L Analyse Factorielle des Correspondances



Documents pareils
Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Semestre : 4 Module : Méthodes Quantitatives III Elément : Mathématiques Financières Enseignant : Mme BENOMAR

II - Notions de probabilité. 19/10/2007 PHYS-F-301 G. Wilquet 1

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

c. Calcul pour une évolution d une proportion entre deux années non consécutives

Dynamique du point matériel

SYSTEME FERME EN REACTION CHIMIQUE

Coefficient de partage

Estimation des incertitudes sur les erreurs de mesure.

Étudier si une famille est une base

TRANSLATION ET VECTEURS

CHAPITRE 6 : LE BIEN-ETRE. Durée : Objectif spécifique : Résumé : I. L agrégation des préférences. Cerner la notion de bien-être et sa mesure.

Incertitudes expérimentales

Soutenue publiquement le Mardi 04/Mai/2010 MEMBRES DU JURY

Séries numériques. Chap. 02 : cours complet.

Commande Prédictive Robuste d un Système MIMO utilisant un modèle BOG et les techniques LMI

COURS DE MATHEMATIQUE FINANCIERE A COURT ET LONG TERME Promotion : Première année de graduat

Module 3 : Inversion de matrices

Commande prédictive des systèmes non linéaires dynamiques

SÉRIES STATISTIQUES À DEUX VARIABLES

Dénombrement. Chapitre Enoncés des exercices

Microphones d appels Cloud avec message pré-enregistrés intégré

Statistiques appliquées à la gestion Cours d analyse de donnés Master 1

Application de la théorie des valeurs extrêmes en assurance automobile

[ édité le 10 juillet 2014 Enoncés 1. Exercice 6 [ ] [correction] Si n est un entier 2, le rationnel H n =

capital en fin d'année 1 C 0 + T C 0 = C 0 (1 + T) = C 0 r en posant r = 1 + T 2 C 0 r + C 0 r T = C 0 r (1 + T) = C 0 r 2 3 C 0 r 3...

JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE

" BIOSTATISTIQUE - 1 "

Virtualization. Panorama des solutions de virtualisation sur différentes plate-formes. Laurent Vanel Systems Architect IBM

Les qualifications INSTALLATEURS ÉNERGIES RENOUVELABLES. Forage géothermique. Solaire thermique. Aérothermie et géothermie

La spirale de Théodore bis, et la suite «somme=produit».

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

STATISTIQUE AVEC EXCEL

Conception d un outil décisionnel pour la gestion de la relation client dans un site de e-commerce

pour toute la famille

Chap. 6 : Les principaux crédits de trésorerie et leur comptabilisation

Votre expert en flux documentaires et logistiques. Catalogue des formations

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Partie 1 Automatique 1 et 2 (Asservissements Linéaires Continus)

PRÉSENTATION DU CONTRAT

Comportement d'une suite

Conception d un outil décisionnel pour la gestion de la relation client dans un site de e-commerce

Chapitre 3 : Fonctions d une variable réelle (1)

Intégration et probabilités ENS Paris, TD (20)13 Lois des grands nombres, théorème central limite. Corrigé :

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

concernant la déclaration d impôt Impôt cantonal et communal Impôt fédéral direct

Montages à plusieurs transistors

Une action! Un message!

AMC2 - (Contrôleur d'accès modulaire - Access Modular Controller)

Polynésie Septembre Exercice On peut traiter la question 4 sans avoir traité les questions précédentes.

Accompagner les familles d aujourd hui

Le Sphinx. Enquêtes, Sondages. Analyse de données. Internet :

LE RÉGIME DE RETRAITE DU PERSONNEL CANADIEN DE LA CANADA-VIE (le «régime») INFORMATION IMPORTANTE CONCERNANT LE RECOURS COLLECTIF

LBC 341x/0 - Enceintes

Système isolateur de ligne de haut-parleurs

IUT Béthune Génie Civil Année Spéciale RDM COURS : STATIQUE

Exercice I ( non spé ) 1/ u 1 = u / Soit P la propriété : u n + 4. > 0 pour n 1. P est vraie au rang 1 car u 1

Marché à procédure adaptée (Article 28 du CMP)

MESURE DE LA PERFORMANCE GLOBALE DES AGENCES BANCAIRES : UNE APPLICATION DE LA MÉTHODE DEA

Chapitre 3 : Transistor bipolaire à jonction

Chap. 5 : Les intérêts (Les calculs financiers)

MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE

Séquence 5. La fonction logarithme népérien. Sommaire

Dares Analyses. Plus d un tiers des CDI sont rompus avant un an

Risques professionnels et qualité de vie au travail dans les crèches : les pratiques de prévention

Les jeunes économistes

Les sinistres graves en assurance automobile : Une nouvelle approche par la théorie des valeurs extrêmes

Comment les Canadiens classent-ils leur système de soins de santé?

MUTUELLE D&O MUTUELLE D&O. Copilote de votre santé. AGECFA-Voyageurs CARCEPT CARCEPT-Prévoyance CRC CRIS CRPB-AFB

Remboursement d un emprunt par annuités constantes

E1 - LOIS GÉNÉRALES DE L ÉLECTROCINÉTIQUE

Une méthode alternative de provisionnement stochastique en Assurance Non Vie : Les Modèles Additifs Généralisés

Consolidation. C r é e r un nouveau classeur. Créer un groupe de travail. Saisir des données dans un groupe

Module : réponse d un système linéaire

1 Mesure et intégrale

FEUILLE D EXERCICES 17 - PROBABILITÉS SUR UN UNIVERS FINI

Dénombrement. Introduction. 1 Cardinaux d'ensembles nis. ECE3 Lycée Carnot. 12 novembre Quelques dénitions

Groupe orthogonal d'un espace vectoriel euclidien de dimension 2, de dimension 3

Clemenceau. Régime sinusoïdal forcé. Impédances Lois fondamentales - Puissance. Lycée. PCSI 1 - Physique. Lycée Clemenceau. PCSI 1 (O.

Exercices de révision

UNIVERSITE MONTESQUIEU BORDEAUX IV. Année universitaire Semestre 2. Prévisions Financières. Travaux Dirigés - Séances n 4

Le marché du café peut être segmenté en fonction de deux modes de production principaux : la torréfaction et la fabrication de café soluble.

Limites des Suites numériques

La complémentaire santé. des ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :

Deuxième partie : LES CONTRATS D ASSURANCE VIE CLASSIQUES

Université de Bordeaux - Master MIMSE - 2ème année. Scoring. Marie Chavent machaven/

2 ième partie : MATHÉMATIQUES FINANCIÈRES

EXERCICES : DÉNOMBREMENT

EMC BACKUP AND RECOVERY OPTIONS FOR VSPEX VIRTUALIZED ORACLE 11GR2

Exo7. Déterminants. = 4(b + c)(c + a)(a + b). c + a c + b 2c Correction. b + a 2b b + c. Exercice 2 ** X a b c a X c b b c X a c b a X

Opérations bancaires avec l étranger *

Etude Spéciale SCORING : UN GRAND PAS EN AVANT POUR LE MICROCRÉDIT?

TRANSFERT DE CHARGE DANS UN RÉSEAU DE PROCESSEURS TOTALEMENT CONNECTÉS (*) par Maryse BÉGUIN ( 1 )

n tr tr tr tr tr tr tr tr tr tr n tr tr tr Nom:... Prénom :...

Statistique descriptive bidimensionnelle

Examen final pour Conseiller financier / conseillère financière avec brevet fédéral. Recueil de formules. Auteur: Iwan Brot

L e mobilier, le matériel et le linge au r estaurant

Initiation à l analyse factorielle des correspondances

Transcription:

Aalyse de doées Modle 5 : L AFC M5 L Aalyse Factorelle des Corresodaces L aalyse factorelle des corresodaces, otée AFC, est e aalyse destée a tratemet des tableax de doées où les valers sot ostves et homogèes comme les tableax de cotgece (q costtet la maere arte des tableax tratés ar cette méthode). L AFC a été trodte de faço comlète das les aées 60 ar JP BEZECRI. L AFC est e ACP. Les comosates rcales sot toors obtees à artr de la dstace etre les dfférets ots des ages mltdmmesoels, mas les ots ot des coordoées q ot sbs e trasformato réalable ermettat de coserver e métrqe detqe à celle de l ACP or calcler ces dstaces. Le bt rcal de l AFC reste doc le même ; lre l formato cotee das esace mltdmesoel ar e rédcto de la dmeso de cet esace tot e coservat maxmm de l formato cote das l esace de déart. Le Tablea de doées L AFC s alqe essetellemet à des tableax de cotgece. C est tablea d effectfs q cotet à l tersecto de la lge et de la coloe des dvds. Il s agt de la vetlato d e olato totale M selo dex caractères qelcoqes X e lge et Y e coloe. Ce sot doc des caractères qaltatfs omax et/o ordax. L étde tradtoelle d tel tablea se cocetre le ls sovet sr la déedace o l déedace etre les dex caractères. Elle s effecte gééralemet e tlsat le test d χ² et ls artclèremet ar l aalyse de la varace (le raort de corrélato) et la régresso lorsqe les dex caractères sot qaltatfs ordax e classes. (Cf modle ) Das tablea de cotgece, les modaltés des caractères sot exclsves les es ar raort ax atres et exhastves. Il e réslte qe les sommes e lge et e coloe d tablea ot ses. - le tablea des doées Z(,) se résete alors de la faço svate : Z ( ), Modaltés de X Modaltés de Y M Sommes e lge Sommes e coloe Somme totale / 9

Aalyse de doées Modle 5 : L AFC M5 Avec :. M Exemle : a cors d e eqête sr les vacaces o a demadé à échatllo de 00 dvds d dqer ler Catégore Soco rofessoelle (caractère X) as qe le mode d hébergemet tlsé lors de lers derères vacaces (Caractère Y) Le tablea de doées tal est doc Idvds CSP Mode d'hébergemet Chef d'etrerse Hôtel Ovrer Camg 3 Cadre moye Famlle, ams 4 Ovrer Camg 5 Professo termédare Locato, gîte 6 Agrclter Famlle, ams 7 Professo termédare Locato, gîte 8 Cadre moye Camg 00 Emloyé Camg Le tablea de cotgece crosat les caractères X et Y est alors : Z (7,4) CSP\Mode d hébergemet Camg Hôtel Famlle, ams Locato, gîte Total() Agrclter 8 Cadre moye 4 5 Chef d'etrerse 5 3 0 Emloyé 8 3 3 5 Ovrer 9 3 4 Professo termédare 3 3 9 Retraté 5 9 8 Total () 3 7 30 00 Das ce tablea o a : 7 ombre de modaltés d caractère X : CSP 4 ombre de modaltés d caractère Y : mode d hébergemet M00ombre total d dvds Les modaltés des caractères sot exclsves : dvd a q e CSP et sel mode d hébergemet (l s agt d mode des derères vacaces) Les modaltés des caractères sot exhastves (tos les dvds sot resegés). Das la matrce Z o vot, ar exemle, qe agrclter ot assé ler derères vacaces a camg. / 9

Aalyse de doées Modle 5 : L AFC M5 Codfcato dsoctve d tablea de doées La codfcato dsoctve cosste à mettre à la modalté qe ossède l dvd. As, sr le tablea de doées de l exemle récédet, o obtet : Idvds Agrclter Cadre moye Chef d'etrerse CSPX Emloyé Ovrer Professo termédare Retraté Camg Hôtel Mode d'hébergemety Famlle, ams Locato, gîte 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 0 O et vérfer avec cet exemle qe : Z ( 7,4) X' ( 7,00 ) Y( 00,4) où X est la matrce trasosée de X ( 00,7) ) (Trasosé de la Varable CSP d tablea récédet) et Y ( 00,4) la matrce Mode d hébergemet L AFC s téresse ls artclèremet ax effectfs margax des tableax qe l o aelle rofls. Le tablea Z et être alors trasformé selo dex atres tableax aelés tableax de rofls. As, de Z (, ) o et dédre dex matrces X (,) et Y (,) : X (, ) ( Ι) Fréqeces relatves des effectfs lges Tablea des orcetages lges Avec et M M.. sot les fréqeces relatves d tablea (les orcetages) O et alors vérfer qe : M M Y (, ) (J) Fréqeces relatves des effectfs coloes Tablea des orcetages coloes 3 / 9

Aalyse de doées Modle 5 : L AFC M5 Avec. M Selo l étde, l fadra chosr le tablea des rofls adatés car ls ot as le même ses écoomqe. Exemle : à artr d tablea de l exemle récédet, o et calcler le tablea de as qe les dex matrces X et Y : CSP\Mode d'hébergemet Camg Hôtel Famlle, ams Locato, gîte Total () Agrclter 8 Cadre moye 4 5 Chef d'etrerse 5 3 0 Emloyé 8 3 3 5 Ovrer 9 3 4 Professo termédare 3 3 9 Retraté 5 9 8 Total () 3 7 30 00 Tablea de CSP\Mode d'hébergemet Camg Hôtel Famlle, ams Locato, gîte Somme Agrclter 0,0 0 0,08 0,0 0, Cadre moye 0,04 0,0 0,0 0,05 0, Chef d'etrerse 0,0 0,05 0,0 0,03 0, Emloyé 0,08 0,0 0,03 0,03 0,5 Ovrer 0,09 0 0,03 0,0 0,4 Professo termédare 0,03 0,0 0,0 0,3 0,9 Retraté 0,05 0,0 0,09 0,0 0,8 Somme 0,3 0, 0,7 0,3 Matrce X : rofls lges CSP\Mode d'hébergemet Camg Hôtel Famlle, ams Locato, gîte Somme Agrclter 0,667 0,0000 0,6667 0,667 Cadre moye 0,3333 0,667 0,0833 0,467 Chef d'etrerse 0,000 0,5000 0,000 0,3000 Emloyé 0,5333 0,0667 0,000 0,000 Ovrer 0,649 0,0000 0,43 0,49 Professo termédare 0,579 0,056 0,053 0,684 Retraté 0,778 0, 0,5000 0, 7 Matrce Y : rofls coloes 4 / 9

Aalyse de doées Modle 5 : L AFC M5 CSP\Mode d'hébergemet Camg Hôtel Famlle, ams Locato, gîte Agrclter 0,065 0,0000 0,963 0,0667 Cadre moye 0,50 0,88 0,0370 0,667 Chef d'etrerse 0,033 0,4545 0,0370 0,000 Emloyé 0,500 0,0909 0, 0,000 Ovrer 0,83 0,0000 0, 0,0667 Professo termédare 0,0938 0,0909 0,074 0,4333 Retraté 0,563 0,88 0,3333 0,0667 Somme 4 Le ses écoomqe des matrce X et Y est dfféret : E effet, o et dre à artr de X qe 6,67% des agrclters vot a camg, et à artr de Y o affrme qe 6,5% des ersoes allat a camg sot des agrclters. E résmé : La trasformato d tablea Z (,) e tablea P (,) est la remère étae de l AFC. O et alors dsoser de dex atres tableax de ses dfférets : le tablea des rofls lges et le tablea des rofls coloes ce qe l o rerésete schématqemet ar :. M M P La trasformato tale des doées Das tablea de cotgece, les mots dvds et varables ot as la même sgfcato qe das le tablea de l ACP. E effet, das le tablea de cotgece les lges et les coloes rerésetet les modaltés de dex caractères. Por coserver e homogééïté das la résetato des dex aalyses, o ose ar coveto qe les modaltés d caractère X e lges ortet le om d dvds et qe les modaltés d caractère Y e coloes ortet le om de varable. Les dvds d tablea de cotgece sot aelés valers or évter les cofsos. O observe égalemet qe le tablea de déart Z et être écrt dfféremmet avec la modalté X e lge o e coloe (même chose or Y) sas qe la atre d tablea sot 5 / 9

Aalyse de doées Modle 5 : L AFC M5 modfée. Par cotre, das ce cas, les tableax de rofl lge et coloe ot ls le même ses (Cf exemle récédet). L AFC est e ACP et doc ar aaloge, à artr de la matrce Z o de ses trasformées e matrces de rofls, o et cosdérer qe l formato cotee das le tablea et être aalysée à artr de dex esaces : L esace R des «varables» (modaltés coloes) das leqel o et reréseter le age des ots «dvds» (modalté lge). Chaqe dvd a or coordoée x et das cet esace o tlse le tablea des rofls lges. Das R, o s téresse ax roxmtés relatves des ots dvds, c'est-à-dre ax rofls lges, d où le chox de cette matrce.. Coordoées d ot das R L esace R des «dvds» das leqel o et reréseter les ots varables. Chaqe varable a or coordoées y. Das cet esace o tlse le tablea des rofls coloe. Das R, o s téresse ax roxmtés relatves des varables, c'est-à-dre ax rofls coloes :. Coordoées de das R Par aaloge avec l ACP, l formato est doée ar la dstace Ecldee etre les ots des ages des dex esaces R et R. Plaços os ar exemle das R Calclos la dstace ecldee etre dex ots qelcoqes : x() et x( ) de cet esace. 6 / 9

Aalyse de doées Modle 5 : L AFC M5 d ( x(), x(' )) ' '. E AFC, et cotraremet à l ACP, o tlse as cette dstace ecldee. Pls récsémet, o l tlse mas arès avor effecté e trasformato réalable des coordoées des ots d ages. Das l esace R cette trasformato s écrt : x E déftve, das l esace R o calcle la dstace etre dex ots x() et x( ) ar la formle : d ( ) x(), x(' ) ' '. O rocède de faço éqvalete or l esace R. Cosdéros das cet esace dex ots d age y() et y( ) La trasformato : y codt à la dstace : ' '. d ( ) ' y(), y(' ) ' ' ' E tlsat cette trasformato réalable des coordoées, o alqe la dstace ecldee ce q e d atres termes revet à écrre qe l o et effecter e ACP sr les tableax ax coordoées trasformées. O et vérfer qe l alcato de la dstace ecldee sr les doées trasformée est éqvalete à l alcato de la métrqe d χ sr les doées o trasformées. Avec l AFC o et tlser le rce d éqvalece dstrbtoelle : S o se lace ar exemle das R et q o cosdère dex ots : x() et x( ) cofods, o et les remlacer ar ot x( ) q ara or fréqece la somme des fréqeces relatves à ces dex ots. O démotre alors qe cette sbsttto des dex ots ar x( ) e modfe as l formato c'est-à-dre les dstaces etre les ares de ots das R. Ce rce vat ass or l esace R 7 / 9

Aalyse de doées Modle 5 : L AFC M5 3 Détermato des comosates rcales das R 3. Caractérstqes des «varables» et costrcto de la matrce d formato Comme or l ACP o se lace das l esace des varables, o tlse doc la matrce des rofls lges. O vet de vor qe das cet esace les ots d age ot or coordoées : x O et calcler les caractérstqes de ces varables (otées x or à ) c'est-à-dre la moyee et la covarace. La moyee x x (moyee arthmétqe odérée) x. D où : x. La covarace La covarace etre dex varables x et x est : cov ( x,x ) ' ' V ' ' ' ' D où : V ' ' ' La matrce d formato (matrce des varaces covaraces des varables) E fasat varer et de à o costrt alors la matrce V(,) des varaces/covaraces des varables. C est la matrce d formato des varables et ar aaloge avec l ACP, l étae svate de l AFC sera la dagoalsato de cette matrce. Raelos la formle de la covarace etre dex varables X et Y : COV ( X,Y ) ( x x)( y y) f( x x)( y y) f xy xy S xy alors COV (x,x) V( x) f x y xy 8 / 9

Aalyse de doées Modle 5 : L AFC M5 3. Dagoalsato de la matrce des varaces covaraces o de la matrce d erte La matrce V récédete ermet de calcler ar les valers rores et les vecters rores ormés, la matrce d chagemet de base. E AFC o tlse as toors la matrce V mas e matrce ls smle aelée la matrce d erte. Cosdéros la matrce V(,) de terme gééral V O et démotrer qe le remer vecter rore oté 0 ss de cette matrce V a or coordoées : 0............. 0. 0 0. x Et q l est assocé à la remère valer rore λ 0 0 de V O sat qe tos les vecters rores sot orthogoax dex à dex. Doc le rodt scalare d vecter rore qelcoqe de V avec 0 est égal à éro, ce q s écrt : ' 0 0... [...... ] +... + +... + 0 0 0... 0 0 0 0..0 0 0 a (Relato ) Ecrvos qe est le vecter rore assocé à la valer rore λ de la matrce V : V λ (q est l écrtre de la dagoalsato de la matrce V) Sot ecore : [ V ] ' λ Por le ème terme : V +... + V ' ' +... + V λ. 9 / 9

Aalyse de doées Modle 5 : L AFC M5 ' V ' ' λ. Remlaços V ar sa valer : λ ' ' ' ' '. ' ' ' ' ' ' ' ' ' ' ' ' ' ' Or d arès la relato : 0 D où : '. ' ' ' λ ' (Relato ) ' ' ' O ose s ' et la relato s écrt : λ s ' ' ' Aelos S la matrce de terme s o a alors λ V S La matrce S orte le om de matrce d erte. O et costater qe les vecters rores de la matrce V sot detqes à cex de S. Il est doc dfféret de dagoalser la matrce S o V. Das de ombrex logcels formatqe o tlse S q a e exresso ls smle qe celle de V. Il exste ceedat e dfférece etre ces dex matrces : e effet, o et démotrer qe la remère valer rore de S est alors qe celle de V est 0. Le remer vecter rore assocé à cette remère valer rore déft axe rcal or leqel les roectos des dvds et des varables ossèdet e varace (dserso) lle. Ce q sgfe qe totes les roectos ossèdet les mêmes coordoées. L axe factorel corresodat à cette valer rore est doc excl de l aalyse. 3.3 Le chox d ombre de comosates rcales O aelle, e AFC, momet total d erte (Mt) d age des dvds das l esace R la somme odérée des carrés des dstaces des ots d age à ler cetre de gravté : Mt d ( X(), G) ' ' v ' ' 0 / 9

Aalyse de doées Modle 5 : L AFC M5 avec G le cetre de gravté d age de ots et d ( ) X(),G ( x x ) la dstace a carrée etre les ots d age et le cetre de gravté. O costate qe ce momet est la varace mltdmesoelle dot o sat (Cf ACP) q elle est ass doée ar la trace de la matrce d formato S o V. E déftve o et écrre qe Mt s tr[ S] Or la trace de S est égale à la somme des ses valers rores tr [ S] λ O et doc, comme e ACP, calcler la art de varace totale exlqée ar la ème comosate rcale. V λ λ 00 Mt tr λ 00 λ [ S] λ (- car la remère valer rore0 cf sra) Comme e ACP, l AFC est réalsable s avec, o a maxmm 3 axes rcax o exlqe rès de 70% de la varace totale. 4 Les coordoées des roectos des dvds et des varables sr les axes rcax Cotraremet à l ACP, e AFC les roectos sr les axes rcax d age des dvds et des varables s effectet sr même grahqe. O arle de roecto smltaée. Por raeler commet o réalse la roecto d ot sr axe factorel (Cf ACP) cosdéros, ar exemle, dvd et axe rcal oté F et laços os das esace à dex dmesos de dex varables x et x. ( x x ) X F G F G' G ( x, ) x ( x x ) X / 9

Aalyse de doées Modle 5 : L AFC M5 La roecto orthogoale d ot sr l axe F est doée ar le rodt scalare : G ' G ' G or ces vecters ot les coordoées svates : et x x G doc x x G' ' G [, ] D où G ' F ( x x ) ( x x) ( x x ) ( x x ) + ( x x ) E gééralsat ce résltat à l esace comlet R o a : F Posos a :. 443 0 D arès la relato F a (A). Cette relato ermet de vérfer qe les coordoées de tos les dvds sr l axe rcal q a or vecter tare ( ) sot égales à. E effet, or 0 o a : 0 F0 0 Doc F 0 qel qe sot Das la formle A, o aelle a le raort O orrat vérfer avec les formltes de trasto qe cette qatté roeto orthogoale de la varable sr l axe rcal oté das cet esace a De ce fat, la formle A : a corresod à la / 9

Aalyse de doées Modle 5 : L AFC M5 F a est atre qe le calcl d cetre de gravté (de la moyee odérée) des coordoées des roectos des varables D où la rorété barycetrqe de l AFC : Les coordoées des roectos orthogoales de chaqe ot sot le barycetre (moyee odérée) des coordoées des roectos des ots. Et récroqemet, les coordoées des roectos de chaqe ot sot le barycetre des roectos des ots Cette rorété décole des Formles de Trasto etre le tablea des rofls lges de l esace R et cel des rofls coloes de l esace R. Cette rorété barycetrqe ermet doc d écrre qe : a F (B) o ecore F a (A) Les Formles de trasto motret alors qe la réalsato smltaée des écrtres A et B est as ossble. Por qe cela le sot, l fat trodre das les formles récédetes le aramètre λ Les formles des roectos smltaées des varables et des dvds s écrvet alors : Fˆ Et F o ecore Fˆ λ â λ a o ecore â λ Fˆ â Das Fˆ et â, le ^ sgfe la valer calclée. Par exemle Fˆ (le calcl de la roecto de sr F ) et être calclé e tlsat la formle F de la relato A o be e tlsat la formle A où o coaît dexème lge de l ecadré. â q est doé ar la A-delà de la formle, ce q est mortat de reter das l AFC, c est la rorété barycetrqe q elle révèle. Il s agt d e sécfcté q exste as e ACP. As o orra dre ar exemle qe sr la factorel chos, ot est d atat ls roche d ot qe le ot (varable) cotrbe le ls fortemet ossble a rofl de l dvd 3 / 9

Aalyse de doées Modle 5 : L AFC M5 5 Les ades à l terrétato E AFC elles sot detqes à celles de l ACP. Les ots slémetares o ots actfs Comme e ACP, l et arrver q (o lsers) ots dvds et/o varables se stet e dehors o élogé des atres ots. Cela sgfe q l ossède das le tablea de déart rofl tot à fat sécfqe. Sa (o ses ostos) das le la factorel état solée, elle emêche e étde récse des roxmtés des atres ots roetés. Il est recommadé das ce cas de redre ce (o ces) ots actfs (o le met e slémetare), ce q revet à réalser l AFC d tablea de déart e élmat la lge o la coloe q rerésete cet dvd (o cette varable). Ce ot ossède ceedat das l esace, des coordoées, et même s l e artce as à l AFC, l est alors ossble de calcler ses ovelles coordoées das l esace. O et doc reréseter sr la factorel, ce o ces ots reds actfs. caractérstqes des roectos des varables et des dvds Idvds Varables Moyee F 0 a 0 Doc même cetre de gravté, et même orge sr le grahqe varace [ F ] λ V[ a ] λ V Part de la λ varace tr [ S ] tr λ [ S] Le remer axe factorel est as tlsé O et démotrer faclemet les résltats cocerat les moyees (les atres caractérstqes l ot été das le cors) F a. et doc F 0. 443 0 O et alqer la même démostrato or a 0 4 / 9

Aalyse de doées Modle 5 : L AFC M5 Les CTA et CTR Elles ot les mêmes déftos q e ACP mas l fat e l occrrece les calcler or les dvds et or les varables. Idvds varables CTA CTR F λ â λ avec λ V[ F] a F avec V[ â] â λ d F ( ;G) â d ( ;G) CTA CTR L aaloge etre les dex méthodes et être schématsée de la faço svate : ACP X (,) AFC Z (,) R R Z (,) Profls Lges R (,) S (,) Dagoalse R avec VT tr[r] λ Base Dagoalse S Avec VT tr[s] - λ Base F Proecto des dvds F Proectos dfféretes Formles de Trasto Formles de Trasto Proectos smltaées A (cercle de corrélato) Ades à l terrétato (CTA, CTR) des varables A Ades à l terrétato (CTA, CTR) des dvds et des varables + rorétés barycetrqes 5 / 9

Aalyse de doées Modle 5 : L AFC M5 6 - Itrodcto à l AFCM L AFC est e méthode factorelle q e cocere qe dex caractères ( qestos) d e olato de M dvds. Or l arrve fréqemet qe la olato sot caractérsée ar lsers caractères. Das ce cas o tlse e exteso de l AFC qe l o aelle l AFCM (Aalyse Factorelle des Corresodaces Mltles). Le mot mltle sgfat qe l o dsose de lsers caractérstqes sr la olato a le de or l AFC. Comme l s agt d e exteso, les cocets tlsés das l AFC (comme cex de l ACP) sot rers ar l AFCM ; (trasformato des doées, dagoalsato de la matrce d formato, calcl des comosates rcales, calcl des CTA et CTR, Formles de Trasto des comosates rcales des varables et roectos smltaées). Le tablea de déart est sovet le tablea d e eqête o d sodage. Il se résete avec e lges dvds eqêtés et e coloes qestos osées à ces dvds. Chace de ces qestos ossède lsers modaltés de réoses. Le ombre total de modaltés est oté M. 6. Le Tablea dsoctf comlet Ce tablea d eqête est écrt sos e forme dsoctve : o affecte le chffre lorsqe l dvd ossède la modalté d e qesto, 0 so. Les modaltés de chaqe qesto sot exclsves ( sel ar qesto) et exhastves (la somme des modaltés d e qesto) De ce fat, la somme d e lge est toors égale a ombre de qestos. Le tablea dsoctf orte alors le om de tablea dsoctf comlet (TCD) et s écrt : Qesto J Qesto J Qesto J Marge m m m m R K TCD (,M) K m 0 Marge K m x K m Ce tablea est tel qe : 6 / 9

Aalyse de doées Modle 5 : L AFC M5 K m s l dvd ossède la modalté m de J K m 0 so (l dvd e ossède as la modalté m de J ) K K K ar costrcto. m m. m Km le ombre d dvds q ossède la modalté m de la varable J rerésete das ce tablea l effectf total Exemle de assage d tablea d eqête a tablea dsoctf : Idvds Codfcato (or la sase des réoses) Tablea dsoctf Sexe atoal Coler Coler Yex Sexe atoalté Homme Femme Fraças Etrager té Yex Yex bles Marro or homme Fraças Ble 0 0 0 0 femme Etrager Marro 0 0 0 0 3 femme Etrager or 3 0 0 0 0 4 homme Etrager Ble 0 0 0 0 5 femme Fraças Marro 0 0 0 0 6 homme Fraças or 3 0 0 0 0 femme Fraças Ble 0 0 0 0 6. Le tablea de Brt A artr d tablea TDC o et costrre le tablea de Brt : BURT (M,M) TDC (M,) x TDC (,M) Le tablea de Brt est doc le rodt matrcel etre la trasosée d tablea dsoctf comlet et l même. Le tablea de Brt est doc e matrce carrée et symétrqe q crose les qestos etre elles. Sr sa dagoale rcale o trove le crosemet des qestos etre elles (le trs à lat) et de art et d atre de la dagoale rcale les crosemets etre dex qestos dstctes (trs crosés). Exemle : cet exemle e cocere qe les 6 remers dvds d tablea récédet 7 / 9

Aalyse de doées Modle 5 : L AFC M5 Tablea de cotgece comlet Homme Femme Fraças Etragers Ble Marro or 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Tablea de Brt TDC (trasosé d tablea de cotgece) Homme Femme Fraças Etragers Ble Marro or Homme 0 0 0 3 0 0 Femme 0 0 0 0 3 0 Fraças 0 0 0 3 0 Etragers 0 0 0 0 3 Yex blex 0 0 0 0 0 0 0 Marro 0 0 0 0 0 0 0 or 0 0 0 0 0 0 Trs à lat Trs crosé O et as vor sr l exemle qe : Trs à lat : ombre d hommes3 ; ombre de femmes3 Etragers3 ; Fraças3 Trs crosés : Parm les hommes, l y a fraças et étrager Parms les femmes l y a Fraças et étragers 6.3 Résmé de l AFCM L AFCM, c est l AFC d tablea dsoctf comlet (TDC). Por alqer l AFC à ce tablea o ose ar coveto qe les lges d tablea sot les modaltés d caractère Y et qe les M coloes sot les modaltés d atre caractère X. La démarche sve ar l AFCM est doc celle de l AFC e teat comte des artclartés d TDC. La remère trasformato cosste à calcler le tablea des fréqeces relatves. m m TCD (,M) k m f m f K m f m xm Avec f m km Ce tablea résete e artclarté ar raort à l AFC. Les f (rofls lges o dstrbtos margales) sot tels qe : 8 / 9

Aalyse de doées Modle 5 : L AFC M5 km f. k k m m Doc f. : la dstrbto margale lge est e costate De ce fat, le tablea des rofls lges obtes e dvsat ar e chage as l formato cotee das le tablea de déart, cotraremet à l AFC. - Comme or l AFC o calcle alors la matrce d erte S L(M,M) (matrce carrée de dmeso M) et o démotre alors qe : M tr[ SL ] : c'est-à-dre le ombre moye de modaltés ar qesto - Comme or l AFC o et alors calcler la art de la varace exlqée ar e comosate rcale : tr λ [ S ] L 00 E AFCM les orcetages de varace totale exlqés sot sovet très fables. C est la raso or laqelle o e retet arbtraremet qe dex, tros o qatres axes sas tro se réoccer d orcetage de varace exlqée. - O calcle alors comme e AFC les comosates rcales retees (rodt scalare). O calcle ass les CTA et CTR q ermettet de sélectoer sr le grahqe les dvds q artcet le ls ax varaces des comosates rcales. - Comme e AFC les formles de trasto ermettet de calcler drectemet les comosates des modaltés s ler CTA et CTR. Ces comosates sot assettes comme das l AFC à la rorété barycetrqe. Le grahqe fal rassemble totes ces roectos. - E AFCM les lges d tablea dsoctfs sot sovet très ombreses (beaco d dvds) as qe les coloes. Il est doc recommadé d tlser des logcels de classemet or sélectoer les CTA. - L AFCM se commete exactemet comme e AFC, e teat comte ceedat de la sécfcté d tablea de déart q e cotet qe des 0 et des et q ermet de caractérser de faço dfférete les dstaces etre les ots des ages. - L AFCM ossède ceedat e artclarté : les fasceax. Lorsqe das le tablea de déart, e qesto est doées avec des modaltés q ossèdet ordre (caractère ordal), o et odre sr le grahqe ces ovelles modaltés ar e lge brsée das l ordre d tablea. O obtet as esemble de lges brseés qe l o et sérer das fascea. La forme d fascea et alors dqer s l exste e relato léare o o léare etre les dfféretes qestos d fascea. La drecto des lges brsées ermet ass d dqer le ses de la relato etre les qestos. 9 / 9