Les Réseaux Bayesiens

Dimension: px
Commencer à balayer dès la page:

Download "Les Réseaux Bayesiens"

Transcription

1 Les Réseaux Bayesiens

2 A quoi sert un réseau bayésien? à représenter la connaissance d un système technique Le "système" dont on représente la connaissance au moyen d'un réseau bayésien peut être aussi biologique bien le contenu du caddie d'un client de économique supermarché, un navire de la Marine, le patient d'une informatique consultation médicale, le moteur d'une automobile, un réseau électrique, l'utilisateur d'un logiciel, etc. pour : prévoir (le comportement du système) diagnostiquer (les causes d'un phénomène observé dans le système) contrôler (le comportement du système) simuler (le comportement du système) analyser des données (relatives au système) aider à la décision (diagramme Application naturelle à la Sûreté de Fonctionnement

3 Pourquoi le boom des réseaux bayésiens? Plusieurs disciplines scientifiques : Intelligence artificielle Statistique Informatique Ingénierie de la connaissance Multiples types d applications : Prévision Diagnostic Data mining Nombreux domaines d application : Santé Industrie (robotique, défense, etc.) Informatique Marketing Finance

4 Avantages sur les modèles ou outils «concurrents» Possibilité de représenter des connaissances de diverses natures dans un même modèle expertise données de retour d expérience (apprentissage) règles logiques, équations Observations Lisibilité (modèles graphiques) Convivialité : logiciels «tout-en-un» : saisie du modèle et évaluations Rapidité : calcul quasi-instantanés

5 Qu est-ce qu un réseau bayésien? Un réseau bayésien est un graphe acyclique dans lequel les nœuds représentent des variables les liens représentent des dépendances entre les variables

6 Exemples de nœuds Panne du composant X Vrai Faux chaque nœud d un réseau bayésien représente une variable aléatoire Pile Face Variable booléenne Pièce Variable catégorielle «binaire» Dé ± 1.7 Variable numérique discrète Jaune Vert Bleu Couleur Variable catégorielle «multi-états» Puissance électrique (MW) 0 to to to to to e+002 ± 1.1e+002 Variable numérique continue

7 Eléments de base Chaque nœud parent contient une loi de probabilité nœuds parents : 1 et 2 sur cet exemple 7 5

8 Eléments de base Chaque nœud enfant contient une description de la variable associée soit sous la forme d une équation déterministe de ses nœuds parents soit sous la forme d une table de probabilités conditionnelles (CPT) nœuds enfants : 3,4,5,6 et 7 sur cet exemple 5

9 Exemple : lien Pluie - Nuages Les nœuds «Pluie» et «Nuage» prennent les valeurs Vrai et Faux. Le réseau bayésien intègre des données probabilistes, par exemple : Pluie Nuages Pr(Pluie=Oui)=20% ; Pr(Pluie=Non)=80% Pr(Nuages=Oui/Pluie=Oui)=100% ; Pr(Nuages=Non/Pluie=Oui)=0% Pr(Nuages=Oui/Pluie=Non)=50% ; Pr(Nuages=Non/Pluie=Non)=50%

10 Tables de probabilités Pluie Nuages Dans cet exemple, le nœud parent «Pluie» contient la table : Pluie Oui Non 20% 80% Le nœud enfant «Nuages» contient la table : Nuages Pluie Oui Non Oui 100% 0% Non 50% 50%

11 Comment s utilise un réseau bayésien? Pluie Nuages Vrai 20.0 Vrai 60.0 Faux 80.0 Faux 40.0 On introduit des observations (par exemple : «il y a des nuages») Le réseau bayésien propage les observations introduites et met à jour les lois de probabilité conditionnelles des autres variables. Pluie Nuages observation : «il y a des nuages» Vrai 33.3 Vrai 100 Faux 66.7 Faux 0

12 Comment fonctionne un réseau bayésien? Utilisation de la formule de Bayes d où l adjectif : «bayésien»... Pr(A/B) = Pr(A et B) Pr(B) = Pr(B/A) Pr(A) Pr(B) Exemple Pr(Pluie/Nuages) = Pr(Nuages/Pluie) Pr(Pluie) Pr(Nuages) = 1*0.2 1* *0.8 = 1 3 Vrai Faux Pluie Vrai Faux Nuages 100 0

13 Construction d un RB : exemple 1 Un agriculteur découvre que ses pommiers perdent leurs feuilles. Il veut en connaître la raison. Il peut s agir d un problème de sécheresse ou de maladie. Il sait que sécheresse et maladie sont observées statistiquement une fois tous les 10 ans. Il sait de plus que sécheresse combinée à maladie occasionne la perte de feuille dans 95% des cas, cette proportion étant limitée à 90% dans le cas de maladie sans sécheresse, à 85% dans le cas de sécheresse sans maladie et seulement 2% des cas ne peuvent être expliqués par sécheresse ou maladie.

14 Construction d un RB : exemple 1

15 Construction d un RB : exemple 2 Un dispositif de détection d incendie est composé de 3 détecteurs de fumées. En cas d incendie, on admet que chaque détecteur a 90% de chances de fonctionner correctement. Le dispositif déclenche l alarme si au moins 2 détecteurs sur 3 révèlent la présence de fumée. Un opérateur, présent 8h par jour, peut activer l alarme manuellement.

16 Quelles sont les variables et leurs modalités? Détecteur 1 : Oui/Non Détecteur 2 : Oui/Non Détecteur 3 : Oui/Non Alarme automatique : Oui/Non Opérateur : Présent/Absent Alarme manuelle : Oui/Non Alarme : Oui/Non

17 Quels sont les liens? Détecteur 1 Détecteur 2 Détecteur 3 Opérateur Alarme Automatique Alarme Manuelle Alarme

18 Remplissage des tables de probabilités On introduit dans le réseau bayésien les informations probabilistes : Pr(détecteur OK)=0,9 Pr(opérateur présent)=0,33 ainsi que les informations logiques : vote 2/3 pour le déclenchement automatique déclenchement =déclenchement automatique OU déclenchement manuel Remarque : il serait possible d incorporer des données de retour d expérience, sous forme d un fichier du type suivant (apprentissage) : opérateur alarme 12-avr-98 absent non 25-mars-99 présent oui

19 Réseau bayésien Détecteur 1 True 90.0 False 10.0 Détecteur 2 True 90.0 False 10.0 Détecteur 3 True 90.0 False 10.0 Opérateur Present 33.3 Absent 66.7 Alarme automatique Alarme manuelle True False True False «True» signifie ici bon fonctionnement Alarme True False

20 Conclusion La probabilité que l alarme ne soit pas déclenchée est de 1,87%. On peut aussi raisonner «en diagnostic» : Si l alarme ne s est pas déclenchée, chaque détecteur a 32,1% de chances de n avoir pas fonctionné. On en déduit également que l opérateur était absent. Evénement indésirable : non-déclenchement de l'alarme ET arbre de défaillances équivalent pas de déclenchement automatique pas de déclenchement manuel 2/3 opérateur absent défaillance détecteur 1 défaillance détecteur 2 défaillance détecteur 3

21 Construction d un RB : exemple 3 On considère un système électrique constitué d une zone de demande et de deux groupes de production. G1 L1 Demande L2 G2 Les groupes (130 MW) sont disponibles 90% du temps. La charge dépend de la saison : 150 MW en hiver, 50 MW en été et 100 MW en printemps automne, avec un écart-type de 30 MW. En hiver les lignes sont indisponibles 1% du temps (de manière indépendante) à cause de forts givres. Quel pourcentage du temps la demande peut-elle être satisfaite?

22 Construction d un RB : exemple 3 Réseau bayésien Saison Groupe 1 Groupe 2 Ligne 1 Ligne 2 Demande Demande satisfaite

23 Construction d un RB : exemple 3 Modèle (NETICA) Hiver Printemps Ete Automne Saison Demande G ± G ± 39 OK Indisponible L OK Indisponible L to to to to to to to to to to ± 46 Demande satisfaite OK Non

24 Construction d un RB : exemple 3 La demande peut être satisfaite 93% du temps (En été : 99% ; en hiver : 83%, etc.) On aurait pu prendre en compte d autres dépendances : périodes de maintenance des lignes en fonction de la saison dépendances entre lignes : pas de maintenance simultanée sur les deux lignes risque d incidents simultanés sur les deux lignes, dus par exemple à un fort givre, à la foudre, à une tempête, etc. etc. Le même réseau bayésien peut s utiliser en diagnostic.

25 Apprentissage Il existe des algorithmes permettant d apprendre la structure d un réseau bayésien à partir de données. Les tables de probabilités d un RB peuvent être apprises : estimation bayésienne. Exemple : prévision de l évolution du CAC40 en fonction des évolutions du NASDAQ et du DOW Jones de la veille.

26 Structure du réseau bayésien Nasdaq DJ CAC

27 Construction du modèle On introduit un a priori : C=0.8*D+0.2*N On incorpore les données ; le RB effectue une estimation bayésienne des probabilités

28 Apprentissage : Cas d école Dans une urne contenant des boules noires et blanches, soit θ la proportion de boules noires. On se donne une loi a priori sur θ, loi uniforme sur [0,1]. On fait N tirages, dont k sont des boules noires. Loi a posteriori de θ? Couleur Blanche Noire

29 Apprentissage : Cas d école D après le théorème de BAYES : dp(θ = p / tirages)=p(tirages / θ =p) * dp(θ = p)/p(tirages) Or : dp(θ = p) = 1 car c est une loi uniforme. P(tirages/ θ = p) = C(N,k)*p^k*(1-p)^(N-k) P(tirages) = intégrale de 0 à 1 sur p de C(N,k)*p^k*(1-p)^(N-k) = C(N,k)*k!*(n-k)!/(n-k+1)! On obtient donc comme loi a posteriori une loi beta, de moyenne (k+1)/(n+2) NETICA estime θ par (k+1)/(n+2)

30 Cas d école (3/3) Exemple : s il y a 7 boules noires parmi les 10, l estimation bayésienne de θ est 2/3. L apprentissage se fait par estimation bayésienne. Couleur Blanche Noire

31 Apprentissage : cas industriel Modèle du système électrique en PACA «ensemble des installations de production et de transport d énergie électrique dans une région donnée» caractéristiques : complexité incertitudes fortes interactions/dépendances

32 Apprentissage : cas industriel Etudes de systèmes électriques les études de sécurité ou de planification s effectuent essentiellement par simulation de Monte Carlo génération aléatoire de situations/scénarios simulation (calculs électriques) analyse des résultats

33 Apprentissage : cas industriel Besoin existence d une base de données de situations du réseau de la région PACA présence de situations extrêmement peu probables besoin d évaluer la probabilité des situations

34 Apprentissage : cas industriel Démarche mise en oeuvre recueil d informations REX (dispatching Marseille) Expertise analyse des dépendances modélisation du système par un réseau bayésien

35 Apprentissage : cas industriel Variables du système électrique l état du système électrique est caractérisé par un grand nombre de variables : topologie du réseau (lignes exploitées ou indisponibles) production (puissance produite par chaque groupe) Consommation ces variables sont inter-dépendantes

36 Apprentissage : cas industriel Dépendances dues au climat la température et la nébulosité influencent la consommation le climat influence les probabilités d incident (ex : foudre, gel) la température influence les transits maximaux de puissance sur les lignes

37 Apprentissage : cas industriel Dépendances dues à la date et à l heure l heure influence la consommation (ex : creux la nuit, pic du soir, etc.) la date influence la consommation (ex : weekends, EJP) la date influence le climat...

38 Apprentissage : cas industriel Dépendances dues à la politique de consignation périodes préférentielles de consignations de lignes (été) pas de maintenance simultanées pour certaines lignes

39 Apprentissage : cas industriel Remarque il existe des dépendances indirectes : par exemple, la consommation et la topologie du réseau sont dépendantes date consommation topologie

40 Apprentissage : cas industriel 0 to to to 30 Temperature Day Evening Night Hour Week Week End Day Modèle simplifié Load Winter Spring Summer Autumn Season to to to to to to to Cloudy Sunny Weather calcul de la probabilité d une situation Line_1 Available 96.7 Unscheduled Maintenance 3.20 Exclusion Line_2 Available 96.7 Unscheduled Maintenance 3.20 génération aléatoire d un échantillon de situations plausibles Imported_Power 0 to to to to to to Generated_Power 0 to to to to to to to

41 Démonstrat ion

42 Conclusion de l étude souplesse, évolutivité, rapidité du calcul des probabilités des situations importance des dépendances possibilité de générer directement un échantillon de situations réalistes car tenant compte des dépendances

43 Domaines d application Santé Industrie Défense Data Mining - Marketing Informatique Autres domaines

44 Santé Historiquement, les premières applications opérationnelles des réseaux bayésiens Intégration de l expertise du médecin, de données statistiques et de faits observés ou déclarés Pathfinder, Intellipath : diagnostic histopathologique (biopsies) Microsoft Pregnancy and Child Care Localisation de gènes (projet Human Genome) Maladies du foie, dermatologie, etc.

45 Industrie (1) : contrôle, robotique Capacité d apprentissage incrémental (adaptabilité), réactivité NASA - système VISTA : aide à la décision en temps réel (système de suivi des moteurs de positionnement orbital de la navette spatiale) ; première application non-médicale Hugin (pour Lockheed Martin) : système de contrôle d un véhicule sousmarin autonome Bayesia : système de régulation d ambiance

46 Industrie (2) : diagnostic Détermination des causes (et des remèdes) les plus probables à partir des symptômes Ricoh : assistance aux opérateurs de réparation de photocopieurs (système Fixit) - utilisation en centre d appels Intel : tests sur puces semiconducteurs Bayesian Systems : pannes automobiles (www.bayes.com)

47 Industrie (3) : simulation génération aléatoire d états d un système avec dépendances EDF : étude d un système électrique

48 Défense Fusion de données, aide à la décision US Navy : système embarqué de défense tactique des navires : temps de réaction très inférieur aux systèmes précedents (propagation de contraintes, programmation dynamique)

49 Data Mining - Marketing Applications de prévision de comportement - apprentissage incrémental Paris New York Bangkok Rio Janeiro Lieu AT&T : détection de mauvais payeurs à partir de l a priori (exemple : 1% de mauvais payeurs), des villes d émission et de destination de l appel, etc. Achat Alimentation 33.3 Billet Avion 33.3 HiFi 33.3 Montant Oui Non Fraude autorisation de transaction bancaire, détection de fraude (phénomène évolutif) 0 to to to to e+002 ± 2.8e+002 etc. 23-juin-00 billet avion rio_janeiro 825 fraude 28-juin-00 alimentation paris 72 OK...

50 Informatique Agents logiciels MICROSOFT : agent Office Assistant (système d aide proactif) : détermination de l aide en fonction de la difficulté de la tâche, du niveau de l utilisateur, des «Edition-Annuler», des temps d attente, du parcours des menus, etc. Evaluation de fiabilité projet européen SERENE

51 Autres domaines Finance (cours boursier) Banque (autorisation de crédit) Droit : jugement pénal (prise en compte de faits, de témoignages, de preuves, d expertise) Prospective stratégique, aide à la décision (diagramme d influence), gestion globale des risques : EDF Autres : risque projet, risque politique...

52 Pour en savoir plus... «Les Réseaux Bayésiens», de P. Naïm et A. Becker (Eyrolles) «An Introduction to Bayesian Networks» de F. Jensen et V.Finn, (Springer-Verlag). Netica version de démonstration entièrement fonctionnelle (mais limitée à 15 nœuds) téléchargeable sur Internet mots-clés : Bayesian (belief) network, (probabilistic) influence diagram, Bayes net, causal network, etc.

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

Réseaux bayésiens. 3 e édition Patrick Naïm, Pierre-Henri Wuillemin, Philippe Leray, Olivier Pourret, Anna Becker

Réseaux bayésiens. 3 e édition Patrick Naïm, Pierre-Henri Wuillemin, Philippe Leray, Olivier Pourret, Anna Becker Réseaux bayésiens 3 e édition Patrick Naïm, Pierre-Henri Wuillemin, Philippe Leray, Olivier Pourret, Anna Becker Avec la contribution de Bruce G. Marcot, Carmen Lacave et Francisco J. Díez Groupe Eyrolles,

Plus en détail

Raisonnement probabiliste

Raisonnement probabiliste Plan Raisonnement probabiliste IFT-17587 Concepts avancés pour systèmes intelligents Luc Lamontagne Réseaux bayésiens Inférence dans les réseaux bayésiens Inférence exacte Inférence approximative 1 2 Contexte

Plus en détail

Terminale S-SI Probabilités conditionnelles

Terminale S-SI Probabilités conditionnelles robabilités conditionnelles Table des matières 1 Introduction 2 2 Définitions 2 3 Formule des probabilités totales 3 4 Indépendance et principe du produit 5 5 Exercices 5 1 1 Introduction Lorsque 7 élèves

Plus en détail

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing

Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Statistique et analyse de données pour l assureur : des outils pour la gestion des risques et le marketing Gilbert Saporta Chaire de Statistique Appliquée, CNAM ActuariaCnam, 31 mai 2012 1 L approche statistique

Plus en détail

Les réseaux bayésiens

Les réseaux bayésiens Les réseaux bayésiens Un outil de modélisation des connaissances incertaines par apprentissage à partir des données par modélisation interactive 2/1/23 SAMOS - BAYESIA 1 etit exemple contre-intuitif La

Plus en détail

Introduction au datamining

Introduction au datamining Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des

Plus en détail

Exercices : Probabilités

Exercices : Probabilités Exercices : Probabilités Partie : Probabilités Exercice Dans un univers, on donne deux événements et incompatibles tels que =0, et =0,7. Calculer,, et. Exercice Un dé (à faces) est truqué de la façon suivante

Plus en détail

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE

APPORT DES RESEAUX BAYESIENS DANS LA PREVENTION DE LA DELINQUANCE SûretéGlobale.Org La Guitonnière 49770 La Meignanne Téléphone : +33 241 777 886 Télécopie : +33 241 200 987 Portable : +33 6 83 01 01 80 Adresse de messagerie : c.courtois@sureteglobale.org APPORT DES

Plus en détail

TP N 57. Déploiement et renouvellement d une constellation de satellites

TP N 57. Déploiement et renouvellement d une constellation de satellites TP N 57 Déploiement et renouvellement d une constellation de satellites L objet de ce TP est d optimiser la stratégie de déploiement et de renouvellement d une constellation de satellites ainsi que les

Plus en détail

La survie nette actuelle à long terme Qualités de sept méthodes d estimation

La survie nette actuelle à long terme Qualités de sept méthodes d estimation La survie nette actuelle à long terme Qualités de sept méthodes d estimation PAR Alireza MOGHADDAM TUTEUR : Guy HÉDELIN Laboratoire d Épidémiologie et de Santé publique, EA 80 Faculté de Médecine de Strasbourg

Plus en détail

Répresenter l uncertain: Réseaux Bayesiens

Répresenter l uncertain: Réseaux Bayesiens Répresenter l uncertain: Réseaux Bayesiens M1 Miage 2015 2016 Intelligence Artificielle Stéphane Airiau LAMSADE M1 Miage 2015 2016 Intelligence Artificielle (Stéphane Airiau) Répresenter l uncertain: Réseaux

Plus en détail

Diagnostic et décision

Diagnostic et décision Diagnostic et décision Bibliographie J. N. Chatain, DIagnostic par Système Expert, Traité des Nouvelles Technologies, série Diagnostic et Maintenance, édition Hermes 1993. B. Dubuisson, Diagnostic, intelligence

Plus en détail

Initiation à la fouille de données et à l apprentissage automatiq

Initiation à la fouille de données et à l apprentissage automatiq Initiation à la fouille de données et à l apprentissage automatique 1 Laboratoire d Informatique Fondamentale de Marseille Université de Provence christophe.magnan@lif.univ-mrs.fr www.lif.univ-mrs.fr/

Plus en détail

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances

Motivation : pourquoi exploration de données? Nous nous noyons dans les données, mais manquons cruellement de connaissances 1 Introduction Définition et motivations Tâches de data mining (fouille de données, exploration de données) Techniques et algorithmes Exemples et applications 1 Motivation : pourquoi exploration de données?

Plus en détail

Réseaux causaux possibilistes pour le traitement des interventions

Réseaux causaux possibilistes pour le traitement des interventions Les modèles graphiques probabilistes Réseaux causaux possibilistes pour le traitement des interventions Salem ENFERHT CRIL, Lens benferhat@cril.univ-artois.fr Outils importants pour la représentation et

Plus en détail

201-DUA-05 Probabilités et statistique

201-DUA-05 Probabilités et statistique 1. La longueur de tiges usinées est une variable de moyenne 47,0 cm et d écart-type 0,36 cm. (a) Si l on prélève un échantillon aléatoire de taille 51, alors quelle est la probabilité que la moyenne échantillonnale

Plus en détail

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE

Gestionnaire du Réseau de Transport d 'Electricité. La prévision de consommation d électricité à RTE Gestionnaire du Réseau de Transport d 'Electricité La prévision de consommation d électricité à RTE 2 PLAN DE LA PRESENTATION RTE, le gestionnaire du réseau d électricité Présentation d une méthodologie

Plus en détail

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population.

Première STMG1 2014-2015 progression. - 1. Séquence : Proportion d une sous population dans une population. Première STMG1 2014-2015 progression. - 1 Table des matières Fil rouge. 3 Axes du programme. 3 Séquence : Proportion d une sous population dans une population. 3 Information chiffrée : connaître et exploiter

Plus en détail

Points méthodologiques Adapter les méthodes statistiques aux Big Data

Points méthodologiques Adapter les méthodes statistiques aux Big Data Points méthodologiques Adapter les méthodes statistiques aux Big Data I. Répétition de tests et inflation du risque alpha II. Significativité ou taille de l effet? 2012-12-03 Biomédecine quantitative 36

Plus en détail

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens

Supplément théorique Inférence dans les réseaux bayésiens. Rappel théorique. Les processus aléatoires. Les réseaux bayésiens DÉPARTEMENT DE GÉNIE LOGICIEL ET DES TI LOG770 - SYSTÈMES INTELLIGENTS ÉTÉ 2011 Supplément théorique Inférence dans les réseaux bayésiens Rappel théorique Les processus aléatoires La plupart des processus

Plus en détail

Technicien / Technicienne de l'automobile

Technicien / Technicienne de l'automobile Projet : Ecole Compétences Entreprise SECTEUR : 2 INDUSTRIE ORIENTATION D'ETUDES : Technicien / Technicienne de l'automobile COMPETENCE PARTICULIERE VISEE Diagnostiquer et réparer avec ou sans appareil

Plus en détail

Chapitre VI Échantillonages et simulations

Chapitre VI Échantillonages et simulations Chapitre VI Commentaires : Récursivement, les commentaires ne sont pas à l attention des élèves.. Fluctuation d échantillonnage Définition : En statistiques, un échantillon de taille n est la liste des

Plus en détail

Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel

Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel Aide à la décision pour l'optimisation de la maintenance des stations de compression de gaz naturel J. Blondel, L. Marle - CRIGEN A. Abdesselam GRTgaz F. Brissaud - DNV France Presentation Plan Objectifs

Plus en détail

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation

Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Health Monitoring pour la Maintenance Prévisionnelle, Modélisation de la Dégradation Laurent Denis STATXPERT Journée technologique "Solutions de maintenance prévisionnelle adaptées à la production" FIGEAC,

Plus en détail

Systèmes de dialogue homme-machine

Systèmes de dialogue homme-machine Systèmes de dialogue homme-machine Une introduction rapide Sophie Rosset Groupe Traitement du Langage Parlé Département Communication Homme-Machine LIMSI - CNRS Sophie Rosset (LIMSI) Systèmes de dialogue

Plus en détail

une SOluTION basée SuR un modèle POuR PRévOIR le TRaFIc en TemPS Réel

une SOluTION basée SuR un modèle POuR PRévOIR le TRaFIc en TemPS Réel Comment anticiper le temps réel? Une solution basée sur un modèle pour prévoir le trafic en temps réel PTV Optima est la clé pour une gestion du trafic réussie. Cette solution basée sur un modèle propose

Plus en détail

overmind La solution précède le problème 2008 Overmind - All rights reserved

overmind La solution précède le problème 2008 Overmind - All rights reserved La solution précède le problème Société Overmind vous propose des solutions d optimisation, d anticipation, de pilotage global capables de prendre en compte l interdépendance des variables en terme de

Plus en détail

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde.

Niveau. Situation étudiée. Type d activité. Durée. Objectifs. Seconde. Simuler des expériences aléatoires avec une calculatrice Niveau Seconde. Situation étudiée Différentes selon les séances : Séance 1 : Jeu de pile ou face, tirages de boule dans une urne avec des proportions

Plus en détail

Activité 1 : échantillonnage

Activité 1 : échantillonnage Activité échantillonnage, intervalle de fluctuation, prise de décision (à partir d un même thème) Les trois activités qui suivent s inspirent du document «ressources pour la classe de première générale

Plus en détail

Série FP400. Centrales d alarme et de détection incendie conventionnelles contrôlées par microprocesseur. Manuel d utilisation

Série FP400. Centrales d alarme et de détection incendie conventionnelles contrôlées par microprocesseur. Manuel d utilisation Série FP400 Centrales d alarme et de détection incendie conventionnelles contrôlées par microprocesseur Manuel d utilisation Version 2.3 / Juin 2004 Aritech est une marque de GE Interlogix. http://www.geindustrial.com/ge-interlogix/emea

Plus en détail

Baccalauréat ES Polynésie 7 juin 2013

Baccalauréat ES Polynésie 7 juin 2013 Baccalauréat ES Polnésie 7 juin 2013 EXERCICE 1 Cet exercice est un questionnaire à choix multiples. Pour chaque question, une seule des quatre réponses proposées est correcte. Une réponse juste rapporte

Plus en détail

Corrigé du baccalauréat STI 2D/STL spécialité SPCL Métropole La Réunion 18 juin 2015

Corrigé du baccalauréat STI 2D/STL spécialité SPCL Métropole La Réunion 18 juin 2015 Durée : 4 heures Corrigé du baccalauréat STI 2D/STL spécialité SPCL Métropole La Réunion 18 juin 15 EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes,

Plus en détail

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring

Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems

Plus en détail

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes

Probabilités et Statistiques. Feuille 2 : variables aléatoires discrètes IUT HSE Probabilités et Statistiques Feuille : variables aléatoires discrètes 1 Exercices Dénombrements Exercice 1. On souhaite ranger sur une étagère 4 livres de mathématiques (distincts), 6 livres de

Plus en détail

Outils Statistiques du Data Mining

Outils Statistiques du Data Mining Outils Statistiques du Data Mining Pr Roch Giorgi roch.giorgi@univ-amu.fr SESSTIM, Faculté de Médecine, Aix-Marseille Université, Marseille, France http://sesstim-orspaca.org http://optim-sesstim.univ-amu.fr

Plus en détail

Evaluation de performance en Sûreté de Fonctionnement

Evaluation de performance en Sûreté de Fonctionnement Groupe SdF Midi-Pyrénées Toulouse 5 juin 2015 Evaluation de performance en Sûreté de Fonctionnement - Andre.cabarbaye Plan Introduction Types de performances Finalité des analyses Attentes du donneur d

Plus en détail

Shadow Manager Simulateur de gestion globale d entreprise. Introduction

Shadow Manager Simulateur de gestion globale d entreprise. Introduction Shadow Manager Simulateur de gestion globale d entreprise Introduction Le logiciel de simulation d entreprise Shadow Manager représente le nec plus ultra des outils pédagogiques de simulation de gestion

Plus en détail

GIND5439 Systèmes Intelligents. Septembre 2004

GIND5439 Systèmes Intelligents. Septembre 2004 GIND5439 Systèmes Intelligents Septembre 2004 Contenu du cours Introduction aux systèmes experts Intelligence artificielle Représentation des connaissances Acquisition de connaissances Systèmes à base

Plus en détail

2 Probabilités conditionnelles. Événements indépendants

2 Probabilités conditionnelles. Événements indépendants 2 Probabilités conditionnelles. Événements indépendants 2.1 Probabilité conditionnelle Soient A et B deux événements tels que P(B) > 0. Soit alors P(A B), la probabilité que A se réalise, B étant réalisé.

Plus en détail

S8 : STRATÉGIE DE MAINTENANCE

S8 : STRATÉGIE DE MAINTENANCE S8 : STRATÉGIE DE MAINTENANCE FINALITÉ L enseignement de la stratégie de maintenance doit apporter à l étudiant les connaissances, les outils d analyse et les outils méthodologiques lui permettant de remplir

Plus en détail

ERICC3. Robot industriel vertébral 5 axes. (Système didactisé ouvert)

ERICC3. Robot industriel vertébral 5 axes. (Système didactisé ouvert) ERICC3 Robot industriel vertébral 5 axes (Système didactisé ouvert) Pour votre sécurité, assurez vous que la zone d'évolution du robot est parfaitement dégagée avant d'effectuer tout mouvement. Pour éviter

Plus en détail

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques

Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Distributions bayésiennes nonparamétriques sur les matrices binaires triangulaires infinies : Applications aux modèles graphiques Patrick Dallaire Université Laval Département d informatique et de génie

Plus en détail

Evaluation des systèmes programmés critiques à l'aide de la méthode et de l outil SERENE

Evaluation des systèmes programmés critiques à l'aide de la méthode et de l outil SERENE Evaluation des systèmes programmés critiques à l'aide de la méthode et de l outil SERENE Marc BOUISSOU 1 Plan de l exposé Le projet SERENE en deux mots Particularités de l'évaluation des systèmes programmés

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Baccalauréat STI 2D/STL spécialité SPCL Métropole La Réunion 18 juin 2015

Baccalauréat STI 2D/STL spécialité SPCL Métropole La Réunion 18 juin 2015 Durée : 4 heures Baccalauréat STI 2D/STL spécialité SPCL Métropole La Réunion 18 juin 2015 EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes,

Plus en détail

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009

Entrer par les problèmes en probabilités et en statistique. Équipe Académique Mathématiques - 2009 Entrer par les problèmes en probabilités et en statistique Équipe Académique Mathématiques - 2009 Quelle valeur ajoutée peut-on espérer d une entrée par les problèmes en probabilités? Donner du sens aux

Plus en détail

CONSOMMATION FRANCAISE D ELECTRICITE CARACTERISTIQUES ET METHODE DE PREVISION

CONSOMMATION FRANCAISE D ELECTRICITE CARACTERISTIQUES ET METHODE DE PREVISION CONSOMMATION FRANCAISE D ELECTRICITE CARACTERISTIQUES ET METHODE DE PREVISION Ce document présente : les principales caractéristiques cycliques de la consommation d électricité en France, les différents

Plus en détail

ASSISES DU RISQUE PMI 12 Juin 2008. www.triadis.fr. Management des situations de crise. S organiser. Communiquer. Patrick PIZA

ASSISES DU RISQUE PMI 12 Juin 2008. www.triadis.fr. Management des situations de crise. S organiser. Communiquer. Patrick PIZA ASSISES DU RISQUE PMI 12 Juin 2008 Management des situations de crise www.triadis.fr S organiser Communiquer Patrick PIZA LES MISSIONS CONSEIL L ÉQUIPE TRIADIS 5 consultants seniors - 2 assistantes 3 consultants

Plus en détail

Principe des tests statistiques

Principe des tests statistiques Principe des tests statistiques Jean Vaillant Un test de signification est une procédure permettant de choisir parmi deux hypothèses celles la plus probable au vu des observations effectuées à partir d

Plus en détail

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1

De la donnée à la décision. Sofian MAABOUT LaBRI. Université Bordeaux 1 De la donnée à la décision Sofian MAABOUT LaBRI. Université Bordeaux 1 1 Décider c est choisir, parmi plusieurs actes possibles, celui qui apparaît comme le plus pertinent pour atteindre un résultat envisagé,

Plus en détail

TABLE DES MATIÈRES CHAPITRE

TABLE DES MATIÈRES CHAPITRE TABLE DES MATIÈRES CHAPITRE 1 Le pilotage de la performance... 17 I. Du contrôle au pilotage de la performance... 17 A. Le contrôle de gestion traditionnel... 17 B. Le pilotage de la performance... 19

Plus en détail

Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel.

Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel. Managements des risques industriels : quelques verrous scientifiques et techniques à résoudre pour le futur. Le point de vue d'un industriel. Workshop du GIS 3SGS Reims, 29 septembre 2010 Sommaire Missions

Plus en détail

Ce qu est le Data Mining

Ce qu est le Data Mining Data Mining 1 Ce qu est le Data Mining Extraction d informations intéressantes non triviales, implicites, préalablement inconnues et potentiellement utiles à partir de données. Autres appellations: ECD

Plus en détail

GEL 1001 Design I (méthodologie)

GEL 1001 Design I (méthodologie) GEL 1001 Design I (méthodologie) Technique 2 Systèmes embarqués et fiabilité Hiver 2013 Département de génie électrique et de génie informatique Plan Système embarqué Ordinateur et architecture Von Neumann

Plus en détail

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1

Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Université Paris Diderot Physique L2 2014-2015 Simulations Numériques SN4 Projet : Recherche de source d onde gravitationnelle (analyse de données Metropolis Hastings Markov Chain) 1 Objectifs : Simuler

Plus en détail

GE Security. KILSEN série NK700 Centrale de détection et d alarme Incendie conventionelle. Manuel d utilisation

GE Security. KILSEN série NK700 Centrale de détection et d alarme Incendie conventionelle. Manuel d utilisation GE Security KILSEN série NK700 Centrale de détection et d alarme Incendie conventionelle Manuel d utilisation g ination imag at work Kilsen is a brand name of GE Security. www.gesecurity.net COPYRIGHT

Plus en détail

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008

Master IAD Module PS. Reconnaissance de la parole (suite) Modèles de Markov et bases de données. Gaël RICHARD Février 2008 Master IAD Module PS Reconnaissance de la parole (suite) Modèles de Markov et bases de données Gaël RICHARD Février 2008 1 Reconnaissance de la parole Introduction Approches pour la reconnaissance vocale

Plus en détail

Simulation d un système d assurance automobile

Simulation d un système d assurance automobile Simulation d un système d assurance automobile DESSOUT / PLESEL / DACHI Plan 1 Introduction... 2 Méthodes et outils utilisés... 2.1 Chaines de Markov... 2.2 Méthode de Monte Carlo... 2.3 Méthode de rejet...

Plus en détail

Club de Rencontre AppliBUGS. Equations Structurelles Probabilistes. Lionel Jouffe Bayesia 04/06/2009. Plan. Introduction

Club de Rencontre AppliBUGS. Equations Structurelles Probabilistes. Lionel Jouffe Bayesia 04/06/2009. Plan. Introduction Club de Rencontre AppliBUGS Equations Structurelles Probabilistes Lionel Jouffe Bayesia 04/06/2009 1 Exemple d application Analyse de Parfums 2 INTRODUCTION 3 Les réseaux Outil de modélisation des connaissances

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE. MATHÉMATIQUES Séries STI2D et STL spécialité SPCL ÉPREUVE DU JEUDI 18 JUIN 2015

BACCALAURÉAT TECHNOLOGIQUE. MATHÉMATIQUES Séries STI2D et STL spécialité SPCL ÉPREUVE DU JEUDI 18 JUIN 2015 BACCALAURÉAT TECHNOLOGIQUE SESSION 2015 MATHÉMATIQUES Séries STI2D et STL spécialité SPCL ÉPREUVE DU JEUDI 18 JUIN 2015 Durée de l épreuve : 4 heures Coefficient : 4 Ce sujet comporte 8 pages numérotées

Plus en détail

Chapitre 5 Les Probablilités

Chapitre 5 Les Probablilités A) Introduction et Définitions 1) Introduction Chapitre 5 Les Probablilités De nombreuses actions provoquent des résultats qui sont dus en partie ou en totalité au hasard. Il est pourtant nécessaire de

Plus en détail

Le Data Mining au service du Scoring ou notation statistique des emprunteurs!

Le Data Mining au service du Scoring ou notation statistique des emprunteurs! France Le Data Mining au service du Scoring ou notation statistique des emprunteurs! Comme le rappelle la CNIL dans sa délibération n 88-083 du 5 Juillet 1988 portant adoption d une recommandation relative

Plus en détail

Analyse de sûreté des systèmes informatisés : l approche de l IRSN

Analyse de sûreté des systèmes informatisés : l approche de l IRSN 02 Novembre 2009 Analyse de sûreté des systèmes informatisés : l approche de l IRSN 1 ROLE DES SYSTEMES INFORMATISES DANS LES CENTRALES NUCLEAIRES Les centrales nucléaires sont de plus en plus pilotées

Plus en détail

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005

Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Université René Descartes Faculté de Pharmacie - Master Professionnel Dimension Économique des Produits de Santé 14 décembre 2005 Prise en Compte de l Incertitude dans l Évaluation des Technologies de

Plus en détail

Les 6èmes Journées Francophones sur les Réseaux Bayésiens

Les 6èmes Journées Francophones sur les Réseaux Bayésiens Les 6èmes Journées Francophones sur les Réseaux Bayésiens 11 13 Mai 2012, Îles de Kerkennah, Tunisie Vers des Réseaux Bayésiens pour la Classification des Causes de Défaillances PRÉSENTÉ PAR: MOHAMMED

Plus en détail

Conception en Vue du Test (CVT-DFT) des circuits intégrés digitaux INTRODUCTION

Conception en Vue du Test (CVT-DFT) des circuits intégrés digitaux INTRODUCTION Conception en Vue du Test (CVT-DFT) des circuits intégrés digitaux INTRODUCTION Mounir BENABDENBI Mounir.Benabdenbi@lip6.fr Laboratoire d Informatique de Paris 6 (LIP6) 2007 Landrault Techniques et outils

Plus en détail

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes.

1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. Corrigé du Prétest 1. Déterminer l ensemble U ( univers des possibles) et l ensemble E ( événement) pour les situations suivantes. a) Obtenir un nombre inférieur à 3 lors du lancer d un dé. U= { 1, 2,

Plus en détail

Expert en Acoustique et en Vibration

Expert en Acoustique et en Vibration Expert en Acoustique et en Vibration L entreprise , filiale AREVA Energie nucléaire Energies renouvelables Des solutions pour produire de l électricité sans CO2 47,817 personnes 20 pays Présence industrielle

Plus en détail

Système Expert pour Smartphones

Système Expert pour Smartphones INSA Rennes Département INFORMATIQUE Système Expert pour Smartphones Rapport de Planification Olivier Corridor;Romain Boillon;Quentin Decré;Vincent Le Biannic;Germain Lemasson;Nicolas Renaud;Fanny Tollec

Plus en détail

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières

FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage

Plus en détail

EXERCICES SUR LE CHAPITRE 1 : «MIXTE»

EXERCICES SUR LE CHAPITRE 1 : «MIXTE» EXERCICES SUR LE CHAPITRE 1 : «MIXTE» 1. Les électeurs d'une grande ville américaine sont constitués de 40% de blancs, 40% de noirs et 20% d'hispaniques. Un candidat noir à la fonction de Maire espère

Plus en détail

Module Mixmod pour OpenTURNS

Module Mixmod pour OpenTURNS Module Mixmod pour OpenTURNS Régis LEBRUN EADS Innovation Works 23 septembre 2013 EADS IW 2013 (EADS Innovation Work) 23 septembre 2013 1 / 21 Outline Plan 1 OpenTURNS et propagation d incertitudes 2 Mixmod

Plus en détail

Qu est-ce qu une probabilité?

Qu est-ce qu une probabilité? Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont

Plus en détail

Leçon 4 : Typologie des SI

Leçon 4 : Typologie des SI Leçon 4 : Typologie des SI Typologie des SI Système formel Système informel Typologie des SI Chaque jour au sein d une organisation Le système d info stocke, traie ou restitue des quantités importantes

Plus en détail

UTFPR. Nada Benlahbib. [DATA MINING] Fertility Data Set

UTFPR. Nada Benlahbib. [DATA MINING] Fertility Data Set UTFPR [DATA MINING] Fertility Data Set Sommaire Introduction... 2 1. Description de la base de données... 3 1.1. Origine de la base... 3 1.2. Description des attributs... 3 1.3. Exploration des données...

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

VISUBAT Votre partenaire BIM

VISUBAT Votre partenaire BIM VISUBAT Votre partenaire BIM MODÉLISATION BIM - AUDIT DE STRUCTURE - BIM MANAGER - BIM COORDINATEUR - AMO BIM - ACCOMPAGNEMENT des entreprises - MISE À NIVEAU de projets - SERVICE D ANALYSE du modele BIM

Plus en détail

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction

Baccalauréat STMG Nouvelle-Calédonie 14 novembre 2014 Correction Baccalauréat STMG Nouvelle-alédonie 14 novembre 014 orrection EXERIE 1 7 points Dans cet exercice, les parties A, B et sont indépendantes. Le tableau suivant donne le prix moyen d un paquet de cigarettes

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

[Aucun étudiant ne. sera autorisé à passer les examens sans la présentation de sa carte d'étudiant.].

[Aucun étudiant ne. sera autorisé à passer les examens sans la présentation de sa carte d'étudiant.]. [Aucun étudiant ne sera autorisé à passer les examens sans la présentation de sa carte d'étudiant.]. 1 ère Année 1 ère Année Licence Appliquée en Informatique de Gestion Mercredi 11/06/2014 Jeudi 12/06/2014

Plus en détail

Calatik, la vision métier et technique pour simplifier le pilotage du système d information

Calatik, la vision métier et technique pour simplifier le pilotage du système d information Calatik, la vision métier et technique pour simplifier le pilotage du système d information Le contexte : trop d outils, d écrans et de complexité Dans le domaine du pilotage du système d information,

Plus en détail

Ma Licence à l ESTIM

Ma Licence à l ESTIM Ministère de l Enseignement Supérieur et de la Recherche Scientifique L Ecole Supérieure des Technologies d Informatique et de Management Ma Licence à l ESTIM Livret des études Année universitaire 2010-2011

Plus en détail

Livre Blanc. Construire un système d information collaboratif de pilotage de l action publique. Mai 2010

Livre Blanc. Construire un système d information collaboratif de pilotage de l action publique. Mai 2010 Livre Blanc Construire un système d information collaboratif de pilotage de l action publique Mai 2010 Un livre blanc édité par : NQI - Network Quality Intelligence Tél. : +33 4 92 96 24 90 E-mail : info@nqicorp.com

Plus en détail

Mth2302B - Intra Été 2011

Mth2302B - Intra Été 2011 École Polytechnique de Montréal page 1 Contrôle périodique Été 2011--------------------------------Corrigé--------------------------------------T.Hammouche Question 1 (12 points) Mth2302B - Intra Été 2011

Plus en détail

2. Responsable principal de l effet de serre : le dioxyde de carbone CO 2.

2. Responsable principal de l effet de serre : le dioxyde de carbone CO 2. Etude d une maladie Patient : climat mondial Diagnostic : réchauffement excessif de la planète Terre Cause principale : le gaz carbonique Remède : les énergies renouvelables Un cours d introduction au

Plus en détail

Cours 1: lois discrétes classiques en probabilités

Cours 1: lois discrétes classiques en probabilités Cours 1: lois discrétes classiques en probabilités Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module: Stat inférentielles Définition Quelques exemples loi d une v.a

Plus en détail

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375

Il y a trois branches avec un seul pile pour un total de 8 branches donc la probabilité d avoir exactement une fois pile est de 3/8 = 0,375 OILITES Un arbre permet de modéliser une situation et de déterminer une probabilité dans le cas où on étudie plusieurs événements. Il est particulièrement bien adapté à la répétition d expériences, aux

Plus en détail

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL

Théorie des graphes. Introduction. Programme de Terminale ES Spécialité. Résolution de problèmes à l aide de graphes. Préparation CAPES UCBL Introduction Ces quelques pages ont pour objectif de vous initier aux notions de théorie des graphes enseignées en Terminale ES. Le programme de Terminale (voir ci-après) est construit sur la résolution

Plus en détail

Probabilités Loi binomiale Exercices corrigés

Probabilités Loi binomiale Exercices corrigés Probabilités Loi binomiale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : épreuve de Bernoulli Exercice 2 : loi de Bernoulli de paramètre

Plus en détail

Le métier de Chargé(e) d Etudes Statistiques

Le métier de Chargé(e) d Etudes Statistiques Le métier de Chargé(e) d Etudes Statistiques Nicolas Cabaj Sommaire Présentation du chargé d études statistiques 3 exemples de missions réalisées: Le scoring, illustré par un outil de détection des fraudes

Plus en détail

Concours interne de l agrégation du second degré. Section économie et gestion. Programme de la session 2013

Concours interne de l agrégation du second degré. Section économie et gestion. Programme de la session 2013 Concours interne de l agrégation du second degré Concours interne d accès à l échelle de rémunération des professeurs agrégés dans les établissements d enseignement privés sous contrat du second degré

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

P7. PANTHERE - VERSION INDUSTRIELLE Un logiciel performant et convivial pour la prévision des débits de dose.

P7. PANTHERE - VERSION INDUSTRIELLE Un logiciel performant et convivial pour la prévision des débits de dose. P7. PANTHERE - VERSION INDUSTRIELLE Un logiciel performant et convivial pour la prévision des débits de dose. L. GUIGUES EDF/SEPTEN 12-14 avenue Dutriévoz 69628 Villeurbanne Cedex RESUME PANTHERE est un

Plus en détail

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS

Formations EViews FORMATIONS GENERALES INTRODUCTIVES INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS Formations EViews FORMATIONS GENERALES INTRODUCTIVES DEB : DECOUVERTE DU LOGICIEL EVIEWS INTRO : INTRODUCTION A LA PRATIQUE DE L ECONOMETRIE AVEC EVIEWS FORMATIONS METHODES ECONOMETRIQUES VAR : MODELES

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Les probabilités. Chapitre 18. Tester ses connaissances

Les probabilités. Chapitre 18. Tester ses connaissances Chapitre 18 Les probabilités OBJECTIFS DU CHAPITRE Calculer la probabilité d événements Tester ses connaissances 1. Expériences aléatoires Voici trois expériences : - Expérience (1) : on lance une pièce

Plus en détail

Assurance auto des véhicules électriques: risques et réalité Stanislas Roth Directeur Excellence Technique IARD Particuliers AXA GLOBAL P&C

Assurance auto des véhicules électriques: risques et réalité Stanislas Roth Directeur Excellence Technique IARD Particuliers AXA GLOBAL P&C Assurance auto des véhicules électriques: risques et réalité Stanislas Roth Directeur Excellence Technique IARD Particuliers AXA GLOBAL P&C 6 décembre 203 - Paris 0 0 Sujets abordés dans cette présentation

Plus en détail

Gestion active des bâtiments. Classification des niveaux d intégration de la sécurité

Gestion active des bâtiments. Classification des niveaux d intégration de la sécurité Gestion active des bâtiments Classification des niveaux d intégration de la sécurité L évaluation de la performance d un bâtiment tient compte de sa consommation énergétique et de son empreinte environnementale

Plus en détail

Prévision de la demande

Prévision de la demande But : Pour prendre des décisions relatives à la structure et au fonctionnement opérationnel de tout système logistique; il faut s appuyer sur un système de prévision fiable. Concerne le long, moyen et

Plus en détail