Arithmétique (3) Critères de divisibilité Nombres premiers. 1 ère L Option. 2 ) Exemples
|
|
|
- Étienne Labrie
- il y a 8 ans
- Total affichages :
Transcription
1 ère L Optio I. Critères de divisibilité Arithmétique () Critères de divisibilité Nombres premiers Les critères de divisibilité permettet de svoir, ss fire l divisio, si u ombre est divisible pr u utre. C'est prtique! Critère de divisibilité pr U ombre est divisible pr s'il est pir, c'est-à-dire s'il se termie pr 0,,, 6 ou 8. Critère de divisibilité pr U ombre est divisible pr si l somme de ses chiffres est divisible pr. Critère de divisibilité pr U ombre etier est divisible pr lorsque le ombre formé pr ses deux deriers chiffres (celui des dizies et celui des uités) est divisible pr. Critère de divisibilité pr U ombre est divisible pr s'il se termie pr 0 ou. Critère de divisibilité pr 6 U ombre etier est divisible pr 6 lorsqu'il est divisible à l fois pr et pr. Critère de divisibilité pr 9 U ombre etier est divisible pr 9 lorsque l somme des chiffres qui composet so écriture est divisible pr 9. Critère de divisibilité pr 0 U ombre est divisible pr 0 s'il se termie pr u 0. Critère de divisibilité pr U ombre etier est divisible pr si l différece des chiffres de rg pir et des chiffres de rg impir de so écriture est divisible pr. II. Nombres premiers ) Défiitio ) Exemples possède exctemet deux diviseurs, et, doc est u ombre premier. De même, et sot des ombres premiers. ) Cotre-exemples u seul diviseur () doc est ps u ombre premier. dmet plus de deux diviseurs doc est ps u ombre premier. 0 ue ifiité de diviseurs doc 0 est ps premier. ) U lgorithme de recherche des ombres premiers : le crible d Ertosthèe Ertosthèe étit u mthémticie, stroome géogrphe et poète grec é e 8 vt J.-C.. Il est le premier à voir détermier de fço précise le périmètre de l Terre et à voir mis u poit u moye pour détermier les ombres premiers iférieurs à u etier doé. Explictios de l lgorithme : est ps u ombre premier doc o le rye. est u ombre premier : o l etoure (choisir u code de couleur). Les multiples de dmettt u mois pour diviseur ; et eux-mêmes possèdet plus de deux diviseurs doc e sot ps premiers. Pr exemple est u multiple de. dmet pour diviseurs, et doc est ps premier. O rye de l liste tous les ombres multiples de. est u ombre premier : o l etoure. Pour des risos logues à celles qui précèdet, tous les multiples de e sot ps premiers. O rye de l liste tous les ombres multiples de. O recommece vec le ombre premier suivt c est à dire Liste des etiers turels premiers iférieurs à 00 : ; ; ; ; ; ; ; 9 ; ; 9 ; ; ; ; ; ; ; 9 ; 6 ; 6 ; ; ; 9 ; 8 ; 89 ; 9. ) Propriété (dmise ss démostrtio) Il y ue ifiité de ombres premiers. O dit qu u etier turel est premier s il possède exctemet deux diviseurs : et lui-même. 6 ) Commet détermier si u ombre est premier Pour détermier si u ombre N est premier, o effectue l divisio de ce ombre pr les ombres premiers successifs,, Si N est ps divisible pr ucu de ces ombres premiers, o recoîtr qu il est premier dès que le quotiet ser iférieur u diviseur. O ppelle cette méthode : «test d rrêt».
2 III. Décompositio e produit de fcteurs premiers ) Théorème (dmis) Tout etier turel supérieur ou égl à est premier ou peut se décomposer e produit de fcteurs premiers. ) Méthode pour décomposer u ombre e produit de fcteurs premiers O effectue des divisios euclidiees successives des quotiets pr les diviseurs premiers (,, ) tt que le quotiet est différet de. Décomposer 68 e produit de fcteurs premiers : 68 8 L décompositio de 68 e produit de fcteurs premiers est 68. Décomposer e produit de fcteurs premiers : L décompositio e produit de fcteurs premiers de est : ) Remrque. L décompositio e produit de fcteurs premiers est uique à l ordre des fcteurs près. ) Applictios de l décompositio e produit de fcteurs premiers - Doer l liste des diviseurs d u ombre - Détermier le PGCD et le PPCM de deux ombres - Ecrire ue frctio sous forme irréductible IV. Liste des diviseurs d u etier ) Méthode - O utilise l décompositio e fcteurs premiers. - O utilise u rbre de possibilités. Pour cel, o effectue l décompositio de 6 e produit de fcteurs premiers. 6 6 L décompositio de 6 e produit de fcteurs premiers est : 6 =. p q Tous les diviseurs de 6 vot s écrire sous l forme : vec 0, 0 p, et 0q. Pour détermier tous ces diviseurs, o fit u rbre de possibilités : Coclusio : 6 dmet diviseurs qui sot :,,, 6,, 9,, 8,,, 6, 6. Il y 8 diviseurs. ) Nombre de diviseurs d u etier O détermie l décompositio e fcteurs premiers puis o esquisse u rbre fi de détermier le ombre de possibilités. ) Exemple Doer l liste des diviseurs de 6.
3 V. PGCD et PPCM de deux etiers ) Rppels (déjà dit ds le chpitre précédet) PGCD de deux etiers : plus grd commu diviseur. PPCM de deux etiers : plus petit commu multiple o ul. Déjà dit ds le chpitre précédet Exemple : Regrdos les multiples de 6 et de. Les multiples de 6 sot 0, 6,, 8,, 0, 6 Les multiples de sot 0,, 8,, 6, 0, Les ombres et 6 ot des multiples e commu : 0,, Le plus petit commu multiple commu o ul est. O écrit PPCM( ; 6) =. Utilistio : clculs de sommes ou de différeces de frctios. Détermitio du PPCM de deux etiers turels Il y ps d lgorithme comme l lgorithme d Euclide pour le PGCD. ) Méthodes à l ide des ombres premiers O décompose les deux ombres e produits de fcteurs premiers. Pour détermier le PGCD de deux ombres, o pred tous les fcteurs COMMUNS recotrés ds les deux décompositios ffectés de leur plus PETIT expost 8 0 L décompositio e produit de fcteurs premiers de 8 est : 8 =. L décompositio e produit de fcteurs premiers de 0 est : 0 =. PGCD(8 ; 0) = =6 PPCM(8 ; 0) = Propriété (dmise ss démostrtio) Les multiples commus à deux etiers turels sot les multiples commus de leur PPCM. V. Autres pplictios des ombres premiers ) Recoître u crré ou u cube prfit Voir exercices. ) Simplifier des rcies crrées Rppel Pour simplifier des rcies crrées, o fit pprître des crrés prfits sous le rdicl. Si le ombre est grd, o peut utiliser l décompositio e produit de fcteurs premiers (voir exercices). ) Simplifier des frctios ) Doer tous les diviseurs commus à deux etiers Pour détermier le PPCM de deux ombres, o pred tous les fcteurs PRESENTS recotrés ds les deux décompositios ffectés de leur plus GRAND expost. N.B. : L itérêt de cette méthode est qu elle peut être géérlisée à l détermitio du PGCD ou du PPCM de plus de deux etiers turels. Nouvelle méthode qui viet compléter les méthodes pour trouver le PGCD ou le PPCM de deux etiers turels. ) Exemple Détermier le PGCD et le PPCM de 8 et 0 e effectut l décompositio e produit de fcteurs premiers de chcu des deux ombres. 6
4 VI. Rppels sur les puissces Défiitios et propriétés Exemples ère L Optio Exercices sur les critères de divisibilité et les ombres premiers représete u réel quelcoque et u ombre etier supérieur ou égl à. représete le produit de fcteurs égux à.... fcteurs représete l iverse de. et b représetet des réels quelcoques m et représetet des etiers reltifs. m m m m , Décomposer e produit de fcteurs premiers chcu des ombres suivts : A 880 ; B 0 ; C ; D 8 E utilist l décompositio e produit de fcteurs premiers, détermier le PGCD et le PPCM de 00 et Crrés et cubes prfits ) Ss clcultrice, démotrer que est u crré prfit. ) Ss clcultrice, démotrer que 6 est u cube prfit. ) Quel est le plus petit etier turel : ) qui, multiplié pr 000, doe u crré prfit? b) qui, multiplié pr 00, doe u cube prfit? Nombre premiers d Euler ) Vérifier que pour tous les etiers de 0 à 0, ² + + est u ombre premier. ) Vérifier que pour =, le ombre ² + + est ps premier. Ecrire chcu des ombres suivts sous l forme b où et b sot des etiers turels, b le plus petit possible. A 00 B 660 m m b b Sites Iteret : 6 - itegrledesmths.free.fr Arithmétique Plus grd diviseur commu (pgdc) et Plus petit multiplicteur commu (ppmc) Cliquer sur Script! O doe deux etiers. L orditeur ous doe l décompositio e fcteurs premiers des deux ombres, leur PGCD et leur PPCM imméditemet. 6 ) Doer l décompositio e produit de fcteurs premiers de 8 et ; 0... ) Simplifier l frctio 8. Doer le résultt sous l forme d ue frctio irréductible E utilist l décompositio e fcteurs premiers, écrire chcue des frctios suivtes sous forme de frctio irréductible. 0² ( 8)² ( ) A ; B ; C ; D E utilist l décompositio e fcteurs premiers et u rbre de possibilités, détermier l liste des diviseurs de Fiche QCM Mths Nombres premiers - trsmth.et Aller ds le livre de e. Zoe de l élève. Très bie expliqué : fiches élèves sur PGCD ; présettios e tbleu vec différeces ou divisios. 8
5 9 ) Décomposer 8 e produit de fcteurs premiers. 8 Corrigé des exercices sur les critères de divisibilité et les ombres premiers Décompositio e produit de fcteurs premiers ) Ecrire 8 sous l forme b où et b sot des etiers turels, b le plus petit possible. 0 «Le ombre cché» Je suis u ombre etier compris etre 00 et 00. Je suis pir. Je suis divisible pr. J i ussi et comme diviseurs. Qui suis-je? Expliquer ue démrche permettt de trouver le ombre cché, et doer s vleur. O cosidère deux ombres A et B formés de chiffres qui s écrivet de l fço suivte : A = et B = 8. ) Détermier le chiffre mqut ds le ombre A fi qu il soit divisible pr 9. ) Détermier le chiffre mqut ds le ombre B fi qu il soit divisible pr et. Doer toutes les possibilités. ) Simplifier lors l frctio A. Doer tous les cs possibles. B Décompositio de grds ombres (A et B) : présettio e coloes, utilistio de l liste des ombres premiers (qui doit être coue) et des critères de divisibilité. O teste tous les diviseurs premiers ds l ordre croisst. Vérifictio sur orditeur possible (o retre le ombre et l o obtiet imméditemet l décompositio e fcteurs premiers) A B Décompositio de petits ombres (C et D) : présettio e liges C D 8 Décompositio e fcteurs premiers ; recherche de PGCD et de PPCM PGCD 00 ;680 0 PPCM 00 ;
6 ) Le mieux est d utiliser l décompositio e fcteurs premiers. Pour cel, o dopte l présettio e coloes. 9 8 O peut reteir qu u ombre etier supérieur ou égl à est u crré prfit si et seulemet si exposts des ombres premiers ds s décompositio sot tous des ombres pirs. 6 6 ) O peut reteir qu u ombre etier supérieur ou égl à est u cube prfit si et seulemet si les exposts de des ombres premiers ds s décompositio sot tous des multiples de. ) ) Pour répodre à l questio, o commece pr détermier l décompositio e fcteurs premiers de Remrque : o peut dopter ussi l présettio e coloe clssique. O regrde les exposts des fcteurs premiers ds l décompositio de 000 : l expost de est, c est u ombre pir ; l expost de est, c est u ombre impir. Le plus petit etier turel qui multiplié pr 000 doe u crré prfit est : b) Pour répodre à l questio, o commece pr détermier l décompositio e fcteurs premiers de Pour obteir u cube prfit, il fut que les exposts qui itervieet ds l décompositio e fcteurs premiers soiet tous des multiples de. Le plus petit etier turel qui, multiplié pr 00, doe u cube prfit est : Nombres premier d Euler ) 0 0 ombre premier ombre premier ombre premier ombre premier 6 ombre premier ombre premier ombre premier ) 0. est ps u ombre premier (cr il est divisible pr ). O commece pr écrire les décompositios e fcteurs premiers des ombres qui figuret sous le rdicl A A A 0 6 ) 8 ; 0 8 ) 0 8 A B 0 0 C ( 8)² ( ) 6 D Les diviseurs de 8 sot,,,, 6,,,,, 8,, B B B Le ombre cherché est pir, doc divisible pr. Il est ussi divisible pr, et. Il est doc divisible pr, doc pr 0. Il est compris etre 00 et 00 : le seul ombre multiple de 0 compris etre 00 et 00 est 0, doc le ombre cherché est 0. D utres risoemets sot bie sûrs possibles.
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Limites des Suites numériques
Chapitre 2 Limites des Suites umériques Termiale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Limite fiie ou ifiie d ue suite. Limites et comparaiso. Opératios sur les ites. Comportemet
16.1 Convergence simple et convergence uniforme. une suite de fonctions de I dans R ou C.
16 Suites de foctios Suf précisio cotrire, I est u itervlle réel o réduit à u poit et les foctios cosidérées sot défiies sur I à vleurs réelles ou complexes. 16.1 Covergece simple et covergece uiforme
Exercice I ( non spé ) 1/ u 1 = 3 4. 2 3 u 2 4 + 3 9. 19 4 2/ Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1
Bac blac TS Correctio Exercice I ( Spé ) / émotros par récurrece que 5x y = pour tout etier aturel 5x y = 5 8 = La propriété est doc vraie au rag = Supposos que la propriété est vraie jusqu au rag, o a
x +1 + ln. Donner la valeur exacte affichée par cet algorithme lorsque l utilisateur entre la valeur n =3.
EXERCICE 3 (6 poits ) (Commu à tous les cadidats) Il est possible de traiter la partie C sas avoir traité la partie B Partie A O désige par f la foctio défiie sur l itervalle [, + [ par Détermier la limite
Déroulement de l épreuve de mathématiques
Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou
SÉRIES STATISTIQUES À DEUX VARIABLES
1 ) POSITION DU PROBLÈME - VOCABULAIRE A ) DÉFINITION SÉRIES STATISTIQUES À DEUX VARIABLES O cosidère deux variables statistiques umériques x et y observées sur ue même populatio de idividus. O ote x 1
La spirale de Théodore bis, et la suite «somme=produit».
Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de
INTENTION LES PROCESSUS MATHÉMATIQUES
INTENTION Adpttios u Cdre commu des progrmmes d études de mthémtiques M-9 telles que reflétées ds le documet Mthémtiques M-9 : Progrmme d études de l Albert (2007) Le coteu du documet Mthémtiques M-9 :
Polynésie Septembre 2002 - Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.
Polyésie Septembre 2 - Exercice O peut traiter la questio 4 sas avoir traité les questios précédetes Pour u achat immobilier, lorsqu ue persoe emprute ue somme de 50 000 euros, remboursable par mesualités
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
Séquence 5. La fonction logarithme népérien. Sommaire
Séquece 5 La foctio logarithme épérie Objectifs de la séquece Itroduire ue ouvelle foctio : la foctio logarithme épérie. Coaître les propriétés de cette foctio : sa dérivée, ses variatios, sa courbe, sa
A11 : La représentation chaînée (1ère partie)
A11 : L représettio chîée (1ère prtie) - Défiitio et schéms de cosulttio - Schéms de mise à jour (isertio, suppressio) - Exemples J-P. Peyri - L représettio chîée (première prtie) 0 Pricipe de l représettio
Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X
Exo7 Détermiats Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable T : pour
Dénombrement. Chapitre 1. 1.1 Enoncés des exercices
Chapitre 1 Déombremet 1.1 Eocés des exercices Exercice 1 L acie système d immatriculatio fraçais était le suivat : chaque plaque avait 4 chiffres, suivis de 2 lettres, puis des 2 uméros du départemet.
LES ÉCLIPSES. Éclipser signifie «cacher». Vus depuis la Terre, deux corps célestes peuvent être éclipsés : la Lune et le Soleil.
Qu appelle-t-o éclipse? Éclipser sigifie «cacher». Vus depuis la Terre, deu corps célestes peuvet être éclipsés : la Lue et le Soleil. LES ÉCLIPSES Pour qu il ait éclipse, les cetres de la Terre, de la
1 Mesure et intégrale
1 Mesure et itégrale 1.1 Tribu boréliee et foctios mesurables Soit =[a, b] u itervalle (le cas où b = ou a = est pas exclu) et F ue famille de sous-esembles de. OditqueF est ue tribu sur si les coditios
EXERCICES : DÉNOMBREMENT
Chapitre 7 ECE 1 - Grad Nouméa - 015 EXERCICES : DÉNOMBREMENT LISTES / ARRANGEMENTS Exercice 1 : Le code ativol Pour so vélo, Toto possède u ativol a code. Le code est ue successio de trois chiffres compris
Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3
1 Groupe orthogoal d'u espace vectoriel euclidie de dimesio, de dimesio Voir le chapitre 19 pour l'étude des espaces euclidies et des isométries. État doé u espace euclidie E de dimesio 1, o rappelle que
Chapitre 3 : Fonctions d une variable réelle (1)
Uiversités Paris 6 et Paris 7 M1 MEEF Aalyse (UE 3) 2013-2014 Chapitre 3 : Foctios d ue variable réelle (1) 1 Lagage topologique das R Défiitio 1 Soit a u poit de R. U esemble V R est u voisiage de a s
capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...
Applicatios des maths Algèbre fiacière 1. Itérêts composés O place u capital C 0 à u taux auel T a pedat aées. Quelle est la valeur fiale C de ce capital? aée capital e fi d'aée 1 C 0 + T C 0 = C 0 (1
CHAPITRE 2 SÉRIES ENTIÈRES
CHAPITRE 2 SÉRIES ENTIÈRES 2. Séries etières Défiitio 2.. O appelle série etière toute série de foctios ( ) f dot le terme gééral est de la forme f ()=a, où (a ) désige ue suite réelle ou complee et R.
Les Nombres Parfaits.
Les Nombres Parfaits. Agathe CAGE, Matthieu CABAUSSEL, David LABROUSSE (2 de Lycée MONTAIGNE BORDEAUX) et Alexadre DEVERT, Pierre Damie DESSARPS (TS Lycée SUD MEDOC LETAILLAN MEDOC) La première partie
Comportement d'une suite
Comportemet d'ue suite I) Approche de "ses de variatio et de ite d'ue suite" : 7 Soit la suite ( ) telle que = 5 ( + ) 2 Représetos graphiquemet la suite das u pla mui d' u repère. Il suffit de placer
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Séries etières Eercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Eercice
[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ 02475 ] [correction] Si n est un entier 2, le rationnel H n =
[http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Eocés 1 Nombres réels Ratioels et irratioels Exercice 1 [ 9 ] [correctio] Motrer que la somme d u ombre ratioel et d u ombre irratioel est u ombre irratioel.
Intégrales généralisées
3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle
20. Algorithmique & Mathématiques
L'éditeur L'éditeur permet à l'utilisateur de saisir les liges de codes d'u programme ou de défiir des foctios. Remarque : O peut saisir directemet des istructios das la cosole Scilab, mais il est plus
Chap. 5 : Les intérêts (Les calculs financiers)
Chap. 5 : Les itérêts (Les calculs fiaciers) Das u cotrat de prêt, le prêteur met à la dispositio de l empruteur, à u taux d itérêt doé, ue somme d arget (le capital) qu il devra rembourser à ue certaie
Calculer comment se constituer un capitale ; Calculer comment rembourser une dette en effectuant des versements réguliers.
CHAP: 8 Objecifs de ce chpire : Clculer comme se cosiuer u cpile ; Clculer comme rembourser ue dee e effecu des versemes réguliers. RAPPELS : Qu'es-ce qu'ue vleur cquise? Qu'es-ce qu'ue vleur cuelle? Le
2 ième partie : MATHÉMATIQUES FINANCIÈRES
2 ième partie : MATHÉMATIQUES FINANCIÈRES 1. Défiitios L'itérêt est l'idemité que doe au propriétaire d'ue somme d'arget celui qui e a joui pedat u certai temps. Divers élémets itervieet das le calcul
Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe
Cosolidatio La société THEOS, qui commercialise des vis, exerce so activité das trois villes : Paris, Nacy et Nice. Le directeur de la société souhaite cosolider les résultats de ses vetes par ville das
Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES
DEUXIEME PARTIE Deuième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES Chapitre. L assurace de capital différé Chapitre 2. Les opératios de retes Chapitre 3. Les assuraces décès Chapitre 4. Les assuraces
II LES PROPRIETES DES ESTIMATEURS MCO 1. Rappel : M1 LA REGRESSION : HYPOTHESES ET TESTS Avril 2009
M LA REGRESSION : HYPOTHESES ET TESTS Avril 009 I LES HYPOTHESES DE LA MCO. Hypothèses sur la variable explicative a. est o stochastique. b. a des valeurs xes das les différets échatillos. c. Quad ted
FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI
FEUILLE D EXERCICES 7 - PROBABILITÉS SUR UN UNIVERS FINI Exercice - Lacer de dés O lace deux dés à 6 faces équilibrés. Calculer la probabilité d obteir : u double ; ue somme des deux dés égale à 8 ; ue
Séries réelles ou complexes
6 Séries réelles ou complexes Comme pour le chapitre 3, les suites cosidérées sot a priori complexes et les résultats classiques sur les foctios cotiues ou dérivables d ue variable réelle sot supposés
Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre 2010. 1.1 Quelques dénitions
Déombremet ECE3 Lycée Carot 12 ovembre 2010 Itroductio La combiatoire, sciece du déombremet, sert comme so om l'idique à compter. Il e s'agit bie etedu pas de reveir au stade du CP et d'appredre à compter
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
14 Chapitre 14. Théorème du point fixe
Chapitre 14 Chapitre 14. Théorème du poit fixe Si l o examie de plus près les méthodes de Lagrage et de Newto, étudiées au chapitre précédet, elles revieet das leur pricipe à remplacer la résolutio de
Convergences 2/2 - le théorème du point fixe - Page 1 sur 9
Au sommaire : Suites extraites Le théorème de Bolzao-Weierstrass La preuve du théorème de Bolzao-Weierstrass3 Foctio K-cotractate4 Le théorème du poit fixe5 La preuve du théorème du poit fixe6 Utilisatios
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
S euls les flux de fonds (dépenses et recettes) définis s ent l investissement.
Choix d ives i s s eme e cer iude 1 Chapire 1 Choix d ivesissemes e ceriude. Défiiio L es décisios d ivesissemes fo parie des décisios sraégiques de l erepris e. Le choix ere différes projes d ivesisseme
UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire 2006-2007. Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4
UNVERSTE MONTESQUEU BORDEAUX V Licece 3 ère aée Ecoomie - Gestio Aée uiversitaire 2006-2007 Semestre 2 Prévisios Fiacières Travaux Dirigés - Séaces 4 «Les Critères Complémetaires des Choix d vestissemet»
. (b) Si (u n ) est une suite géométrique de raison q, q 1, on obtient : N N, S N = 1 qn+1. n+1 1 S N = 1 1
Premières propriétés des ombres réels 2 Suites umériques 3 Suites mootoes : à faire 4 Séries umériques 4. Notio de série. Défiitio 4.. Soit (u ) ue suite de ombres réels ou complexes. Pour N N, o ote S
ANALYSE NUMERIQUE NON-LINEAIRE
Université de Metz Licence de Mthémtiques - 3ème nnée 1er semestre ANALYSE NUMERIQUE NON-LINEAIRE pr Rlph Chill Lbortoire de Mthémtiques et Applictions de Metz Année 010/11 1 Tble des mtières Chpitre
Intégration et probabilités ENS Paris, 2012-2013. TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :
Itégratio et probabilités EN Paris, 202-203 TD 203 Lois des grads ombres, théorème cetral limite. Corrigé Lois des grads ombres Exercice. Calculer e cet leços Détermier les limites suivates : x +... +
Formation d un ester à partir d un acide et d un alcool
CHAPITRE 10 RÉACTINS D ESTÉRIFICATIN ET D HYDRLYSE 1 Formatio d u ester à partir d u acide et d u alcool 1. Nomeclature Acide : R C H Alcool : R H Groupe caractéristique ester : C Formule géérale d u ester
Chapitre 3 : Transistor bipolaire à jonction
Chapitre 3 : Trasistor bipolaire à joctio ELEN075 : Electroique Aalogique ELEN075 : Electroique Aalogique / Trasistor bipolaire U aperçu du chapitre 1. Itroductio 2. Trasistor p e mode actif ormal 3. Courats
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
c. Calcul pour une évolution d une proportion entre deux années non consécutives
Calcul des itervalles de cofiace our les EPCV 996-004 - Cas d u ourcetage ou d ue évolutio e oit das la oulatio totale des méages - Cas d u ourcetage ou d ue évolutio das ue sous oulatio das les méages
55 - EXEMPLES D UTILISATION DU TABLEUR.
55 - EXEMPLES D UTILISATION DU TABLEUR. CHANTAL MENINI 1. U pla possible Les exemples qui vot suivre sot des pistes possibles et e aucu cas ue présetatio exhaustive. De même je ai pas fait ue étude systématique
semestre 3 des Licences MISM annnée universitaire 2004-2005
MATHÉMATIQUES 3 semestre 3 des Licences MISM nnnée universitire 24-25 Driss BOULARAS 2 Tble des mtières Rppels 5. Ensembles et opértions sur les ensembles.................. 5.. Prties d un ensemble.........................
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Exo7 Topologie Exercices de Jea-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-fracefr * très facile ** facile *** difficulté moyee **** difficile ***** très difficile I : Icotourable Exercice **
1 - Connexion au service de gestion des demandes informatiques du lycée
1 - Connexion au service de gestion des demandes informatiques du lycée http://support.e-lycee-paca.fr Adresse du service en ligne à partir de tout point d accès internet, 24h/24. 1 Les identifiants sont
Statistique descriptive bidimensionnelle
1 Statistique descriptive bidimesioelle Statistique descriptive bidimesioelle Résumé Liaisos etre variables quatitatives (corrélatio et uages de poits), qualitatives (cotigece, mosaïque) et de types différets
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
1 / 9 Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Le cycle d exploitatio des etreprises (achats stockage productio stockage vetes) peut etraîer des décalages de trésorerie plus
Les nouveaux relevés de compte
Ifo CR Les ouveaux relevés de compte Les relevés de compte actuels du Crédit Agricole de Champage-Bourgoge sot issus de la migratio iformatique sur le GIE AMT e 2001 : petit format (mais A4 pour les Professioels),
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot
Exame fial pour Coseiller fiacier / coseillère fiacière avec brevet fédéral Recueil de formules Auteur: Iwa Brot Ce recueil de formules sera mis à dispositio des cadidats, si écessaire. Etat au 1er mars
La France, à l écoute des entreprises innovantes, propose le meilleur crédit d impôt recherche d Europe
1/5 Trois objectifs poursuivis par le gouveremet : > améliorer la compétitivité fiscale de la Frace > péreiser les activités de R&D > faire de la Frace u territoire attractif pour l iovatio Les icitatios
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
STATISTIQUE AVANCÉE : MÉTHODES
STATISTIQUE AVANCÉE : MÉTHODES NON-PAAMÉTIQUES Ecole Cetrale de Paris Arak S. DALALYAN Table des matières 1 Itroductio 5 2 Modèle de desité 7 2.1 Estimatio par istogrammes............................
RECHERCHE DE CLIENTS simplifiée
RECHERCHE DE CLIENTS simplifiée Nous ous occupos d accroître votre clietèle avec le compte Avatage d etreprise Pour trouver des cliets potetiels grâce à u simple compte bacaire Vous cherchez des idées
Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.
Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra
Statistiques appliquées à la gestion Cours d analyse de donnés Master 1
Aalyse des doées Statistiques appliquées à la gestio Cours d aalyse de doés Master F. SEYTE : Maître de coféreces HDR e scieces écoomiques Uiversité de Motpellier I M. TERRAZA : Professeur de scieces écoomiques
Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation
Chap. 6 : Les pricipaux crédits de trésorerie et leur comptabilisatio Les etreprises ot souvet besoi de moyes de fiacemet à court terme : elles ot alors recours aux crédits bacaires (découverts bacaires
Exercices de mathématiques
MP MP* Thierry DugarDi Marc rezzouk Exercices de mathématiques Cetrale-Supélec, Mies-Pots, École Polytechique et ENS Coceptio et créatio de couverture : Atelier 3+ Duod, 205 5 rue Laromiguière, 75005 Paris
Etude de la fonction ζ de Riemann
Etude de la foctio ζ de Riema ) Défiitio Pour x réel doé, la série de terme gééral,, coverge si et seulemet si x >. x La foctio zeta de Riema est la foctio défiie sur ], [ par : ( x > ), = x. Remarque.
Sciences Industrielles Précision des systèmes asservis Papanicola Robert Lycée Jacques Amyot
Scence Indutrelle Précon de ytème erv Pncol Robert Lycée Jcque Amyot I - PRECISION DES SYSTEMES ASSERVIS A. Poton du roblème 1. Préentton On vu que le rôle d un ytème erv et de fre uvre à l orte (t) une
Compte Sélect Banque Manuvie Guide du débutant
GUIDE DU DÉBUTANT Compte Sélect Baque Mauvie Guide du débutat Besoi d aide? Preez quelques miutes pour lire attetivemet votre Guide du cliet. Le préset Guide du débutat vous facilitera l utilisatio de
/HVV\VWqPHVFRPELQDWRLUHV
/HVV\VWqPHVFRPELQDWRLUHV I. Définition On ppelle système combintoire tout système numérique dont les sorties sont exclusivement définies à prtir des vribles d entrée (Figure ). = f(x, x 2,,, x n ) x x
Terminale S. Terminale S 1 F. Laroche
Termiale S Exercices. Rappels et exercices de base 3.. QCM (P. Egel) 3.. QCM, Atilles 005 4. 3. QCM, Liba 009, 3 poits 4. 4. QCM, C. étragers 007. 5. QCM, Frace 007 5 6. 6. QCM, N. Calédoie 007 7. 7. QCM
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
Probabilités et statistique pour le CAPES
Probabilités et statistique pour le CAPES Béatrice de Tilière Frédérique Petit 2 3 jui 205. Uiversité Pierre et Marie Curie 2. Uiversité Pierre et Marie Curie 2 Table des matières Modélisatio de phéomèes
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
Suites et séries de fonctions
[http://mp.cpgedupuydelome.fr] édité le 3 avril 5 Eocés Suites et séries de foctios Propriétés de la limite d ue suite de foctios Eercice [ 868 ] [correctio] Etablir que la limite simple d ue suite de
Université Pierre et Marie Curie. Biostatistique PACES - UE4 2013-2014
Uiversité Pierre et Marie Curie Biostatistique PACES - UE4 2013-2014 Resposables : F. Carrat et A. Mallet Auteurs : F. Carrat, A. Mallet, V. Morice Mise à jour : 21 octobre 2013 Relecture : V. Morice,
Module 3 : Inversion de matrices
Math Stat Module : Iversio de matrices M Module : Iversio de matrices Uité. Défiitio O e défiira l iverse d ue matrice que si est carrée. O appelle iverse de la matrice carrée toute matrice B telle que
Processus et martingales en temps continu
Chapitre 3 Processus et martigales e temps cotiu 1 Quelques rappels sur les martigales e temps discret (voir [4]) O cosidère u espace filtré (Ω, F, (F ) 0, IP). O ote F = 0 F. Défiitio 1.1 Ue suite de
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
Cours d Analyse IV Suites et Séries de fonctions
Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet [email protected] Cours d
STATISTIQUE : TESTS D HYPOTHESES
STATISTIQUE : TESTS D HYPOTHESES Préparatio à l Agrégatio Bordeaux Aée 203-204 Jea-Jacques Ruch Table des Matières Chapitre I. Gééralités sur les tests 5. Itroductio 5 2. Pricipe des tests 6 2.a. Méthodologie
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
a g c d n d e s e s m b
PPrrooppoossiittiioo 22001111JJPP 22770055 000011 uu 0088 fféévvrriirr 22001111 VVlliiiittéé jjuussqquu uu 3300//0044//22001111 tim c ir tv é p g c h u i rè s G A Z iv lu s IC.G R é c lo y m ip s 9 r7
Faites prospérer vos affaires grâce aux solutions d épargne et de gestion des dettes
Faites prospérer vos affaires grâce aux solutios d éparge et de gestio des dettes Quelques excelletes raisos d offrir des produits bacaires et de fiducie à vos cliets Vous avez la compétece écessaire pour
Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR
Semestre : 4 Module : Méthodes Quattatves III Elémet : Mathématques Facères Esegat : Mme BENOMAR Elémets du cours Itérêts smples, précompte, escompte et compte courat Itérêts composés Autés Amortssemets
LANGAGES - GRAMMAIRES - AUTOMATES
LANGAGES - GRAMMAIRES - AUTOMATES Mrie-Pule Muller Version du 14 juillet 2005 Ce cours présente et met en oeuvre quelques méthodes mthémtiques pour l informtique théorique. Ces notions de bse pourront
PROMENADE ALÉATOIRE : Chaînes de Markov et martingales
PROMENADE ALÉATOIRE : Chaîes de Markov et martigales Thierry Bodieau École Polytechique Paris Départemet de Mathématiques Appliquées [email protected] Novembre 2013 2 Table des matières
Introduction : Mesures et espaces de probabilités
Itroductio : Mesures et espaces de probabilités Référeces : Poly cédric Berardi et Jea Michel Morel. J.-F. Le Gall, Itégratio, Probabilités et Processus Aléatoire J.-Y. Ouvrard, Probabilités 2, maîtrise-agrégatio,
RÈGLES ORDINALES : UNE GÉNÉRALISATION DES RÈGLES D'ASSOCIATION
RÈGLES ORDIALES : UE GÉÉRALISATIO DES RÈGLES D'ASSOCIATIO SYLVIE GUILLAUME ALI KHECHAF 2 RÉSUMÉ: La plupart des mesures des règles cocere les variables biaires et écessite pour les autres types de variables
Comment retrouver le fichier "bingo" sauvegardé dans l'ordinateur? Socle commun
Objectifs Auto- Evaluation Socle commun Technologie Expliquer comment sont stockées les informations dans un ordinateur. o IV-2 Recenser des données, les classer, les identifier, les stocker, les retrouver
Des résultats d irrationalité pour deux fonctions particulières
Collect. Math. 5, 00, 0 c 00 Uiversitat de Barceloa Des résultats d irratioalité pour deux foctios particulières Richard Choulet 7, Rue du 4 Août, 40 Aveay, Frace E-mail: [email protected] Received
Tutoriel Infuse Learning. Créer des quizzes multimédias sur ordinateur ou tablette
Tutoriel Infuse Learning Créer des quizzes multimédias sur ordinateur ou tablette 1- Présentation Infuselearning.com est un service web (en ligne) gratuit qui permet aux enseignants de créer des exercices
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *)
RESOLUTION DES FLOW SHOP STOCHASTIQUES PAR LES ORDRES STOCHASTIQUES. DERBALA Ali *) *) Uiversité de Blida Faculté des scieces Départemet de Mathématiques. BP 270, Route de Soumaa. Blida, Algérie. Tel &
- Phénoméne aérospatial non identifié ( 0.V.N.I )
ENQUETE PRELIMINAIRE ANALYSE ET REFEREWCES : Phénoméne érosptil non identifié ( 0VNI ) B8E 25400 DEF/GEND/OE/DOlRENS du 28/9/1992 Nous soussigné : M D L chef J S, OPJ djoint u commndnt de l brigde en résidence
