Sujet A. g :x 4x 2 (en vert)
|
|
|
- Renée Favreau
- il y a 10 ans
- Total affichages :
Transcription
1 Exercice I ( points) Sujet A Compléter les phrases suivantes : Une situation de proportionnalité est représentée en mathématiques par une fonction. Une fonction affine est une relation de la forme f(x) =. Une droite, non parallèle à l axe des ordonnées, est la représentation graphique d une... Le graphique d'une fonction linéaire est.. Exercice II ( points) Tracer un repère orthogonal, prendre : en abscisse : cm pour unité, en ordonnée : cm pour unité, Représenter graphiquement les fonctions suivantes : f :x - x + (en rouge) g :x 4x (en vert) Exercice III (4 points) La liste suivante contient les expressions de dix fonctions affines : f ( x) = x + 4 ; f ( x) = x - 4 ; f ( x) = - x + 4 ; f ( x) = - x - 4 ; f ( x) = x + 4 ; f ( x) = x - 4 ; f ( x) = x + 4 ; f ( x) = x - 4 ; f ( x) = - x + 4 ; f ( x) = -x - 4. On a choisi quatre fonctions dans cette liste, puis on les a représentées graphiquement dans le repère orthonormé ci-contre, quatre droites ont ainsi été obtenues. Recopier le tableau suivant, puis le compléter en retrouvant les fonctions correspondantes dans la liste. Nom de la droite d d d d4 Expression de la fonction Exercice IV (8 points) Florence habite dans une grande station de ski. Pour pratiquer son sport favori, le ski alpin, elle a le choix entre formules : Formule J : chaque journée de ski coûte 0 Formule C : une cotisation annuelle de 80 au club de sport de la station permet de ne payer que par jour. Le but du problème est de déterminer la formule la moins coûteuse en fonction du nombre de journées de ski que fera Florence l'an prochain.
2 Nombre de journées de ski x Dépense avec la formule J Dépense avec la formule C. Compléter le tableau ci-dessus :. Résoudre l'équation 0x = x + 80 En faisant le lien avec la situation qui précède, à quoi correspond la solution de cette équation?. Dans un repère orthogonal, prendre : en abscisse : cm pour unités, en ordonnée : cm pour 0 unités, en plaçant l'origine en bas à gauche d'une page entière. Soit f et g les fonctions définies par : f(x) = 0x et g(x) = x Tracer les droites représentant les fonctions f et g ; on les nommera d j et d c 4. D'après le graphique, proposer à Florence la solution la plus économique en fonction du nombre de journées de ski qu'elle prévoit de faire. (Justifier la réponse en expliquant de façon précise ce que l'on voit sur le graphique). Exercice V (4 points) Un magasin décide d'accorder une remise de 40% sur la vente de ses vêtements d'été. - Combien sera vendu un pantalon dont le prix était de 60? - Soit x le prix d'un autre vêtement, exprimer son prix p(x) après réduction, en fonction de x. - Quelle est la nature de la fonction p? - Quel est le coefficient directeur de la représentation graphique de cette fonction?
3 Exercice I ( points) Sujet B Compléter les phrases suivantes : Une fonction affine est une relation de la forme f : x. Une droite, non parallèle à l axe des ordonnées, est la représentation graphique d une... Une situation de proportionnalité est représentée en mathématiques par une fonction. Le graphique d'une fonction linéaire est.. Exercice II ( points) Tracer un repère orthogonal, prendre : en abscisse : cm pour unité, en ordonnée : cm pour unité, Représenter graphiquement les fonctions suivantes : f : x - x + (en rouge) g : x x 4 (en vert) Exercice III (4 points) La liste suivante contient les expressions de dix fonctions affines : f ( x) = x + ; f ( x) = x - ; f ( x) = - x + ; f ( x) = - x - ; f ( x) = x + ; f ( x) = x - ; f ( x) = x + ; f ( x) = x - ; f ( x) = - x + ; f ( x) = -x -. On a choisi quatre fonctions dans cette liste, puis on les a représentées graphiquement dans le repère orthonormé ci-contre, quatre droites ont ainsi été obtenues. Recopier le tableau suivant, puis le compléter en retrouvant les fonctions correspondantes dans la liste. Nom de la droite d d d d4 Expression de la fonction Exercice IV (8 points) Florence habite dans une grande station de ski. Pour pratiquer son sport favori, le ski alpin, elle a le choix entre formules : Formule J : chaque journée de ski coûte 0 Formule C : une cotisation annuelle de 0 au club de sport de la station permet de ne payer que 8 par jour. Le but du problème est de déterminer la formule la moins coûteuse en fonction du nombre de journées de ski que fera Florence l'an prochain.
4 Nombre de journées de ski x Dépense avec la formule J Dépense avec la formule C 5. Compléter le tableau ci-dessus : 6. Résoudre l'équation 0x = 8x + 0 En faisant le lien avec la situation qui précède, à quoi correspond la solution de cette équation? 7. Dans un repère orthogonal, prendre : en abscisse : cm pour unités, en ordonnée : cm pour 0 unités, en plaçant l'origine en bas à gauche d'une page entière. Soit f et g les fonctions définies par : f(x) = 0x et g(x) = 8x + 0. Tracer les droites représentant les fonctions f et g ; on les nommera d j et d c 8. D'après le graphique, proposer à Florence la solution la plus économique en fonction du nombre de journées de ski qu'elle prévoit de faire. (Justifier la réponse en expliquant de façon précise ce que l'on voit sur le graphique). Exercice V (4 points) Un magasin décide d'accorder une remise de 0% sur la vente de ses vêtements d'été. - Combien sera vendu une chemise dont le prix était de 0? - Soit x le prix d'un autre vêtement, exprimer son prix p(x) après réduction, en fonction de x. - Quelle est la nature de la fonction p? - Quel est le coefficient directeur de la représentation graphique de cette fonction?
5 Exercice I ( points) Une situation de proportionnalité est représentée en mathématiques par une fonction linéaire. Une fonction affine est une relation de la forme f(x) = ax + b. Une droite, non parallèle à l axe des ordonnées, est la représentation graphique d une application affine. Le graphique d'une fonction linéaire est une droite passant par l origine du repère. Correction Sujet A Exercice II ( points) Exercice III (4 points) Nom de la droite d d d d4 Expression de la fonction f ( x) = x - 4 f ( x) = x + 4 f ( x) = - x + 4 f ( x) = -x - 4 Exercice IV (8 points). Nombre de journées de ski x Dépense avec la formule J x Dépense avec la formule C x. 0x = x x x = 80 8x = 80 x = 80 8 x = 0 La solution de cette équation correspond au nombre de journées pour lequel les deux tarifs sont égaux. 4 Pour un nombre de jours de ski inférieur à 0 jours, le graphique montre que le tarif J est plus économique, en effet on voit que la droite d j est en dessous de la droite d c pour x<0. Pour 0 jours de ski, les deux tarifs sont identiques (voir la question ). Au-delà de 0 jours, le tarif C devient plus économique, en effet on voit que la droite d c est en dessous de la droite d j pour x>0.
6 Exercice V (4 points) Un pantalon dont le prix était de 60 sera vendu = 60 4 = p(x) = x x p(x) = x 0,4x p(x) = 0,6x p est une fonction linéaire de coefficient de linéarité 0,6. Le coefficient directeur de la représentation graphique de cette fonction est 0,6.
7 Sujet B Exercice I ( points) Une fonction affine est une relation de la forme f : x ax + b Une droite, non parallèle à l axe des ordonnées, est la représentation graphique d une application affine. Une situation de proportionnalité est représentée en mathématiques par une fonction linéaire. Le graphique d'une fonction linéaire est une droite qui passe par l origine du repère. Exercice II ( points) Exercice III (4 points) d d f ( x) = x + f ( x) = x - d f ( x) = - x + d4 f ( x) = -x - Exercice IV (8 points) Nombre de journées de ski x Dépense avec la formule J x Dépense avec la formule C x
8 . 0x = 8x + 0 0x 8x = 0 x = 0 x = 0 x = 0 La solution de cette équation correspond au nombre de journées pour lequel les deux tarifs sont égaux.. Pour un nombre de jours de ski inférieur à 0 jours, le graphique montre que le tarif J est plus économique, en effet on voit que la droite d j est en dessous de la droite d c pour x<0. Pour 0 jours de ski, les deux tarifs sont identiques (voir la question ). Au-delà de 0 jours, le tarif C devient plus économique, en effet on voit que la droite d c est en dessous de la droite d j pour x>0. Exercice V (4 points) Une chemise dont le prix était de 0 sera vendu = 0 6 = 4. p(x) = x x p(x) = x 0,x p(x) = 0,7x p est une fonction linéaire de coefficient de linéarité 0,7. Le coefficient directeur de la représentation graphique de cette fonction est 0,7.
Fonctions linéaires et affines. 1 Fonctions linéaires. 1.1 Vocabulaire. 1.2 Représentation graphique. 3eme
Fonctions linéaires et affines 3eme 1 Fonctions linéaires 1.1 Vocabulaire Définition 1 Soit a un nombre quelconque «fixe». Une fonction linéaire associe à un nombre x quelconque le nombre a x. a s appelle
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite.
Comment tracer une droite représentative d'une fonction et méthode de calcul de l'équation d'une droite. Introduction : Avant de commencer, il est nécessaire de prendre connaissance des trois types de
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Lecture graphique. Table des matières
Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Les devoirs en Première STMG
Les devoirs en Première STMG O. Lader Table des matières Devoir sur table 1 : Proportions et inclusions....................... 2 Devoir sur table 1 : Proportions et inclusions (corrigé)..................
Notion de fonction. Série 1 : Tableaux de données. Série 2 : Graphiques. Série 3 : Formules. Série 4 : Synthèse
N7 Notion de fonction Série : Tableaux de données Série 2 : Graphiques Série 3 : Formules Série 4 : Synthèse 57 SÉRIE : TABLEAUX DE DONNÉES Le cours avec les aides animées Q. Si f désigne une fonction,
Les équations différentielles
Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
BONUS MALUS. Voici, la façon de calculer la prime : Le montant de la prime à acquitter est égale à : P = PB. C où : P
BONUS MALUS Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances. Pour un véhicule donné, le propriétaire versera annuellement une «prime» à sa compagnie.
LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )
SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Notion de fonction. Résolution graphique. Fonction affine.
TABLE DES MATIÈRES 1 Notion de fonction. Résolution graphique. Fonction affine. Paul Milan LMA Seconde le 12 décembre 2011 Table des matières 1 Fonction numérique 2 1.1 Introduction.................................
Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2
Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
Régler les paramètres de mesure en choisissant un intervalle de mesure 10µs et 200 mesures.
TP Conversion analogique numérique Les machines numériques qui nous entourent ne peuvent, du fait de leur structure, que gérer des objets s composés de 0 et de. Une des étapes fondamentale de l'interaction
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Terminale STMG Lycée Jean Vilar 2014/2015. Terminale STMG. O. Lader
Terminale STMG O. Lader Table des matières Interrogation 1 : Indice et taux d évolution........................... 2 Devoir maison 1 : Taux d évolution................................ 4 Devoir maison 1
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
Les fonction affines
Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus
Statistiques à deux variables
Statistiques à deux variables Table des matières I Position du problème. Vocabulaire 2 I.1 Nuage de points........................................... 2 I.2 Le problème de l ajustement.....................................
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Baccalauréat technique de la musique et de la danse Métropole septembre 2008
Baccalauréat technique de la musique et de la danse Métropole septembre 008 EXERCICE 5 points Pour chacune des cinq questions à 5, trois affirmations sont proposées dont une seule est exacte. Pour chaque
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
Equations cartésiennes d une droite
Equations cartésiennes d une droite I) Vecteur directeur d une droite : 1) Définition Soit (d) une droite du plan. Un vecteur directeur d une droite (d) est un vecteur non nul la même direction que la
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
Baccalauréat ES/L Amérique du Sud 21 novembre 2013
Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français
Evaluation diagnostique de CM1 Circonscription de Saint Just en Chaussée Livret du maître partie Français Avant de débuter, demander aux élèves de préparer le matériel suivant : crayon à papier, gomme,
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Nombre dérivé et tangente
Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative
Du Premier au Second Degré
Du Premier au Second Degré Première Bac Pro 3 ans November 26, 2011 Première Bac Pro 3 ans Du Premier au Second Degré Sommaire 1 Fonction Polynôme du second degré 2 Fonction Polynôme du Second Degré: Synthèse
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
Les couleurs. Un peintre distrait a oublié les noms des couleurs de sa palette : tu peux l aider à reconstituer l ordre correct (de gauche à droite)?
Les couleurs Objectifs : Tu vas décrire une personne ou un personnage à travers l emploi des couleurs Conception : Micaela Rossi (Université de Gênes) pour les Jeunes Nomades 1) Le nom des couleurs Un
Statistique : Résumé de cours et méthodes
Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
mathématiques mathématiques mathématiques mathématiques
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
Créer un tableau avec LibreOffice / Calc
Créer un tableau avec LibreOffice / Calc Réaliser des tableaux LibreOffice / Calc permet de créer des tableaux facilement en utilisant les cellules. En premier lieu, il faut prévoir le nombre de colonnes
«BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg)
«BONUS MALUS» (exercice exploitant les changements de registre) (D après Académie de Strasbourg) Le propriétaire d un véhicule automobile est tenu d assurer sa voiture auprès d une compagnie d assurances.
Nom : Groupe : Date : 1. Quels sont les deux types de dessins les plus utilisés en technologie?
Nom : Groupe : Date : Verdict Chapitre 11 1 La communication graphique Pages 336 et 337 1. Quels sont les deux types de dessins les plus utilisés en technologie? Les dessins de fabrication. Les schémas.
GUIDE DE RÉSERVATION MATÉRIEL ET COURS COLLECTIFS DE SKI/SNOWBOARD
GUIDE DE RÉSERVATION MATÉRIEL ET COURS COLLECTIFS DE SKI/SNOWBOARD HIVER 2015/2016 Ce guide a pour objectif de vous aider à choisir le matériel de ski et les cours de ski collectifs les mieux adaptés à
BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE
BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la
Saisissez le login et le mot de passe (attention aux minuscules et majuscules) qui vous ont
I Open Boutique Sommaire : I Open Boutique... 1 Onglet «Saisie des Produits»... 3 Création d'une nouvelle fiche boutique :... 3 Création d'une nouvelle fiche lieux de retraits :... 10 Création d'une nouvelle
Chapitre 3 : Le budget des ventes. Marie Gies - Contrôle de gestion et gestion prévisionnelle - Chapitre 3
Chapitre 3 : Le budget des ventes Introduction 2 Rappel des différents budgets opérationnels - budget des ventes (chapitre 3) - budget de production (chapitre 4) - budget des approvisionnements et des
Les pourcentages. Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t.
Les pourcentages I Définition : Un pourcentage est défini par un rapport dont le dénominateur est 100. Ce rapport appelé taux de pourcentage est noté t. Exemple : Ecrire sous forme décimale les taux de
Correction du bac blanc CFE Mercatique
Correction du bac blanc CFE Mercatique Exercice 1 (4,5 points) Le tableau suivant donne l évolution du nombre de bénéficiaires de minima sociaux en milliers : Année 2002 2003 2004 2005 2006 2007 2008 2009
La carte ZAP + 88 : un "pass" d'accès à la culture, au sport et aux loisirs
La carte ZAP + 88 : un "pass" d'accès à la culture, au sport et aux loisirs Grâce à la carte ZAP, les jeunes vosgiens de 10 à 25 ans peuvent profiter d'un accès privilégié à la culture avec : - 1 chèque
Correction du baccalauréat STMG Polynésie 17 juin 2014
Correction du baccalauréat STMG Polynésie 17 juin 2014 EXERCICE 1 Cet exercice est un Q.C.M. 4 points 1. La valeur d une action cotée en Bourse a baissé de 37,5 %. Le coefficient multiplicateur associé
Diigo : fonctions avancées
+ Diigo : fonctions avancées Créer, éditer et partager des listes, utiliser les flux RSS et associer Google Reader à Diigo + Les listes n Les listes sur Diigo servent à regrouper un ensemble cohérent de
Dossier de presse. Opération vacances à la neige : accueillir les vacanciers en toute sécurité, une préoccupation majeure pour les services de l état
Dossier de presse Opération vacances à la neige : accueillir les vacanciers en toute sécurité, une préoccupation majeure pour les services de l état le mercredi 11 janvier 2015 à la Clusaz Contact : Service
Baccalauréat ES Amérique du Nord 4 juin 2008
Baccalauréat ES Amérique du Nord 4 juin 2008 EXERCICE 1 Commun à tous les candidats f est une fonction définie sur ] 2 ; + [ par : 4 points f (x)=3+ 1 x+ 2. On note f sa fonction dérivée et (C ) la représentation
Terminale SMS - STL 2007-2008
Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES DES SUJETS DE MATHÉMATIQUES SESSION 2013
mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques
L'ELASTICITE-PRIX I- QUAND LES PRIX VARIENT...
L'ELASTICITE-PRIX La consommation dépend, entre autre, du prix des biens et des services que l'on désire acheter. L'objectif de ce TD est de vous montrer les liens existants entre le niveau et l'évolution
6 ème. Rallye mathématique de la Sarthe 2013/2014. 1 ère épreuve de qualification : Problèmes Jeudi 21 novembre 2013
Retrouver tous les sujets, les corrigés, les annales, les finales sur le site du rallye : http://sarthe.cijm.org I Stéphane, Eric et Christophe sont 3 garçons avec des chevelures différentes. Stéphane
4 Statistiques. Les notions abordées dans ce chapitre CHAPITRE
CHAPITRE Statistiques Population (en milliers) 63 6 6 6 Évolution de la population en France 9 998 999 3 Année Le graphique ci-contre indique l évolution de la population française de 998 à. On constate
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Pour aller de la loge au bureau de la Vie scolaire. Pour aller de la loge au bureau de la Vie scolaire. Vous êtes ici. Vous êtes ici.
au bureau de la Vie scolaire Bureau de la Vie scolaire au bureau de la Vie scolaire Bureau de la Vie scolaire - on tourne tout de suite à gauche au rez-de-chaussée - on tourne tout de suite à gauche au
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Sommaire de la séquence 8
Sommaire de la séquence 8 Séance 1........................................................................................................ Je prends un bon départ.......................................................................................
Choisir entre le détourage plume et le détourage par les couches.
Choisir entre le détourage plume et le détourage par les couches. QUEL CHOIX D OUTILS ET QUELLE METHODE, POUR QUEL OBJECTIF? Il existe différentes techniques de détourage. De la plus simple à la plus délicate,
LES CLUBS DE SWISS-SKI SONT GAGNANTS
LES CLUBS DE SWISS-SKI SONT GAGNANTS DOCUMENTATION RELATIVE AUX AVANTAGES D UNE AFFILIATION À SWISS-SKI MURI, SEPTEMBRE 2014 LES CLUBS DE SWISS-SKI SONT GAGNANTS 1. Faits 2. Avantages pour les clubs de
Correction ex feuille Etoiles-Spectres.
Correction ex feuille Etoiles-Spectres. Exercice n 1 1 )Signification UV et IR UV : Ultraviolet (λ < 400 nm) IR : Infrarouge (λ > 800 nm) 2 )Domaines des longueurs d onde UV : 10 nm < λ < 400 nm IR : 800
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS
Découverte du logiciel ordinateur TI-n spire / TI-n spire CAS Mémento Ouvrir TI-Nspire CAS. Voici la barre d outils : L insertion d une page, d une activité, d une page où l application est choisie, pourra
Brevet 2007 L intégrale d avril 2007 à mars 2008
Brevet 2007 L intégrale d avril 2007 à mars 2008 Pondichéry avril 2007................................................. 3 Amérique du Nord juin 2007......................................... 7 Antilles
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT
Exercices types Algorithmique et simulation numérique Oral Mathématiques et algorithmique Banque PT Ces exercices portent sur les items 2, 3 et 5 du programme d informatique des classes préparatoires,
Algorithmique avec Algobox
Algorithmique avec Algobox Fiche 2 Cette fiche est la suite directe de la première. 1. Instructions conditionnelles : 1.1. Reprise de la fiche 1 : Lecture d'un algorithme : ORDINATEUR INTERDIT : Après
MESURE ET PRECISION. Il est clair que si le voltmètre mesure bien la tension U aux bornes de R, l ampèremètre, lui, mesure. R mes. mes. .
MESURE ET PRECISIO La détermination de la valeur d une grandeur G à partir des mesures expérimentales de grandeurs a et b dont elle dépend n a vraiment de sens que si elle est accompagnée de la précision
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
IV- Equations, inéquations dans R, Systèmes d équations
IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation
TUTORIEL SIMPLIFIE de QuizFaber Un éditeur de Quiz et autres exercices simple, complet, original et en freeware!
TUTORIEL SIMPLIFIE de QuizFaber Un éditeur de Quiz et autres exercices simple, complet, original et en freeware! 1-Présentation Télécharger QUIZFABER en français sur le site web de l'auteur: http://www.lucagalli.net/quizfaber
BACCALAURÉAT PROFESSIONNEL SUJET
SESSION 203 Métropole - Réunion - Mayotte BACCALAURÉAT PROFESSIONNEL ÉPREUVE E4 CULTURE SCIENTIFIQUE ET TECHNOLOGIQUE : MATHÉMATIQUES Toutes options Durée : 2 heures Matériel(s) et document(s) autorisé(s)
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX
SEANCE 4 : MECANIQUE THEOREMES FONDAMENTAUX 1. EXPERIENCE 1 : APPLICATION DE LA LOI FONDAMENTALE DE LA DYNAMIQUE a) On incline d un angle α la table à digitaliser (deuxième ou troisième cran de la table).
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Annales Baccalauréat. Terminale SMS STL Biologie 2004 à 2009
Terminale SMS STL Biologie 2004 à 2009 Annales Baccalauréat 1. QCM divers 2 1.1. STL Biochimie, France, juin 2009 (8 points) 2 1.2. SMS, Polynésie, sept 2008 (8 points) 2 1.3. SMS La Réunion juin 2008
INSERER DES OBJETS - LE RUBAN INSERTION... 3 TABLEAUX
TABLE DES MATIERES Livret Utilisateur Excel 2007 Niveau 2 INSERER DES OBJETS - LE RUBAN INSERTION... 3 TABLEAUX... 4 Les tableaux croisés dynamiques... 4 Création d un tableau croisé... 5 Comparer des
VOUS AUSSI REJOIGNEZ LE RÉSEAU DES SÉLECTIONNEURS À SUCCÈS
VOUS AUSSI REJOIGNEZ LE RÉSEAU DES SÉLECTIONNEURS À SUCCÈS UNE PASSION, LE SPORT UN MÉTIER, LE COMMERCE UNE FORCE, LA COOPÉRATIVE LA COOPÉRATIVE DE COMMERÇANTS : UN MODÈLE ÉCONOMIQUE À SUCCÈS Le regroupement
Collecter des informations statistiques
Collecter des informations statistiques FICHE MÉTHODE A I Les caractéristiques essentielles d un tableau statistique La statistique a un vocabulaire spécifique. L objet du tableau (la variable) s appelle
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
SOFI Gestion+ Version 5.4. Echanges de données informatiques Spicers Sofi gestion+ Groupements. SOFI Informatique. Actualisé le 10.09.
SOFI Gestion+ SOFI Informatique Version 5.4 Echanges de données informatiques Spicers Sofi gestion+ Groupements Actualisé le 10.09.2004 Table des matières 1. Catalogue et tarifs... 4 1.1 Définition EDI...
FORMULES DE CALCUL. Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA
FORMULES DE CALCUL Le prix : Prix = PV TTC = PV HT x (1 + taux de TVA) TVA = PV HT x taux de TVA PV HT = PV TTC 1 + taux de TVA Ex : PV TTC = 250 x 1,196 = 299. TVA = 250 x 19,6 % = 49. PV HT = 299 = 250.
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
Trier les ventes (sales order) avec Vtiger CRM
Trier les ventes (sales order) avec Vtiger CRM Dans l'activité d'une entreprise, on peut avoir besoin d'un outil pour trier les ventes, ce afin de réaliser un certain nombre de statistiques sur ces ventes,
Guide d utilisation des fichiers bonus accompagnant le guide «L Argent est une science exacte»
Guide d utilisation des fichiers bonus accompagnant le guide «L Argent est une science exacte» - Fichier «Gestion main de fer» Cet outil, à utiliser chaque semaine, permet de réaliser une synthèse de l
