application f : U F est un difféomorphisme local en a s il existe un ouvert U 1 U contenant a et un ouvert V de F tel que f se restreigne en un difféomorphisme de U 1 sur V. Il résulte de la proposition 5.3 que si f est un difféomorphisme local en a, alors Df a est inversible. Le théorème suivant dit que la réciproque est vraie : Théorème 5.5. d inversion locale Soient E et F des evn, U un ouvert de E, et soit f : U F une application de classe C 1. Soit a U tel que Df a soit inversible. Alors f est un difféomorphisme local en a. La démonstration sera donnée plus loin. Application. Soit f : R 2 R 2 définie par f(x, y) = (x + y 4, y + x 3 y). Alors f est un difféomorphisme local en (0, 0) car sa matrice jacobienne ( ) 1 0 Jf (0,0) = 0 1 est inversible. Cela entraîne que si (a, b) est assez proche de f(0, 0) = (0, 0), alors le système d équations 20

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

Calcul différentiel sur R n Première partie

Calcul différentiel sur R n Première partie Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité

Calcul différentiel. Chapitre 1. 1.1 Différentiabilité Chapitre 1 Calcul différentiel L idée du calcul différentiel est d approcher au voisinage d un point une fonction f par une fonction plus simple (ou d approcher localement le graphe de f par un espace

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005

MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 MPSI 3 - Cahier de vacances... MPSI 3-2004/2005 Voici une fiche contenant 100 exercices de difficulté raisonable, plutôt techniques, qui recouvrent l ensemble du programme étudié cette année. A raison

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U

CHAPITRE V. de U U dans Hom(F, F ) est de classe C. b dans Hom(F,F ) est de classe C, l application b b. de U U CHAPITRE V FIBRÉS VECTORIELS 1. Fibrés vectoriels 1. Cartes et atlas vectoriels Soit B une variété différentielle. Considérons un B -ensemble, c est à-dire un ensemble M muni d une application p : M B.

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

1 Topologies, distances, normes

1 Topologies, distances, normes Université Claude Bernard Lyon 1. Licence de mathématiques L3. Topologie Générale 29/1 1 1 Topologies, distances, normes 1.1 Topologie, distances, intérieur et adhérence Exercice 1. Montrer que dans un

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

IV.1 Dual d un espace vectoriel... 77

IV.1 Dual d un espace vectoriel... 77 76 IV FORMES LINÉAIRES, DUALITÉ IV Formes linéaires, dualité Sommaire IV.1 Dual d un espace vectoriel.......... 77 IV.1.a Rappels sur les e.v................... 77 IV.1.b Rappels sur les applications linéaires........

Plus en détail

Devoir à la maison : correction

Devoir à la maison : correction Calcul différentiel 2 Sous-variétés : bilan Devoir à la maison : correction Exercice 1. Un exemple de sous-variété : les structures complexes Soit E un R-espace vectoriel. Montrer que la donnée d une structure

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction

L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction L3 MASS Calcul différentiel (cours et exercices) John BOXALL (Année universitaire 2009 2010 ) Introduction (0.1) Ce cours s articule autour du calcul différentiel et, en particulier, son application au

Plus en détail

Rappels sur les applications linéaires

Rappels sur les applications linéaires Rappels sur les applications linéaires 1 Définition d une application linéaire Définition 1 Soient E et F deux espaces vectoriels sur un même corps K et f une application de E dans F Dire que f est linéaire

Plus en détail

Un tout petit peu d homotopie

Un tout petit peu d homotopie Vincent Beck On note I = [ 0, 1 ]. Un tout petit peu d homotopie 0.1 Homotopie Définition 1 Applications homotopes. Soient X, Y deux espaces topologiques et f, g : X Y deux applications continues. On dit

Plus en détail

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007

ÉCOLE NATIONALE DE L AVIATION CIVILE Session 2007 ÉCOLE NATIONALE DE L AVIATION CIVILE Session 27 CONCOURS DE RECRUTEMENT D ÉLÈVES INGÉNIEURS DU CONTRÔLE DE LA NAVIGATION AÉRIENNE Épreuve commune obligatoire de MATHÉMATIQUES Durée : 4 Heures Coefficient

Plus en détail

Equations différentielles

Equations différentielles Maths PCSI Cours Table des matières Equations différentielles 1 Généralités 2 1.1 Solution d une équation différentielle................................ 2 1.2 Problème de Cauchy.........................................

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

Applications Bilinéaires et Formes Quadratiques

Applications Bilinéaires et Formes Quadratiques Ce cours peut être librement copié et distribué. Il est recommandé d en télécharger la version la plus récente à partir de : http://www.math.jussieu.fr/~alp. Toute remarque, correction ou suggestion doit

Plus en détail

Cours MP. Espaces vectoriels normés

Cours MP. Espaces vectoriels normés Table des matières Espaces vectoriels normés B. Seddoug. Médiane Sup, Oujda I Norme et distance 1 I.1 Définitions..................... 1 I.2 Evn produit.................... 12 I.3 Notions topologiques

Plus en détail

Théorie spectrale. Stéphane Maingot & David Manceau

Théorie spectrale. Stéphane Maingot & David Manceau Théorie spectrale Stéphane Maingot & David Manceau 2 Théorie spectrale 3 Table des matières Introduction 5 1 Spectre d un opérateur 7 1.1 Inversibilité d un opérateur........................... 7 1.2 Définitions

Plus en détail

Extrema locaux (ou relatifs)

Extrema locaux (ou relatifs) Chapitre 3 Extrema locaux (ou relatifs) 3.0.77 DÉFINITION Soit f : U! R une fonction, U ouvert d un espace vectoriel normé E et a 2 U. On dit que f présente un minimum local (respectivement un maximum

Plus en détail

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1

Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1. Cours de Mathématiques 1 Université de Cergy-Pontoise Département de Mathématiques L1 MPI - S1 Cours de Mathématiques 1 Table des matières 1 Un peu de formalisme mathématique 7 1.1 Rudiments de logique........................................

Plus en détail

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé

LICENCE DE MATHÉMATIQUES FONDAMENTALES. D. Azé LICENCE DE MATHÉMATIQUES FONDAMENTALES Calcul Différentiel et Équations Différentielles D. Azé Université Paul Sabatier Toulouse 2008 Table des matières 1 Généralités sur les espaces normés 3 1.1 Espaces

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques

Espaces vectoriels. Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires. 2MA01-Licence de Mathématiques Université d Orléans Année 2009-2010 Espaces vectoriels et applications linéaires 2MA01-Licence de Mathématiques Espaces vectoriels Exercice 1 Soit E un espace vectoriel. Pour x, y E et λ, µ K, montrer

Plus en détail

TD2 Fonctions mesurables Corrigé

TD2 Fonctions mesurables Corrigé Intégration et probabilités 2012-2013 TD2 Fonctions mesurables Corrigé 0 Exercice qui avait été préparé chez soi Exercice 1. Soit (Ω, F, µ) un espace mesuré tel que µ (Ω) = 1. Soient A, B P (Ω) deux sousensembles

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

208. Espaces vectoriels normés. Applications linéaires continues. Exemples.

208. Espaces vectoriels normés. Applications linéaires continues. Exemples. 208. Espaces vectoriels normés. Applications linéaires continues. Exemples. Pierre Lissy May 29, 2010 Dans totue la suite, E désigne un espace vectoriel sur R ou C. 1 Norme. Espace vectoriel normé 1.1

Plus en détail

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015

Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015 Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k

Plus en détail

Espaces vectoriels et applications

Espaces vectoriels et applications Espaces vectoriels et applications linéaires 1 Définitions On parle d espaces vectoriels sur le corps R ou sur le corps C. Les définitions sont les mêmes en substituant R à C ou vice versa. Définition

Plus en détail

Applications linéaires

Applications linéaires Bibliothèque d exercices Énoncés L1 Feuille n 18 Applications linéaires 1 Définition Exercice 1 Déterminer si les applications f i suivantes (de E i dans F i ) sont linéaires : f 1 : (x, y) R (x + y, x

Plus en détail

Calculs approchés d un point fixe

Calculs approchés d un point fixe M11 ÉPREUVE COMMUNE DE TIPE 2013 - Partie D TITRE : Calculs approchés d un point fixe Temps de préparation :.. 2 h 15 minutes Temps de présentation devant les examinateurs :.10 minutes Dialogue avec les

Plus en détail

1 Sujets donnés en option scientifique

1 Sujets donnés en option scientifique Les sujets suivants, posés aux candidats des options scientifique, économique, technologique et littéraire BL constituent la première version d un échantillon des sujets proposés lors des épreuves orales

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009

Notes du cours Mathématiques pour l ingénieur. Sup Galilée - année 2008-2009 Notes du cours Mathématiques pour l ingénieur Sup Galilée - année 2008-2009 Benoît Merlet Ces notes de cours s adressent aux élèves ayant suivi le cours. Elles contiennent peu d explications. Elles pourront

Plus en détail

Espaces vectoriels euclidiens. Groupe orthogonal

Espaces vectoriels euclidiens. Groupe orthogonal 19 Espaces vectoriels euclidiens. Groupe orthogonal Dans un premier temps, E est un espace vectoriel réel de dimension n 1. 19.1 Espaces vectoriels euclidiens Dénition 19.1 On dit qu'une forme bilinéaire

Plus en détail

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html

Licence MIMP Semestre 1. Math 12A : Fondements de l Analyse 1. http ://math.univ-lille1.fr/ mimp/math12.html Licence MIMP Semestre 1 Math 12A : Fondements de l Analyse 1 http ://math.univ-lille1.fr/ mimp/math12.html Septembre 2013 Table des matières Chapitre I. Les nombres réels et les suites numériques 1 1

Plus en détail

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme

Cahier de vacances. Exercices PCSI - PC, Lycée Dupuy de Lôme Cahier de vacances Exercices PCSI - PC, Lycée Dupuy de Lôme Votre année de PCSI a été bien remplie et il est peu probable que l année de PC qui arrive vous paraisse plus facile. C est pourquoi, je vous

Plus en détail

Jeux à somme nulle : le cas fini

Jeux à somme nulle : le cas fini CHAPITRE 2 Jeux à somme nulle : le cas fini Les jeux à somme nulle sont les jeux à deux joueurs où la somme des fonctions de paiement est nulle. Dans ce type d interaction stratégique, les intérêts des

Plus en détail

www.h-k.fr/publications/objectif-agregation

www.h-k.fr/publications/objectif-agregation «Sur C, tout est connexe!» www.h-k.fr/publications/objectif-agregation L idée de cette note est de montrer que, contrairement à ce qui se passe sur R, «sur C, tout est connexe». Cet abus de langage se

Plus en détail

Rappels d Algèbre Linéaire de P.C.S.I

Rappels d Algèbre Linéaire de P.C.S.I Rappels d Algèbre Linéaire de PCSI Table des matières 1 Structure d espace vectoriel sur IK 3 11 Définition et règles de calcul 3 12 Exemples de référence 3 13 Espace vectoriel produit 4 14 Sous-espaces

Plus en détail

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES

AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES AGRÉGATION INTERNE: RÉDUCTION DES ENDOMORPHISMES VINCENT GUEDJ 1. Notions fondamentales 1.1. Noyau, Image. On se donne E un K-espace vectoriel de dimension finie (K = R, C principalement) et f L(E) un

Plus en détail

Cours de mathématiques

Cours de mathématiques Cours de mathématiques Thomas Rey classe de première ES ii Table des matières 1 Les pourcentages 1 1.1 Variation en pourcentage............................... 1 1.1.1 Calcul d une variation............................

Plus en détail

UNIVERSITÉ DE POITIERS

UNIVERSITÉ DE POITIERS UNIVERSITÉ DE POITIERS Faculté des Sciences Fondamentales et Appliquées Mathématiques PREMIÈRE ANNEE DE LA LICENCE DE SCIENCES ET TECHNOLOGIES UE L «algèbre linéaire» Plan du cours Exercices Enoncés des

Plus en détail

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels.

Exo7. Sujets de l année 2008-2009. 1 Partiel. Enoncés et corrections : Sandra Delaunay. Exercice 1 Soit A une matrice 2 2 à coefficients réels. Enoncés et corrections : Sandra Delaunay Exo7 Sujets de l année 28-29 1 Partiel Exercice 1 Soit A une matrice 2 2 à coefficients réels. On suppose a + c = b + d = 1 et a b 1. ( ) a b c d 1. Soient (x 1,x

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires

Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Séance de soutien PCSI2 numéro 10 : Espaces vectoriels et applications linéaires Tatiana Labopin-Richard Mercredi 18 mars 2015 L algèbre linéaire est une très grosse partie du programme de Maths. Il est

Plus en détail

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES

CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES ÉCOLE NATIONALE DE L AVIATION CIVILE ANNEE 2009 CONCOURS DE RECRUTEMENT D ELEVES PILOTES DE LIGNE EPREUVE DE MATHEMATIQUES Durée : 2 Heures Coefficient : 1 Ce sujet comporte : 1 page de garde, 2 pages

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Calcul fonctionnel holomorphe dans les algèbres de Banach

Calcul fonctionnel holomorphe dans les algèbres de Banach Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte

Plus en détail

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie

CENTRALE PC 2000 ÉPREUVE DE MATH 2. Première partie CENTRALE PC 2000 ÉPREUVE DE MATH 2 Première partie I. A. 1. La fonction x px kx 2 = x(p kx) présente un maximum pour toute valeur de p au point d abscisse x = p p2 et il vaut 2k 2k. Conclusion : J(f) =

Plus en détail

Applications linéaires

Applications linéaires Applications linéaires I) Applications linéaires - Généralités 1.1) Introduction L'idée d'application linéaire est intimement liée à celle d'espace vectoriel. Elle traduit la stabilité par combinaison

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité?

Examen - septembre 2012. Question de cours Enoncer et démontrer l inégalité de Cauchy-Schwarz dans un espace euclidien. Quel est le cas d égalité? Université Paris Dauphine DEMIE e année Algèbre linéaire 3 Examen - septembre 01 Le sujet comporte pages. L épreuve dure heures. Les documents, calculatrices et téléphones portables sont interdits. Question

Plus en détail

Exercices corrigés, tome 04 : les énoncés

Exercices corrigés, tome 04 : les énoncés Exercices corrigés, tome 4 : les énoncés Table des matières : 1. Applications linéaires, p.2. 2. Variables aléatoires, p.6. 3. Intégrales, p.12. 4. Polynômes, p.16. 1 1 Applications linéaires Exercice

Plus en détail

VIII Relations d ordre

VIII Relations d ordre VIII Relations d ordre 20 février 2015 Dans tout ce chapitre, E est un ensemble. 1. Relations binaires Définition 1.0.1. On appelle relation binaire sur E tout triplet R = (E, E, Γ) où Γ est une partie

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F.

Espaces vectoriels 2006-2007. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle F. Agrégation interne de Mathématiques Département de Mathématiques Université de La Rochelle 2006-2007 Espaces vectoriels Convention 1. Dans toute la suite, k désignera un corps quelconque. Définition 2.

Plus en détail

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint

Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint Chapitre 5: Opérateurs dans les espaces de Hilbert. Notions d opérateur adjoint 18 mars 2008 1 Généralités sur les opérateurs 1.1 Définitions Soient H et H deux espaces de Hilbert sur C. Définition 1.1

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Problèmes de Mathématiques Noyaux et images itérés

Problèmes de Mathématiques Noyaux et images itérés Énoncé Soit E un espace vectoriel sur IK (IK = IR ou lc). Soit f un endomorphisme de E. On pose f 0 = Id E, et pour tout entier k 1, f k = f f k 1. 1. Montrer que (Im f k ) k 0 et (Ker f k ) k 0 forment

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles

Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Cours FPV - Semaine 3 : Recherche d Extrema et Formes Différentielles Frédéric Messine Introduction Dans ce chapitre, nous allons étudier une application de la dérivation des fonctions de plusieurs variables

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Première partie. Deuxième partie

Première partie. Deuxième partie PC 96-97 correction épreuve X97 Première partie. f étant convexe sur l intervalle [t, t 2 ], sa courbe représentative est en dessous la corde joignant les points (t, f(t )) et (t 2, f(t 2 )). Comme f(t

Plus en détail

Introduction à la Topologie

Introduction à la Topologie Introduction à la Topologie Licence de Mathématiques Université de Rennes 1 Francis Nier Dragoş Iftimie 2 3 Introduction Ce cours s adresse à des étudiants de Licence en mathématiques. Il a pour objectif

Plus en détail

Programmes des classes préparatoires aux Grandes Ecoles

Programmes des classes préparatoires aux Grandes Ecoles Programmes des classes préparatoires aux Grandes Ecoles Filière : économique et commerciale Option : Scientifique (ECS) Discipline : Mathématiques- Informatique Seconde année Ministère de l enseignement

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session 2009. Deuxième épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAEPA Session 2009 Deuxième épreuve écrite 2 NOTATIONS ET PÉLIMINAIES On désigne par le corps des nombres réels et par C le corps des nombres complexes. Si f est

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type

INTÉGRATION SUR LES SURFACES. Le but de ce texte est d expliquer comment définir et calculer des expressions du type INTÉGRATION SUR LES SURFACES Le but de ce texte est d expliquer comment définir et calculer des expressions du type φ(x)dσ(x) Σ où Σ est une surface de classe C 1 de R 3 ou plus généralement une hypersurface

Plus en détail

1 Espaces vectoriels normés

1 Espaces vectoriels normés Université Paris 7 Denis Diderot Année 2005/2006 Licence 2 MIAS MI4 1 Espaces vectoriels normés 1.1 Définitions Soit E un espace vectoriel sur R. Topologie des espaces vectoriels de dimension finie Définition

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Espaces vectoriels et applications linéaires

Espaces vectoriels et applications linéaires Espaces vectoriels et applications linéaires Exercice 1 On considère l'ensemble E des matrices carrées d'ordre 3 défini par,,, 1) Montrer que est un sous-espace vectoriel de l'espace vectoriel des matrices

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros

Cours de mathématiques Terminale S Enseignement obligatoire. Jean-Paul Widehem 2009-2010 Lycée Roland Garros Cours de mathématiques Terminale S Enseignement obligatoire Jean-Paul Widehem 2009-2010 Lycée Roland Garros Table des matières partie 1. Récurrence et suites 1 Chapitre 1. Raisonnement par récurrence

Plus en détail

Introduction à l Optimisation Numérique

Introduction à l Optimisation Numérique DÉPARTEMENT STPI 3ÈME ANNÉE MIC Introduction à l Optimisation Numérique Frédéric de Gournay & Aude Rondepierre Table des matières Introduction 5 Rappels de topologie dans R n 7 0.1 Ouverts et fermés de

Plus en détail

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices

Exercices - Réduction des endomorphismes : énoncé. Réduction pratique de matrices Réduction pratique de matrices Exercice 1 - Diagonalisation - 1 - L1/L2/Math Spé - Diagonaliser les matrices suivantes : 0 2 1 A = 3 2 0 B = 2 2 1 0 3 2 2 5 2 2 3 0 On donnera aussi la matrice de passage

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail