Chapitre n 4 : L'ENERGIE EN CHIMIE

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre n 4 : L'ENERGIE EN CHIMIE"

Transcription

1 I) Calorimétrie, rappels : ) Equilibre thermique : Chimie - 6 ème année - Ecole Européenne Chapitre n 4 : L'ENERGIE EN CHIMIE - Un système est en équilibre thermique quand tous ses points sont à la même température. - Lorsque plusieurs corps sont mis en contact prolongé, ils se mettent à la même température et sont donc en équilibre thermique. - Une enceinte adiabatique ne permet aucun échange de chaleur entre l'extérieur et l'intérieur de cette enceinte. 2) Capacité thermique : Chauffons l'eau contenue dans un bécher à l'aide d'un thermoplongeur alimenté sous une tension U, parcouru par un courant d'intensité I, pendant une durée t. L'énergie électrique fournie au système est : W e = U.I. t. Notons la température initiale θ 0 de l'eau et déclenchons un chronomètre en immergeant le thermoplongeur. Le thermoplongeur cède de l'énergie sous forme de chaleur au bécher et à l'eau qu'il contient. Soit Q = W e la quantité de chaleur transférée du thermoplongeur à l'eau. L'eau et le bécher constituent le système. L'énergie électrique est transférée par chaleur. Après une durée t la température est devenue θ. La température a varié de θ θ 0 = θ. L'expérience montre que θ est proportionnelle à t : θ = a. t [] La chaleur fournie est, elle-même, proportionnelle à la durée : Q = W e = U.I. t = b. t [2] Des équations [] et [2] nous tirons : t = Q = θ b a Soit Q = K.( θ θ 0 ) avec K = b/a Et Q = K. θ La quantité de chaleur Q est proportionnelle à la variation de température du système. La constante de proportionnalité K est appelée capacité thermique du système. La capacité thermique dépend de la nature de l'objet chauffé. Q s'exprime en J, θ en K. La capacité thermique K s'exprime donc en joule par kelvin (J.K ). 3) Signe d'une quantité de chaleur : Si une quantité de chaleur Q est transférée à un système, sa température s'élève : θ > 0 donc Q > 0 De même, si un système cède une quantité de chaleur Q à l'extérieur, sa température s'abaisse : θ < 0 donc Q < 0 4) Chaleur massique : L'expérience montre que la même quantité de chaleur fournie à des masses d'eau m, 2.m, θ θ θ 3.m, 4.m,... provoque des élévations de températures θ,,, Donc, la quantité de chaleur qu'il faut fournir à une masse m d'eau pour élever sa température de θ, est : Q = m.c. θ Si on reprend l'expérience avec une autre substance homogène, la valeur de c change. Le coefficient c, qui caractérise le comportement de la substance homogène chauffée, est appelé chaleur massique de la substance. L'unité de chaleur massique est le J.K.kg. La chaleur massique de l'eau est : c eau = 4,8 kj.kg.k. ou c eau = 4,8 kj.kg. C Ecole Européenne de Francfort Page 59

2 5) Mesure calorimétrique : a) Principe : Page 60 L'énergie en Chimie Plaçons des corps à des températures initiales différentes (mélanges de liquides par exemples) dans une enceinte adiabatique constituée par un calorimètre. Après un certain temps, le vase calorimétrique et les corps qui s'y trouvent sont en équilibre thermique. La température finale est θ f. Choisissons pour système le vase calorimétrique et son contenu. Il n'échange aucune énergie avec l'extérieur, ni par travail (pas de variation de pression ni de volume), ni par chaleur (nous supposerons les fuites négligeables pendant la durée de la mise en équilibre thermique). Son énergie reste constante. A l'intérieur du calorimètre, à l'état initial, les corps sont à des températures différentes : il s'y produit des transferts d'énergie par chaleur. Soit Q i, la quantité de chaleur échangée par le corps i entre l'état initial et l'état final. Le calorimètre et son contenu forment un système isolé : ΣQ i = 0 Remarque : Le vase calorimétrique et l'agitateur participent aux échanges thermiques. b) Détermination expérimentale de grandeurs calorimétriques : - Dans une ère expérience, on détermine la capacité thermique K mat du matériel utilisé : Dans le calorimètre, on verse une masse m d'eau à la température ambiante et qui se met en équilibre thermique avec les parois du vase et les instruments à la température θ. Dans un bécher placé dans une étuve, on a mis une masse m 2 d'eau portée à la température θ 2 de l'étuve. On verse alors rapidement l'eau du bécher dans le calorimètre en fermant le couvercle. On note la température de l'eau qui atteint rapidement un palier pour une valeur θ f. Le système à l'intérieur du calorimètre est en équilibre thermique à la température θ f. Les différentes parties du système ont échangé de la chaleur (énergie thermique) : * le matériel a échangé : Q mat = K mat.(θ f θ ) > 0 * l'eau "froide" a échangé : Q = m.c eau.(θ f θ ) > 0 * l'eau "chaude" a échangé : Q 2 = m 2.c eau.(θ f θ 2 ) < 0 Le calorimètre et son contenu constituent un système isolé qui n'échange pas d'énergie thermique (chaleur) avec l'extérieur : Q + Q 2 + Q mat = 0 Donc : m.c eau.(θ f θ ) + m 2.c eau.(θ f θ 2 ) + K.(θ f θ ) = 0 m.c eau.( θf θ) + m 2.c eau.( θf θ2) D'où : K mat = ( θf θ) - Dans une 2 ème expérience, on détermine la chaleur massique c laiton du laiton : Dans le calorimètre et ses accessoires dont la capacité thermique K mat est connue, on verse une masse M d'eau à la température θ. Christian BOUVIER

3 Chimie - 6 ème année - Ecole Européenne Dans une étuve, on a placé un cylindre de laiton de masse m et de chaleur massique c laiton inconnue qu'on porte à la température θ 2 de l'étuve On place alors rapidement le cylindre dans l'eau du calorimètre et on note la température de l'eau en agitant. Elle atteint un palier à la valeur θ f. Le cylindre de laiton est alors en équilibre thermique avec l'eau et le vase calorimétrique. Il ne s'est produit aucun changement d'état, ni aucune réaction chimique. * L'eau a échangé une quantité de chaleur : Q = M.c eau.(θ f θ ) * Le matériel a échangé : Q 2 = K.(θ f θ ) * Le cylindre en laiton a échangé : Q 3 = m.c laiton.(θ f θ 2 ) Le calorimètre et son contenu constituent un système isolé dont l'énergie reste constante : Q + Q 2 + Q 3 = 0 Donc : M.c eau.(θ f θ ) + K.(θ f θ ) + m.c laiton.(θ f θ 2 ) = 0 D'où : c laiton = II) Changement d'état : ) Les états de la matière : M.ce.( θf θ) + K.( θf θ) m.( θ2 θ) Un corps pur donné peut se présenter sous 4 états : solide, liquide, gazeux et plasma. Seuls les trois premiers états intéressent le chimiste. Dans un corps solide, les liaisons sont plus fortes qu'à l'état liquide, et ces liaisons sont quasi absentes dans le cas d'un gaz. Pour passer d'un état à un autre, il faut donc "apporter" ou "retirer" de l'énergie au système, pour "briser" les liaisons. A chaque type de changement d'état d'un système à pression constante correspond une variation de son énergie. 2) Chaleur latente de changement d'état : La chaleur latente de changement d'état, molaire L, ou massique l, correspond à la quantité d'énergie thermique Q qu'il faut fournir à l'unité de quantité de matière (mole), ou de masse (kg), d'un corps pur pour qu'il change d'état, cette transformation ayant lieu à température et pression constantes : Q = m.l = n.l Par exemple pour le passage de l'état liquide à l'état de vapeur on parlera de chaleur latente de vaporisation massique l vaporisation ou molaire L vaporisation. Remarque : La chaleur latente (massique ou molaire) est définie pour une température donnée de changement d'état sous une pression donnée. Pour faire fondre mol de glace, donc transformer de l'eau solide en eau liquide, à 0 C et sous une pression 03 hpa, il faut fournir de la chaleur et L fusion = + 6,03 kj.mol -. Dans les même conditions de température et de pression, pour transformer mol d'eau liquide en glace, il faut "pomper" de la chaleur et L solidification = 6,03 kj.mol -. D'une façon générale : Q, L ou l sont positifs pour une fusion, une vaporisation, une sublimation et négatifs pour une solidification, une liquéfaction, une condensation. De plus : L fusion = L solidification ou l fusion = l solidification L vaporisation = L liquéfaction ou l vaporisation = l liquéfaction L sublimation = L condensation solide ou l sublimation = l condensation solide Ecole Européenne de Francfort Page 6

4 L'énergie en Chimie III) Echange d'énergie lors d'une réaction chimique : ) Expériences : On dissout de la soude (NaOH) dans 00 ml d'eau contenue dans un bécher. On recommence l'expérience en dissolvant du chlorure d'ammonium (NH 4 Cl), puis du chlorure de sodium (NaCl), chaque fois dans 00 ml d'eau (voir figure). Pour chaque expérience, on mesure la température avant dissolution puis après. L'expérience montre que, lors de la dissolution dans l'eau de : - l'hydroxyde de sodium (NaOH), la température de la solution augmente : NaOH (s) Na + (aq) + OH (aq) (la température augmente) - chlorure d'ammonium (NH 4 Cl), la température de la solution diminue : + NH 4 Cl (s) NH 4 (aq) + Cl (aq) (la température diminue) - chlorure de sodium (NaCl), la température ne varie pas : + NaCl (s) NH 4 (aq) + Cl (aq) (la température ne varie pas) 2) Classement des réactions chimiques : - réaction exothermique : Lors de la dissolution de l'hydroxyde de sodium dans l'eau, l'élévation de température montre que le phénomène s'accompagne d'un dégagement d'énergie thermique. Une réaction exothermique est une réaction qui libère de l'énergie thermique. - Réaction endothermique : Lors de la dissolution du chlorure d'ammonium dans l'eau, la diminution de la température montre que le phénomène s'accompagne d'une absorption d'énergie thermique. Une réaction endothermique est une réaction qui absorbe de l'énergie thermique. - Réaction athermique : Lors de la dissolution du chlorure de sodium dans l'eau, la stabilité de la température montre que le phénomène ne s'accompagne d'aucun échange d'énergie thermique. Une réaction athermique est une réaction qui n'échange pas d'énergie thermique. IV) Notion d'enthalpie de réaction : ) Principe de conservation de l'énergie : Le principe de conservation de l'énergie implique que si une partie du système isolé gagne (ou perd) de l'énergie, une autre partie en perd (ou en gagne) une quantité équivalente. 2) Enthalpie de réaction : L'enthalpie est une fonction d'état de la thermodynamique, dont la variation permet d'exprimer la quantité de chaleur mise en jeu pendant la transformation d'un système au cours de laquelle celui-ci reçoit ou fournit un travail mécanique. Lors d'une transformation monobare (même pression à la fin qu'au début, mais pas forcément pression constante), la variation d'enthalpie H est égale à la quantité de chaleur échangée avec l'extérieur. Les réactions chimiques ayant souvent lieu à pression constante, l'enthalpie est largement utilisée en thermochimie pour calculer les chaleurs échangées lors d'une réaction. L'enthalpie étant une fonction d'état : La variation d'enthalpie H ne dépend que de l'état initial et de l'état final, elle ne dépend pas de la façon de passer de l'état initial à l'état final. Page 62 Christian BOUVIER

5 a) Réaction exothermique : Chimie - 6 ème année - Ecole Européenne Si le réactif (NaOH (s)) qui se transforme perd de l'énergie, c'est qu'il possède un contenu énergétique. Ce contenu énergétique est appelé enthalpie du réactif et il est désigné par H R. L'enthalpie représente une énergie potentielle chimique à l'échelle microscopique : c'est la somme des énergies de liaison entre les constituants élémentaires du réactif. Après dissolution, les produits de réaction (Na + (s), Cl (s)) possèdent encore un contenu énergétique appelé enthalpie de produit désigné par H P, somme des énergies de liaison entre les constituants élémentaires des produits. Dans le cas de la dissolution de l'hydroxyde de sodium, le contenu énergétique H R du réactif (NaOH (s)) est supérieur au contenu H P des produits (Na + (aq) et OH (aq)) : H R > H P Au cours de la réaction de dissolution, il y a variation de l'enthalpie, et on écrit : H = H P H R < 0 On peut représenter l'évolution de l'enthalpie du système au cours du temps par un diagramme : On peut généraliser au cas d'une réaction chimique quelconque : Lors d'une réaction exothermique, la variation d'enthalpie est négative : H exo < 0. b) Réaction endothermique : De la même façon, le réactif (NH 4 Cl (s)) qui gagne de l'énergie, possède un contenu énergétique. Ce contenu énergétique est l'enthalpie du réactif désigné par H R. + Après dissolution, les produits de la réaction (NH 4 (aq) et Cl (aq)) possèdent encore de l'énergétique appelé enthalpie de produit H P. Dans le cas de la dissolution du chlorure d'ammonium, le contenu énergétique H R du réactif (NH 4 Cl (s)) est inférieur au contenu énergétique H P des produits + (NH 4 (aq) et Cl (aq)) : H R < H P Au cours de la réaction de dissolution, la variation d'enthalpie est : H = H P H R > 0 On peut représenter l'évolution de l'enthalpie du système au cours du temps par un diagramme : D'une façon générale : Lors d'une réaction endothermique, la variation d'enthalpie est positive : H endo > 0. 3) Unité et ordre de grandeur : L'enthalpie est une forme d'énergie et se mesure donc en joule (J). variation Exemple : Réaction phénomène d'énergie kj.mol Vaporisation d'une mole d'éthanol endothermique 39 Dissolution d'une mole de KNO 3 (s) endothermique 35 Dissolution d'une mole de NaOH (s) exothermique 42 Combustion d'une mole de C pur exothermique 393 Combustion d'une mole de glucose exothermique 283 Ecole Européenne de Francfort Page 63

6 V) Origine moléculaire de l'enthalpie : ) Energie chimique de liaison : L'énergie en Chimie Reprenons le cas de la dissolution d'un cristal ionique. Considérons, pour simplifier un modèle de cristal ionique à deux dimensions introduit dans de l'eau. On sait que : - les ions sont liés par des interactions électriques (liaisons ioniques), - les ions sont en perpétuel mouvement autour de leur position (agitation thermique), - les molécules d'eau sont des dipôles électriques. On montre en physique que dans un milieu diélectrique les forces électrostatiques peuvent être considérablement diminuées (divisées par 80 environ dans le cas de l'eau!). On peut alors expliquer la dissolution du cristal par une succession de deux phénomènes qui s'enchaînent : - en présence des molécules d'eau, les ions situés à la surface du cristal ne sont plus assez liés, et leur agitation suffit à les libérer du cristal (cette "destruction" du cristal absorbe de l'énergie). - Une fois détachés, les ions s'entourent d'un "cortège" de molécules d'eau (polaires). Ils sont ainsi stabilisés dans leur position "isolée" (les ions "solvatés" libèrent de l'énergie). La dissolution est donc la succession de deux phases : - la destruction du cristal qui absorbe l'énergie E d. - la solvatation des ions qui libère l'énergie E s. Bien sûr, lors de la dissolution du cristal, les deux phases ont lieu simultanément pour l'ensemble des ions, mais on peut représenter l'évolution de l'enthalpie du système au cours du temps. Sur un diagramme, on peut envisager trois cas : si E d < E s si E d > E s si E d = E s 2) Généralisation de la notion d'enthalpie : D'une façon générale, lors d'une réaction chimique, des réactifs se transforment en produits. Lors de cette transformation, le nombre d'atomes et leur nature restent inchangés (principe de conservation de la matière). On peut concevoir, de manière simplifiée, que la réaction se déroule en deux étapes : - un apport d'énergie E d, rompt toutes les liaisons entre atomes des molécules des réactifs, - les liaisons entre atomes se reforment dans les produits en libérant l'énergie E f. Page 64 Christian BOUVIER

7 Chimie - 6 ème année - Ecole Européenne Si l'énergie E f dégagée lors de la formation des produits est supérieure à l'énergie E d absorbée lors de la destruction des réactifs, (E d < E f ) la réaction est exothermique. Si l'énergie E f dégagée lors de la formation des produits est inférieure à l'énergie E d absorbée lors de la destruction des réactifs, (E d > E f ) la réaction est endothermique. Si l'énergie E f dégagée lors de la formation des produits est égale à l'énergie E d absorbée lors de la destruction des réactifs, (E d E f ) la réaction est athermique. Remarque : Lorsqu'on mélange un volume de dioxygène à deux volumes de dihydrogène (mélange stœchiométrique) à la pression normale et à la température de 25 C, rien ne se passe. Il faut produire une étincelle pour déclencher une explosion. La réaction de synthèse de l'eau : O H 2 2 H 2 O est très exothermique. Elle nécessite pourtant un apport initial d'énergie (énergie d'activation). VI) Mesure de l'enthalpie d'une réaction : ) Enthalpie de dissolution : Nous réalisons l'expérience dans un calorimètre avec ses accessoires à la température θ 0. Versons une masse m d'eau à la température ambiante θ 0. Introduisons une masse m 2 de cristal à dissoudre, à la température ambiante θ 0, et fermons rapidement le calorimètre. Le système est constitué par : - les parois internes du calorimètre et ses accessoires de capacité thermique K connue. - la solution de masse m + m 2 = m et de chaleur massique c sol c eau = 4,8 kj.kg.c. Au bout de quelques instants la température se stabilise à une nouvelle valeur finale θ f. La solution a donc échangé une quantité de chaleur Q sol = m.c eau.(θ f θ 0 ) La température du calorimétre et de ses accessoires est passée de θ 0 à θ f. Il a donc échangé la quantité de chaleur Q cal = K.(θ f θ 0 ). Le calorimètre et son contenu constituent un système thermiquement isolé : Le principe de conservation de l'énergie nous permet d'affirmer que lors de la réaction de dissolution, toute l'énergie produite (ou absorbée) par la réaction chimique est totalement transformée en chaleur, à pression constante, nous aurons : H + ΣQ = 0 ou H = ΣQ D'où H = m.c eau. θ K. θ ou θ = θ f θ 0 = θ finale θ initiale. - Si la réaction est exothermique, comme dans le cas de la dissolution de NaOH dans l'eau, θ > 0, ΣQ > 0 et H < 0 - Si la réaction est endothermique, comme dans le cas de la dissolution de NH 4 Cl dans l'eau, θ < 0, ΣQ < 0 et H > 0 Dans la suite nous admettrons souvent que le terme K. θ est négligeable devant le terme m.c eau. θ, et nous poserons : H = Q = c eau.m. θ 2) Enthalpie standard molaire de formation : D'une façon générale, nous admettrons que, par une mesure calorimétrique à pression constante, il est possible de déterminer l'enthalpie d'une réaction chimique quelconque. Les changements d'états s'accompagnent d'effets thermiques qui viennent s'ajouter à ceux des réactions chimiques : Il est indispensable d'indiquer l'état physique des réactifs et des produits. On appelle enthalpie standard molaire H 0 de formation d'un composé A, l'effet thermique à pression constante ramené à une mole de A, à partir de ses constituants, pris dans les conditions standards de pression et de température. Exemple : O 2 2 (gaz) + H 2 (gaz) H 2 O (liquide) : H 0 = 286 kj.mol. C (solide) + O 2 (gaz) CO 2 (gaz) : H 0 = 393 kj.mol. Ecole Européenne de Francfort Page 65

8 L'énergie en Chimie VII) Calcul de l'enthalpie d'une réaction, loi de Hess : ) Enthalpie standard : L'enthalpie étant une fonction d'état, on peut énoncer le principe suivant : La variation d'enthalpie d'une réaction est égale à la somme des enthalpies de formation des produits moins la somme des enthalpies de formation des réactifs : H 0 = Σ[ H 0 f(produits)] Σ[ H 0 f(réactifs)] 2) Généralisation de l'énoncé : Lorsqu'une réaction chimique est la somme de plusieurs réactions partielles, alors la chaleur Q = H de cette réaction est la somme des chaleurs des réactions partielles. 3) Principe du calcul : Il faut écrire un cycle de plusieurs réactions, dans lequel figure la réaction étudiée. - Vérifier que les données sont, soit liées à une réaction particulière, soit des données molaires (valable pour une mol du constituant). - Vérifier que tous les constituants figurent dans le cycle et tenir compte de l'état physique des constituants (solide, liquide, gaz ou ion en solution). - Vérifier que la somme des coefficients stœchiométriques correspond aux coefficients de l'équation de la réaction à étudier. - S'assurer que si une réaction a été inversée, le signe de H ou Q a bien été changé. 4) Exemples de calculs : a) Enthalpie molaire standard de vaporisation de l'eau : Nous voulons calculer l'enthalpie standard molaire de vaporisation de l'eau. Nous devons donc déterminer l'enthalpie molaire H 0 de la réaction : H 2 O (l) H 2 O (g) On donne les enthalpies standards molaires de formation suivantes : H 2 (g) + 2 O 2 (g) H 2 O (g) H 0 = 24,8 kj.mol H 2 (g) + 2 O 2 (g) H 2 O (l) H 0 2 = 285,9 kj.mol Les enthalpies H 0 et H 0 2 sont des enthalpies molaires! Le diagramme de Hess s'écrit : H 0 H 2 O (l) H 2 O (g) H 0 2 H 0 H 2 (g) + 2 O 2 (g) Nous obtenons donc directement l'enthalpie molaire de vaporisation en écrivant : H 0 = H H 0 = 285,9 24,8 = 44, kj.mol. b) Enthalpie molaire standard de formation du méthane : Nous voulons calculer l'enthalpie standard de formation du méthane à partir des éléments C et H. Nous devons déterminer l'enthalpie molaire H 0 de la réaction : C (s) + 4 H (g) CH 4 (g) On donne les enthalpies standards molaires des réactions suivantes : 2 H (g) H 2 (g) H 0 = 437,6 kj.mol C (s) + 2 H 2 (g) CH 4 (g) H 0 2 = 75,2 kj.mol C (g) + 4 H (g) CH 4 (g) H 0 3 = 67,6 kj.mol Page 66 Christian BOUVIER

9 Chimie - 6 ème année - Ecole Européenne Le diagramme de Hess s'écrit : H 0 C (s) + 4 H (g) CH 4 (g) 2x H 0 H 0 2 C (s) + 2 H 2 (g) Nous obtenons l'enthalpie molaire standard de formation du méthane : H 0 = 2x H 0 + H 0 2 = 2x437,6 75,2 = 950,4 kj.mol. c) Enthalpie molaire standard de formation de l'acide sulfurique : Nous voulons calculer l'enthalpie standard de formation de l'acide sulfurique à partir des corps élémentaires. Nous devons déterminer l'enthalpie molaire H 0 de la réaction : S (s) + H 2 (g) + 2 O 2 (g) H 2 SO 4 (l) On donne les enthalpies standards molaires des réactions suivantes : SO 3 (g) + H 2 O (l) H 2 SO 4 (l) H 0 = 80 kj.mol 3 S (s) + 2 O 2 (g) SO 3 (g) H 0 2 = 395 kj.mol H 2 (g) + 2 O 2 (g) H 2 O (l) H 0 3 = 286 kj.mol Pour garder des coefficients stœchiométriques entiers, nous pouvons écrire : 2 S (s) + 2 H 2 (g) + 4 O 2 (g) 2 H 2 SO 4 (l) 2x H 0 Puis 2 S (s) + 3 O 2 (g) + 2 H 2 (g) + O 2 (g) 2 H 2 SO 4 (l) 2x H 0 2 2x H 0 3 2x H 0 2 SO 3 (g) + 2 H 2 O (l) Nous obtenons l'enthalpie molaire de formation de l'acide sulfurique : H 0 = H 0 + H H 0 3 = = 76 kj.mol. d) Enthalpie molaire standard de formation du dioxyde de carbone : Nous voulons calculer l'enthalpie standard de formation du dioxyde de carbone à partir des corps élémentaires. Nous devons déterminer l'enthalpie molaire H 0 de la réaction : C (s) + O 2 (g) CO 2 (g) [] On donne les enthalpies standards molaires des réactions suivantes : CO (g) + H 2 (g) H 2 O (g) + C (s) H 0 = 3 kj.mol CO (g) + 2 O 2 (g) CO 2 (g) H 0 2 = 283 kj.mol H 2 (g) + 2 O 2 (g) H 2 O (g) H 0 3 = 242 kj.mol Ajoutons H 2 O (g) aux deux membres de l'équation [] puis multiplions par deux : 2 C (s) + 2 O 2 (g) + 2 H 2 O (g) 2 CO 2 (g) + 2 H 2 O (g) Nous pouvons également découper un membre d'une équation en deux parties : 2 O 2 (g) O 2 (g) + O 2 (g) 2x H 0 Puis 2 C (s) + 2 H 2 O (g) + 2 O 2 (g) 2 CO 2 (g) + 2 H 2 O (g) 2x H 0 2x H 0 2 2x H CO (g) + 2 H 2 (g) + 2 O 2 (g) 2 CO (g) + O 2 (g) + 2 H 2 (g) + O 2 (g) Nous obtenons l'enthalpie molaire de formation du dioxyde de carbone : 2x H 0 = 2x H 0 + 2x H x H 0 3 Soit H 0 = H 0 + H H 0 3 = = 656 kj.mol. Ecole Européenne de Francfort Page 67

10 VIII) Ordre et désordre, notion d'entropie : ) Expérience fictive : L'énergie en Chimie Imaginons l'expérience suivante : On place dans un calorimètre, de capacité thermique négligeable (K mat = 0), un solide () homogène en laiton de masse m, à la température θ = 20 C. La chaleur massique du laiton est connue est vaut c laiton. A l'instant initial, on place dans le calorimètre un autre solide (2) en laiton, de masse m, identique au premier mais porté à une température θ 2 = 40 C. Les deux solides (système étudié) sont en contact prolongé dans le calorimètre. Dans le cas de notre expérience, le principe de conservation de l'énergie, ou premier principe de la thermodynamique, précise que le calorimètre ne permet pas d'échange d'énergie thermique entre le système et le milieu extérieur, donc : Q + Q 2 = 0 Rien n'empêche d'imaginer que le solide () s'est refroidi à la température θ' = 0 C alors que le solide (2) s'est réchauffé à une température θ' 2 = 50 C, en effet : les échanges de chaleurs Q = m.c laiton.(θ' θ ) et Q 2 = m.c laiton.(θ' 2 θ 2 ) sont tels que : m.c laiton.(θ' θ ) + m.c laiton.(θ' 2 θ 2 ) = m.c laiton.[(θ' θ ) + (θ' 2 θ 2 )] = 0 Conclusion : Le premier principe de la thermodynamique ne permet pas, à lui seul, d'expliquer que le solide "froid" se réchauffe et atteint une température θ f, tandis que le solide "chaud" se refroidi et atteint la même température θ f. Donc le fait intuitif que, lorsque plusieurs corps sont mis en contact prolongé, ils se mettent à la même température, ne résulte pas du principe de conservation de l'énergie pour un système isolé : il faut faire appel à un deuxième principe. 2) Entropie d'un système : Les scientifiques utilisent une grandeur mesurable qui caractérise le degré de désordre d'un système : cette grandeur est appelée entropie S. Remarque : Plus le désordre est grand et plus l'entropie est grande (toute fois, les deux grandeurs ne sont pas proportionnelles!). Remarque : Dans un système de molécules, plus la température est élevée plus l'agitation désordonnée des molécules est grande. Remarque : Quand on passe de l'état solide à l'état liquide puis à l'état gazeux, le désordre du système augmente. 3) Deuxième principe de la thermodynamique et évolution temporelle : Imaginons un système fictif constitué de "jetons" circulaires soit rouges soit blancs, disposés sur un plateau horizontal. Au début les jetons sont "rangés" soigneusement par lignes de couleurs alternatives. Nous agitons le plateau pour "mélanger les jetons". Plus l'agitation se prolonge et plus le désordre augmente : à la date t à la date t 2 à la date t 3 Page 68 Christian BOUVIER

11 Chimie - 6 ème année - Ecole Européenne Les dates étant t < t 2 < t 3, l'entropie du système évolue d'une façon telle que S < S 2 < S 3. Si l'expérience était filmée, la projection du film dans le sens inverse nous choquerait : nous savons que le désordre ne peut que croître lorsque nous agitons le plateau. On peut généraliser la constatation faite sur cet exemple fictif en disant qu'un système isolé évolue, au cours du temps, spontanément vers un état de plus grand désordre. Les scientifiques énoncent le deuxième principe de la thermodynamique en disant : L'entropie S d'un système isolé ne peut qu'augmenter (S finale S initiale = S > 0). 4) Estimation du désordre en chimie : Comment estimer (de façon simplifier) la variation de désordre ente réactifs et produits? Nous nous restreindrons aux cas où des solides, des liquides ou des corps en solution se transforment en totalité ou en partie en gaz. L'état gazeux étant plus désordonné que les autres états, nous admettrons que : Une estimation de la variation du désordre (et donc de la variation d'entropie S) est donnée par la variation du nombre de moles de gaz n g dans l'évolution d'un système chimique. Soit n g (R) la quantité de matière sous forme de gaz dans les réactifs et soit n g (P) la quantité de matière sous forme de gaz dans les produits. La variation du nombre de moles de gaz au cours d'une réaction est donnée par : n g = n g (P) n g (R) - si n g > 0, la réaction a lieu avec augmentation du désordre. - si n g < 0, la réaction a lieu avec diminution du désordre. IX) Réaction chimique thermodynamiquement possible : ) Présentation : Un morceau de magnésium introduit dans une solution d'acide chlorhydrique réagit en donnant un dégagement de dihydrogène suivant la réaction : Mg (s) + 2 H + (aq) Mg 2+ (aq) + H 2 (g) Si on remplace le magnésium par du cuivre, rien ne se produit. Une réaction est thermodynamiquement possible lorsque les réactifs réagissent dès qu'ils sont mis en présence. Pourquoi certains réactifs réagissent pour se transformer en produits alors que d'autres ne réagissent pas du tout? 2) Facteur enthalpie : Nous admettrons qu'une réaction chimique est thermodynamiquement possible si elle est exothermique ( H < 0), c'est-à-dire lorsque au cours de la réaction, il se forme des produits plus stables que les réactifs. Exemple : Mg (s) + 2 H + (aq) Mg 2+ (aq) + H 2 (g) H 0 = 463 kj.mol (spontanée). C (s) + O 2 (g) CO 2 (g) H 0 = 393 kj.mol (spontanée). 4 Fe (s) + 3 O 2 (g) 2 Fe 2 O 3 (s) H 0 = 824 kj.mol (spontanée). CaCO 3 (s) CaO (s) + CO 2 (g) H 0 = + 78 kj.mol (non spontanée). 3) Facteur entropie : Toutes les réactions exothermiques sont thermodynamiquement possibles, mais il existe des réactions endothermiques qui le sont également. L'expérience montre et nous admettrons qu'une réaction chimique endothermique est thermodynamiquement possible si l'entropie de la réaction augmente ( S > 0), c'est-à-dire lorsque au cours de la réaction, le nombre de moles de gaz des produits est plus grand que le nombre de moles de gaz des réactifs ( n g > 0). Ecole Européenne de Francfort Page 69

12 L'énergie en Chimie Exemple : Les réactions suivantes sont toutes endothermiques : 4) Autres facteurs : N 2 O 4 (g) 2 NO 2 (g) éther (l) éther (g) n g = 2 = : S > 0 (spontanée). n g = 0 = : S > 0 (spontanée). D'autres facteurs interviennent dans l'évolution thermodynamique d'une réaction : - nature des contacts entre les réactifs (solide-liquide, solide-solide ) - la température du milieu réactionnel - la pression du milieu (surtout si les réactifs sont gazeux) - la concentration des réactifs (nous verrons dans une prochaine leçon, un autre critère d'évolution spontanée) - l'énergie d'activation de la réaction. 5) Conclusion : Si on sait qu'une réaction est expérimentalement possible, on peut expliquer la spontanéité par l'un des facteurs étudiés : réaction exothermique ou réaction endothermique avec augmentation du nombre de moles de gaz. Inversement il est difficile de prévoir si une réaction chimique est thermodynamiquement possible à l'aide des seuls facteurs enthalpie et entropie : on peut seulement prévoir qu'une réaction PEUT avoir lieu. Nous verrons, par la suite, qu'en solution aqueuse, il est possible de prévoir l'évolution d'une réaction en comparant le "quotient" Q de la réaction à la "constante" K r de cette réaction. Page 70 Christian BOUVIER

13 I) Calorimétrie, rappels : ) Equilibre thermique : Chimie - 6 ème année - Ecole Européenne A RETENIR - Un système est en équilibre thermique quand tous ses points sont à la même température. - Lorsque plusieurs corps sont mis en contact prolongé, ils se mettent à la même température et sont donc en équilibre thermique. - Une enceinte adiabatique ne permet aucun échange de chaleur entre l'extérieur et l'intérieur de cette enceinte. 2) Capacité thermique : La capacité thermique K s'exprime donc en joule par kelvin (J.K ). 3) Chaleur massique : Le coefficient c, qui caractérise le comportement de la substance homogène chauffée, est appelé chaleur massique de la substance. L'unité de chaleur massique est le J.K.kg. La chaleur massique de l'eau est : c eau = 4,8 kj.kg.k. ou c eau = 4,8 kj.kg. C 4) Mesure calorimétrique : II) Changement d'état : K mat = m.c c laiton = eau.( θ f θ) + m 2.c ( θf θ) eau.( θ θ M.c e.( θf θ) + K.( θf θ) m.( θ θ ) ) Les états de la matière : Un corps pur donné peut se présenter sous 4 états : solide, liquide, gazeux et plasma. 2) Chaleur latente de changement d'état : La chaleur latente de changement d'état, molaire L, ou massique l, correspond à la quantité d'énergie thermique Q qu'il faut fournir à l'unité de quantité de matière (mole), ou de masse (kg), d'un corps pur pour qu'il change d'état, cette transformation ayant lieu à température et pression constantes : Q = m.l = n.l Q, L ou l sont positifs pour une fusion, une vaporisation, une sublimation et négatifs pour une solidification, une liquéfaction, une condensation. De plus : L fusion = L solidification ou l fusion = l solidification L vaporisation = L liquéfaction ou l vaporisation = l liquéfaction L sublimation = L condensation solide ou l sublimation = l condensation solide III) Echange d'énergie lors d'une réaction chimique : ) Classement des réactions chimiques : Une réaction exothermique est une réaction qui libère de l'énergie thermique. Une réaction endothermique est une réaction qui absorbe de l'énergie thermique. Une réaction athermique est une réaction qui n'échange pas d'énergie thermique. 2 Ecole Européenne de Francfort Page 7 f 2 )

14 L'énergie en Chimie IV) Notion d'enthalpie de réaction : ) Principe de conservation de l'énergie : Le principe de conservation de l'énergie implique que si une partie du système isolé gagne (ou perd) de l'énergie, une autre partie en perd (ou en gagne) une quantité équivalente. 2) Enthalpie de réaction : L'enthalpie est une fonction d'état de la thermodynamique, dont la variation permet d'exprimer la quantité de chaleur mise en jeu pendant la transformation d'un système au cours de laquelle celui-ci reçoit ou fournit un travail mécanique. Lors d'une transformation monobare (même pression à la fin qu'au début, mais pas forcément pression constante), la variation d'enthalpie H est égale à la quantité de chaleur échangée avec l'extérieur. L'enthalpie étant une fonction d'état : La variation d'enthalpie H ne dépend que de l'état initial et de l'état final, elle ne dépend pas de la façon de passer de l'état initial à l'état final. Lors d'une réaction exothermique, la variation d'enthalpie est négative : H exo < 0. Lors d'une réaction endothermique, la variation d'enthalpie est positive : H endo > 0. V) Origine moléculaire de l'enthalpie : Si l'énergie E f dégagée lors de la formation des produits est supérieure à l'énergie E d absorbée lors de la destruction des réactifs, (E d < E f ) la réaction est exothermique. Si l'énergie E f dégagée lors de la formation des produits est inférieure à l'énergie E d absorbée lors de la destruction des réactifs, (E d > E f ) la réaction est endothermique. Si l'énergie E f dégagée lors de la formation des produits est égale à l'énergie E d absorbée lors de la destruction des réactifs, (E d E f ) la réaction est athermique. VI) Mesure de l'enthalpie d'une réaction : ) Enthalpie de dissolution : Lors de la réaction de dissolution, toute l'énergie produite (ou absorbée) par la réaction chimique est totalement transformée en chaleur, à pression constante, nous aurons : H + ΣQ = 0 ou H = ΣQ 2) Enthalpie standard molaire de formation : Il est indispensable d'indiquer l'état physique des réactifs et des produits. On appelle enthalpie standard molaire H 0 de formation d'un composé A, l'effet thermique à pression constante ramené à une mole de A, à partir de ses constituants, pris dans les conditions standards de pression et de température. VII) Calcul de l'enthalpie d'une réaction, loi de Hess : ) Enthalpie standard : La variation d'enthalpie d'une réaction est égale à la somme des enthalpies de formation des produits moins la somme des enthalpies de formation des réactifs : H 0 = Σ[ H 0 f(produits)] Σ[ H 0 f(réactifs)] Page 72 Christian BOUVIER

15 Chimie - 6 ème année - Ecole Européenne 2) Généralisation de l'énoncé : Lorsqu'une réaction chimique est la somme de plusieurs réactions partielles, alors la chaleur Q = H de cette réaction est la somme des chaleurs des réactions partielles. VIII) Ordre et désordre, notion d'entropie : ) Expérience fictive : Le premier principe de la thermodynamique ne permet pas, à lui seul, d'expliquer que le solide "froid" se réchauffe et atteint une température θ f, tandis que le solide "chaud" se refroidi et atteint la même température θ f. 2) Entropie d'un système : Les scientifiques utilisent une grandeur mesurable qui caractérise le degré de désordre d'un système : cette grandeur est appelée entropie S. 3) Deuxième principe de la thermodynamique et évolution temporelle : Un système isolé évolue, au cours du temps, spontanément vers un état de plus grand désordre. Les scientifiques énoncent le deuxième principe de la thermodynamique en disant : L'entropie S d'un système isolé ne peut qu'augmenter (S finale S initiale = S > 0). 4) Estimation du désordre en chimie : L'état gazeux étant plus désordonné que les autres états, nous admettrons que : Une estimation de la variation du désordre (et donc de la variation d'entropie S) est donnée par la variation du nombre de moles de gaz n g dans l'évolution d'un système chimique. La variation du nombre de moles de gaz au cours d'une réaction est donnée par : n g = n g (P) n g (R) - si n g > 0, la réaction a lieu avec augmentation du désordre. - si n g < 0, la réaction a lieu avec diminution du désordre. IX) Réaction chimique thermodynamiquement possible : ) Présentation : Une réaction est thermodynamiquement possible lorsque les réactifs réagissent dès qu'ils sont mis en présence. 2) Facteur enthalpie : Une réaction chimique est thermodynamiquement possible si elle est exothermique ( H < 0), c'est-à-dire lorsque au cours de la réaction, il se forme des produits plus stables que les réactifs. 3) Facteur entropie : Une réaction chimique endothermique est thermodynamiquement possible si l'entropie de la réaction augmente ( S > 0), c'est-à-dire lorsque au cours de la réaction, le nombre de moles de gaz des produits est plus grand que le nombre de moles de gaz des réactifs ( n g > 0). Il est difficile de prévoir si une réaction chimique est thermodynamiquement possible à l'aide des seuls facteurs enthalpie et entropie : on peut seulement prévoir qu'une réaction PEUT avoir lieu. Ecole Européenne de Francfort Page 73

16 L'énergie en Chimie I) Détermination de l'enthalpie par calorimétrie. POUR S'ENTRAÎNER Dans un récipient adiabatique, on verse m eau = 200 g d'eau pure à θ = 20 C et m CuSO4 = 4,3 g de sulfate de cuivre (II) anhydre (CuSO 4 ) à la même température. On négligera l'énergie thermique absorbée par le récipient et ses accessoires. La température finale de la solution est alors de θ 2 = 22,4 C. a) Calculer la variation d'enthalpie h de dissolution du sulfate de cuivre pour cette expérience. b) En déduire la valeur de variation d'enthalpie molaire de dissolution H (avec son signe). On donne : Chaleur massique de la solution (et de l'eau) c sol = 4,85 kj.c.kg. Masses molaires atomiques M O = 6 g.mol ; M S = 32 g.mol ; M Cu = 63,5 g.mol. II) Chaleur de réaction. On donne les variations d'enthalpie molaire de formation H (pour mole de produit formé) : - 3 C (s) + 4 H 2 (g) C 3 H 8 (g) H = 03,8 kj.mol. - C (s) + O 2 (g) CO 2 (g) H 2 = 393,5 kj.mol. - H 2 (g) + 2 O 2 (g) H 2 O (l) H 3 = 285,9 kj.mol. On considère la combustion complète du propane C 3 H 8 (g) dans le dioxygène gazeux O 2 (g). a) Ecrire l'équation-bilan de la cette combustion complète. b) Enoncer la Loi de Hess. c) Etablir un diagramme thermochimique en utilisant les données. d) En déduire la variation d enthalpie molaire H (énergie transférée lors de la combustion d'une mole de molécule de propane) de cette réaction. e) Cette réaction est-elle endo, exo ou athermique? III) Fonctionnement d'un réfrigérateur. Les réfrigérateurs domestiques utilisent les phénomènes de liquéfaction et de vaporisation d'un corps pur (le fréon) pour produire du froid. a) Quel est celui des deux organes, liquéfacteur ou évaporateur, qui doit être placé à l'intérieur du réfrigérateur? b) A quoi sert l'énergie électrique que l'on fournit au réfrigérateur et à quel organe du réfrigérateur (compresseur, liquéfacteur, détendeur, évaporateur) estelle fournie? c) En admettant que la détente (dans le détendeur) et la compression (dans le compresseur) ont lieu rapidement, sans variation de température du fréon (transformations isothermes), on a représenté sur deux axes (température θ et pression P) le cycle subit par le fréon. Indiquez pour chaque phase (AB, BC, CD, DE), dans quel organe du réfrigérateur (compresseur, liquéfacteur, détendeur, évaporateur) elle se produit. Page 74 Christian BOUVIER

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES

AIDE-MÉMOIRE LA THERMOCHIMIE TABLE DES MATIERES Collège Voltaire, 2014-2015 AIDE-MÉMOIRE LA THERMOCHIMIE http://dcpe.net/poii/sites/default/files/cours%20et%20ex/cours-ch2-thermo.pdf TABLE DES MATIERES 3.A. Introduction...2 3.B. Chaleur...3 3.C. Variation

Plus en détail

Mesures calorimétriques

Mesures calorimétriques TP N 11 Mesures calorimétriques - page 51 - - T.P. N 11 - Ce document rassemble plusieurs mesures qui vont faire l'objet de quatre séances de travaux pratiques. La quasi totalité de ces manipulations utilisent

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES

BREVET DE TECHNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES ~--------------~~-----~- ----~-- Session 2009 BREVET DE TECNICIEN SUPÉRIEUR QUALITÉ DANS LES INDUSTRIES ALIMENTAIRES ET LES BIO-INDUSTRIES U22 - SCIENCES PYSIQUES Durée: 2 heures Coefficient : 3 Les calculatrices

Plus en détail

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :

SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution : SP. 3 Concentration molaire exercices Savoir son cours Concentrations : Calculer les concentrations molaires en soluté apporté des solutions désinfectantes suivantes : a) Une solution de 2,0 L contenant

Plus en détail

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES

U-31 CHIMIE-PHYSIQUE INDUSTRIELLES Session 200 BREVET de TECHNICIEN SUPÉRIEUR CONTRÔLE INDUSTRIEL et RÉGULATION AUTOMATIQUE E-3 SCIENCES PHYSIQUES U-3 CHIMIE-PHYSIQUE INDUSTRIELLES Durée : 2 heures Coefficient : 2,5 Durée conseillée Chimie

Plus en détail

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples.

1 ère partie : tous CAP sauf hôtellerie et alimentation CHIMIE ETRE CAPABLE DE. PROGRAMME - Atomes : structure, étude de quelques exemples. Référentiel CAP Sciences Physiques Page 1/9 SCIENCES PHYSIQUES CERTIFICATS D APTITUDES PROFESSIONNELLES Le référentiel de sciences donne pour les différentes parties du programme de formation la liste

Plus en détail

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide

K W = [H 3 O + ] [OH - ] = 10-14 = K a K b à 25 C. [H 3 O + ] = [OH - ] = 10-7 M Solution neutre. [H 3 O + ] > [OH - ] Solution acide La constante d autoprotolyse de l eau, K W, est égale au produit de K a par K b pour un couple acide/base donné : En passant en échelle logarithmique, on voit donc que la somme du pk a et du pk b d un

Plus en détail

BTS BAT 1 Notions élémentaires de chimie 1

BTS BAT 1 Notions élémentaires de chimie 1 BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on

Plus en détail

Premier principe : bilans d énergie

Premier principe : bilans d énergie MPSI - Thermodynamique - Premier principe : bilans d énergie page 1/5 Premier principe : bilans d énergie Table des matières 1 De la mécanique à la thermodynamique : formes d énergie et échanges d énergie

Plus en détail

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE

THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE THEME 2. LE SPORT CHAP 1. MESURER LA MATIERE: LA MOLE 1. RAPPEL: L ATOME CONSTITUANT DE LA MATIERE Toute la matière de l univers, toute substance, vivante ou inerte, est constituée à partir de particules

Plus en détail

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique

Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Stockage de chaleur solaire par sorption : Analyse et contrôle du système à partir de sa simulation dynamique Kokouvi Edem N TSOUKPOE 1, Nolwenn LE PIERRÈS 1*, Lingai LUO 1 1 LOCIE, CNRS FRE3220-Université

Plus en détail

À propos d ITER. 1- Principe de la fusion thermonucléaire

À propos d ITER. 1- Principe de la fusion thermonucléaire À propos d ITER Le projet ITER est un projet international destiné à montrer la faisabilité scientifique et technique de la fusion thermonucléaire contrôlée. Le 8 juin 005, les pays engagés dans le projet

Plus en détail

MESURE DE LA TEMPERATURE

MESURE DE LA TEMPERATURE 145 T2 MESURE DE LA TEMPERATURE I. INTRODUCTION Dans la majorité des phénomènes physiques, la température joue un rôle prépondérant. Pour la mesurer, les moyens les plus couramment utilisés sont : les

Plus en détail

Titre alcalimétrique et titre alcalimétrique complet

Titre alcalimétrique et titre alcalimétrique complet Titre alcalimétrique et titre alcalimétrique complet A Introduction : ) Définitions : Titre Alcalimétrique (T.A.) : F m / L T.A. T.A.C. Définition : C'est le volume d'acide (exprimé en ml) à 0,0 mol.l

Plus en détail

Etudier le diagramme température-pression, en particulier le point triple de l azote.

Etudier le diagramme température-pression, en particulier le point triple de l azote. K4. Point triple de l azote I. BUT DE LA MANIPULATION Etudier le diagramme température-pression, en particulier le point triple de l azote. II. BASES THEORIQUES Etats de la matière La matière est constituée

Plus en détail

Premier principe de la thermodynamique - conservation de l énergie

Premier principe de la thermodynamique - conservation de l énergie Chapitre 5 Premier principe de la thermodynamique - conservation de l énergie 5.1 Bilan d énergie 5.1.1 Énergie totale d un système fermé L énergie totale E T d un système thermodynamique fermé de masse

Plus en détail

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6

Perrothon Sandrine UV Visible. Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 Spectrophotométrie d'absorption moléculaire Étude et dosage de la vitamine B 6 1 1.But et théorie: Le but de cette expérience est de comprendre l'intérêt de la spectrophotométrie d'absorption moléculaire

Plus en détail

Exemples d utilisation de G2D à l oral de Centrale

Exemples d utilisation de G2D à l oral de Centrale Exemples d utilisation de G2D à l oral de Centrale 1 Table des matières Page 1 : Binaire liquide-vapeur isotherme et isobare Page 2 : Page 3 : Page 4 : Page 5 : Page 6 : intéressant facile facile sauf

Plus en détail

Chapitre 11 Bilans thermiques

Chapitre 11 Bilans thermiques DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................

Plus en détail

Synthèse et propriétés des savons.

Synthèse et propriétés des savons. Synthèse et propriétés des savons. Objectifs: Réaliser la synthèse d'un savon mise en évidence de quelques propriétés des savons. I Introduction: 1. Présentation des savons: a) Composition des savons.

Plus en détail

Rappels sur les couples oxydantsréducteurs

Rappels sur les couples oxydantsréducteurs CHAPITRE 1 TRANSFORMATIONS LENTES ET RAPIDES 1 Rappels sur les couples oxydantsréducteurs 1. Oxydants et réducteurs Un réducteur est une espèce chimique capable de céder au moins un électron Demi-équation

Plus en détail

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE

A retenir : A Z m n. m noyau MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE CP7 MASSE ET ÉNERGIE RÉACTIONS NUCLÉAIRES I) EQUIVALENCE MASSE-ÉNERGIE 1 ) Relation d'équivalence entre la masse et l'énergie -énergie de liaison 2 ) Une unité d énergie mieux adaptée 3 ) application 4

Plus en détail

Exercices sur le thème II : Les savons

Exercices sur le thème II : Les savons Fiche d'exercices Elève pour la classe de Terminale SMS page 1 Exercices sur le thème : Les savons EXERCICE 1. 1. L oléine, composé le plus important de l huile d olive, est le triglycéride de l acide

Plus en détail

Transformations nucléaires

Transformations nucléaires I Introduction Activité p286 du livre Transformations nucléaires II Les transformations nucléaires II.a Définition La désintégration radioactive d un noyau est une transformation nucléaire particulière

Plus en détail

REACTIONS D OXYDATION ET DE REDUCTION

REACTIONS D OXYDATION ET DE REDUCTION CHIMIE 2 e OS - 2008/2009 : Cours et exercices -19- CHAPITRE 5 : REACTIONS D OXYDATION ET DE REDUCTION Chacun d entre nous a déjà observé l apparition de rouille sur un objet en fer, ou de «vert-degris»

Plus en détail

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -,

Physique Chimie. Réaliser les tests de reconnaissance des ions Cl -, Document du professeur 1/5 Niveau 3 ème Physique Chimie Programme A - La chimie, science de la transformation de la matière Connaissances Capacités Exemples d'activités Comment reconnaître la présence

Plus en détail

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30

BAC BLANC SCIENCES PHYSIQUES. Durée : 3 heures 30 Terminales S1, S2, S3 2010 Vendredi 29 janvier BAC BLANC SCIENCES PHYSIQUES Durée : 3 heures 30 Toutes les réponses doivent être correctement rédigées et justifiées. Chaque exercice sera traité sur une

Plus en détail

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points)

EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points) Bac S 2015 Antilles Guyane http://labolycee.org EXERCICE II. SYNTHÈSE D UN ANESTHÉSIQUE : LA BENZOCAÏNE (9 points) La benzocaïne (4-aminobenzoate d éthyle) est utilisée en médecine comme anesthésique local

Plus en détail

Chapitre 02. La lumière des étoiles. Exercices :

Chapitre 02. La lumière des étoiles. Exercices : Chapitre 02 La lumière des étoiles. I- Lumière monochromatique et lumière polychromatique. )- Expérience de Newton (642 727). 2)- Expérience avec la lumière émise par un Laser. 3)- Radiation et longueur

Plus en détail

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée

TS1 TS2 02/02/2010 Enseignement obligatoire. DST N 4 - Durée 3h30 - Calculatrice autorisée TS1 TS2 02/02/2010 Enseignement obligatoire DST N 4 - Durée 3h30 - Calculatrice autorisée EXERCICE I : PRINCIPE D UNE MINUTERIE (5,5 points) A. ÉTUDE THÉORIQUE D'UN DIPÔLE RC SOUMIS À UN ÉCHELON DE TENSION.

Plus en détail

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE

CORRIGE. CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE Thème : L eau CHAP 04-ACT PB/DOC Electrolyse de l eau 1/12 Domaine : Eau et énergie CORRIGE 1. ALIMENTATION ELECTRIQUE D'UNE NAVETTE SPATIALE 2.1. Enoncé L'alimentation électrique d'une navette spatiale

Plus en détail

Sujet. calculatrice: autorisée durée: 4 heures

Sujet. calculatrice: autorisée durée: 4 heures DS SCIENCES PHYSIQUES MATHSPÉ calculatrice: autorisée durée: 4 heures Sujet Spectrophotomètre à réseau...2 I.Loi de Beer et Lambert... 2 II.Diffraction par une, puis par deux fentes rectangulaires... 3

Plus en détail

CONCOURS COMMUN 2010 PHYSIQUE

CONCOURS COMMUN 2010 PHYSIQUE CONCOUS COMMUN SUJET A DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Corrigé Barème total points : Physique points - Chimie 68 points PHYSIQUE Partie A :

Plus en détail

Site : http://www.isnab.com mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ

Site : http://www.isnab.com mail : mennier@isnab.fr SUJET ES - session 2003 Page 1 68-(7(6VHVVLRQ Site : http://www.isnab.com mail : mennier@isnab.fr SUJET ES - session 003 Page 1 68-(7(6VHVVLRQ LE JUS E FRUIT 35(0,Ê5(3$57,(%LRFKLPLHSRLQWV L'analyse d'un jus de fruit révèle la présence d'un composé

Plus en détail

Thermodynamique (Échange thermique)

Thermodynamique (Échange thermique) Thermodynamique (Échange thermique) Introduction : Cette activité est mise en ligne sur le site du CNRMAO avec l autorisation de la société ERM Automatismes Industriels, détentrice des droits de publication

Plus en détail

Utilisation des 7 cartes d intensité jointes en annexe du règlement. A- Protection d une construction vis-à-vis des effets toxiques :

Utilisation des 7 cartes d intensité jointes en annexe du règlement. A- Protection d une construction vis-à-vis des effets toxiques : ANNEXE 7 Utilisation des 7 cartes d intensité jointes en annexe du règlement A- Protection d une construction vis-à-vis des effets toxiques : 1 carte est fournie pour l effet toxique : Carte N 1 «Taux

Plus en détail

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution

Les solutions. Chapitre 2 - Modèle. 1 Définitions sur les solutions. 2 Concentration massique d une solution. 3 Dilution d une solution Chapitre 2 - Modèle Les solutions 1 Définitions sur les solutions 1.1 Définition d une solution : Une solution est le mélange homogène et liquide d au moins deux espèces chimiques : Le soluté : c est une

Plus en détail

Capteur à CO2 en solution

Capteur à CO2 en solution Capteur à CO2 en solution Référence PS-2147CI Boîtier adaptateur Sonde ph Sonde température Sonde CO2 Page 1 sur 9 Introduction Cette sonde est conçue pour mesurer la concentration de CO 2 dans les solutions

Plus en détail

FICHE 1 Fiche à destination des enseignants

FICHE 1 Fiche à destination des enseignants FICHE 1 Fiche à destination des enseignants 1S 8 (b) Un entretien d embauche autour de l eau de Dakin Type d'activité Activité expérimentale avec démarche d investigation Dans cette version, l élève est

Plus en détail

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ

THERMODYNAMIQUE: LIQUEFACTION D UN GAZ THERMODYNAMIQUE: LIQUEFACTION D UN GAZ B. AMANA et J.-L. LEMAIRE 2 LIQUEFACTION D'UN GAZ Cette expérience permet d'étudier la compressibilité et la liquéfaction d'un fluide en fonction des variables P,

Plus en détail

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION)

SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Terminale S CHIMIE TP n 2b (correction) 1 SUIVI CINETIQUE PAR SPECTROPHOTOMETRIE (CORRECTION) Objectifs : Déterminer l évolution de la vitesse de réaction par une méthode physique. Relier l absorbance

Plus en détail

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable.

I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. DE3: I. Introduction: L énergie consommée par les appareils de nos foyers est sous forme d énergie électrique, facilement transportable. Aujourd hui, nous obtenons cette énergie électrique en grande partie

Plus en détail

DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES. Épreuve de Physique-Chimie. (toutes filières) Mardi 18 mai 2004 de 08h00 à 12h00

DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES. Épreuve de Physique-Chimie. (toutes filières) Mardi 18 mai 2004 de 08h00 à 12h00 CONCOURS COMMUN 004 DES ÉCOLES DES MINES D ALBI, ALÈS, DOUAI, NANTES Épreuve de Physique-Chimie (toutes filières) Mardi 18 mai 004 de 08h00 à 1h00 Barème indicatif : Physique environ /3 - Chimie environ

Plus en détail

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?

Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture? Thème 2 La sécurité Chap 1: Toujours plus vite... Introduction: Comment déterminer la vitesse d une voiture?! Il faut deux informations Le temps écoulé La distance parcourue Vitesse= distance temps > Activité

Plus en détail

ANALYSE SPECTRALE. monochromateur

ANALYSE SPECTRALE. monochromateur ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle

Plus en détail

C3. Produire de l électricité

C3. Produire de l électricité C3. Produire de l électricité a. Electricité : définition et génération i. Définition La matière est constituée d. Au centre de l atome, se trouve un noyau constitué de charges positives (.) et neutres

Plus en détail

Application à l astrophysique ACTIVITE

Application à l astrophysique ACTIVITE Application à l astrophysique Seconde ACTIVITE I ) But : Le but de l activité est de donner quelques exemples d'utilisations pratiques de l analyse spectrale permettant de connaître un peu mieux les étoiles.

Plus en détail

LABORATOIRES DE CHIMIE Techniques de dosage

LABORATOIRES DE CHIMIE Techniques de dosage LABORATOIRES DE CHIMIE Techniques de dosage Un dosage (ou titrage) a pour but de déterminer la concentration molaire d une espèce (molécule ou ion) en solution (généralement aqueuse). Un réactif de concentration

Plus en détail

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015

document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015 BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour

Plus en détail

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE

Les puissances 4. 4.1. La notion de puissance. 4.1.1. La puissance c est l énergie pendant une seconde CHAPITRE 4. LES PUISSANCES LA NOTION DE PUISSANCE 88 CHAPITRE 4 Rien ne se perd, rien ne se crée. Mais alors que consomme un appareil électrique si ce n est les électrons? La puissance pardi. Objectifs de ce chapitre

Plus en détail

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4)

4 ème PHYSIQUE-CHIMIE TRIMESTRE 1. Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique. PROGRAMME 2008 (v2.4) PHYSIQUE-CHIMIE 4 ème TRIMESTRE 1 PROGRAMME 2008 (v2.4) Sylvie LAMY Agrégée de Mathématiques Diplômée de l École Polytechnique Les Cours Pi e-mail : lescourspi@cours-pi.com site : http://www.cours-pi.com

Plus en détail

TECHNIQUES: Principes de la chromatographie

TECHNIQUES: Principes de la chromatographie TECHNIQUES: Principes de la chromatographie 1 Définition La chromatographie est une méthode physique de séparation basée sur les différentes affinités d un ou plusieurs composés à l égard de deux phases

Plus en détail

Physique : Thermodynamique

Physique : Thermodynamique Correction du Devoir urveillé n o 8 Physique : hermodynamique I Cycle moteur [Véto 200] Cf Cours : C P m C V m R relation de Mayer, pour un GP. C P m γr γ 29, 0 J.K.mol et C V m R γ 20, 78 J.K.mol. 2 Une

Plus en détail

Fiche de révisions sur les acides et les bases

Fiche de révisions sur les acides et les bases Fiche de révisions sur les s et les s A Définitions : : espèce chimique capable de libérer un (ou plusieurs proton (s. : espèce chimique capable de capter un (ou plusieurs proton (s. Attention! Dans une

Plus en détail

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014 http://www.udppc.asso.

Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie. 15/06/2014 http://www.udppc.asso. Baccalauréat STI2D et STL spécialité SPCL Épreuve de physique chimie Corrigé Session de juin 2014 en Polynésie 15/06/2014 http://www.udppc.asso.fr Une entreprise de BTP (Bâtiment et Travaux Publics) déménage

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome

PHYSIQUE-CHIMIE. Partie I - Propriétés de l atome PHYSIQUE-CHIMIE Ce sujet traite de quelques propriétés de l aluminium et de leurs applications. Certaines données fondamentales sont regroupées à la fin du texte. Partie I - Propriétés de l atome I.A -

Plus en détail

GENERALITES SUR LA MESURE DE TEMPERATURE

GENERALITES SUR LA MESURE DE TEMPERATURE Distributeur exclusif de GENERALITES SUR LA MESURE DE TEMPERATURE INTRODUCTION...2 GENERALITES SUR LA MESURE DE TEMPERATURE...2 La température...2 Unités de mesure de température...3 Echelle de température...3

Plus en détail

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques

Physique Chimie. Utiliser les langages scientifiques à l écrit et à l oral pour interpréter les formules chimiques C est Niveau la représentation 4 ème 2. Document du professeur 1/6 Physique Chimie LES ATOMES POUR COMPRENDRE LA TRANSFORMATION CHIMIQUE Programme Cette séance expérimentale illustre la partie de programme

Plus en détail

SECTEUR 4 - Métiers de la santé et de l hygiène

SECTEUR 4 - Métiers de la santé et de l hygiène SECTEUR 4 - Métiers de la santé et de l hygiène A lire attentivement par les candidats Sujet à traiter par tous les candidats inscrit au BEP Les candidats répondront sur la copie. Les annexes éventuelles

Plus en détail

DYNAMIQUE DE FORMATION DES ÉTOILES

DYNAMIQUE DE FORMATION DES ÉTOILES A 99 PHYS. II ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

Production d eau chaude sanitaire thermodynamique, que dois-je savoir?

Production d eau chaude sanitaire thermodynamique, que dois-je savoir? COURS-RESSOURCES Production d eau chaude sanitaire thermodynamique, que Objectifs : / 1 A. Les besoins en eau chaude sanitaire La production d'eau chaude est consommatrice en énergie. Dans les pays occidentaux,

Plus en détail

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2

Sommaire. Séquence 2. La pression des gaz. Séance 1. Séance 2. Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2 Sommaire La pression des gaz Séance 1 Comprimer de l air Séance 2 Mesurer la pression d un gaz Séance 3 Peut-on comprimer de l eau? Séance 4 Je fais le point sur la séquence 2 24 Cned, Physique - Chimie

Plus en détail

101 Adoptée : 12 mai 1981

101 Adoptée : 12 mai 1981 LIGNE DIRECTRICE DE L OCDE POUR LES ESSAIS DE PRODUITS CHIMIQUES 101 Adoptée : 12 mai 1981 «Spectres d'absorption UV-VIS» (Méthode spectrophotométrique) 1. I N T R O D U C T I O N I n f o r m a t i o n

Plus en détail

Chapitre 7 Les solutions colorées

Chapitre 7 Les solutions colorées Chapitre 7 Les solutions colorées Manuel pages 114 à 127 Choix pédagogiques. Ce chapitre a pour objectif d illustrer les points suivants du programme : - dosage de solutions colorées par étalonnage ; -

Plus en détail

TP : Suivi d'une réaction par spectrophotométrie

TP : Suivi d'une réaction par spectrophotométrie Nom : Prénom: n groupe: TP : Suivi d'une réaction par spectrophotométrie Consignes de sécurité de base: Porter une blouse en coton, pas de nu-pieds Porter des lunettes, des gants (en fonction des espèces

Plus en détail

TP N 3 La composition chimique du vivant

TP N 3 La composition chimique du vivant Thème 1 : La Terre dans l'univers, la vie et l'évolution du vivant : une planète habitée Chapitre II : La nature du vivant TP N 3 La composition chimique du vivant Les conditions qui règnent sur terre

Plus en détail

Calcaire ou eau agressive en AEP : comment y remédier?

Calcaire ou eau agressive en AEP : comment y remédier? Calcaire ou eau agressive en AEP : comment y remédier? Les solutions techniques Principes et critères de choix Par Sébastien LIBOZ - Hydrogéologue Calcaire ou eau agressive en AEP : comment y remédier?

Plus en détail

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.»

(aq) sont colorées et donnent à la solution cette teinte violette, assimilable au magenta.» Chapitre 5 / TP 1 : Contrôle qualité de l'eau de Dakin par dosage par étalonnage à l'aide d'un spectrophotomètre Objectif : Vous devez vérifier la concentration massique d'un désinfectant, l'eau de Dakin.

Plus en détail

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année

Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année Cours d électricité Circuits électriques en courant constant Mathieu Bardoux mathieu.bardoux@univ-littoral.fr IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre

Plus en détail

Chapitre 1 Régime transitoire dans les systèmes physiques

Chapitre 1 Régime transitoire dans les systèmes physiques Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer

Plus en détail

DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique

DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique DM n o 8 TS1 2012 Physique 10 (satellites) + Chimie 12 (catalyse) Exercice 1 Lancement d un satellite météorologique Le centre spatial de Kourou a lancé le 21 décembre 200, avec une fusée Ariane, un satellite

Plus en détail

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel

10 en agronomie. Domaine. Les engrais minéraux. Livret d autoformation ~ corrigés. technologique et professionnel 10 en agronomie Les engrais minéraux Livret d autoformation ~ corrigés 8 Domaine technologique et professionnel Collection dirigée par Madeleine ASDRUBAL Ingénieur d agronomie ENESAD Département des Sciences

Plus en détail

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE

SCIENCES PHYSIQUES. Durée : 3 heures. L usage d une calculatrice est interdit pour cette épreuve. CHIMIE Banque «Agro-Véto» Technologie et Biologie AT - 0310 SCIECES PYSIQUES Durée : 3 heures L usage d une calculatrice est interdit pour cette épreuve. Si, au cours de l épreuve, un candidat repère ce qui lui

Plus en détail

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau

PHYSIQUE-CHIMIE. Partie I - Spectrophotomètre à réseau PHYSIQUE-CHIMIE L absorption des radiations lumineuses par la matière dans le domaine s étendant du proche ultraviolet au très proche infrarouge a beaucoup d applications en analyse chimique quantitative

Plus en détail

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer (1825-1863) et Johann Heinrich Lambert (1728-1777)

Meine Flüssigkeit ist gefärbt*, comme disaient August Beer (1825-1863) et Johann Heinrich Lambert (1728-1777) 1ère S Meine Flüssigkeit ist gefärbt*, comme disaient August Beer (1825-1863) et Johann Heinrich Lambert (1728-1777) Objectif : pratiquer une démarche expérimentale pour déterminer la concentration d une

Plus en détail

PHYSIQUE Discipline fondamentale

PHYSIQUE Discipline fondamentale Examen suisse de maturité Directives 2003-2006 DS.11 Physique DF PHYSIQUE Discipline fondamentale Par l'étude de la physique en discipline fondamentale, le candidat comprend des phénomènes naturels et

Plus en détail

IFUCOME Sciences et Technologie en Cycle 3 6 0

IFUCOME Sciences et Technologie en Cycle 3 6 0 IFUCOME Sciences et Technologie en Cycle 3 6 0 La fusion gourmande... ou comment fondre de plaisir! Quitterions-nous le domaine des sciences pour une nouvelle rubrique culinaire? Ce serait, pour le moins,

Plus en détail

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème - 2014/2015

Energie Nucléaire. Principes, Applications & Enjeux. 6 ème - 2014/2015 Energie Nucléaire Principes, Applications & Enjeux 6 ème - 2014/2015 Quelques constats Le belge consomme 3 fois plus d énergie que le terrien moyen; (0,56% de la consommation mondiale pour 0,17% de la

Plus en détail

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage

PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage PHYSIQUE-CHIMIE DANS LA CUISINE Chapitre 3 : Chimie et lavage I) Qu'est-ce qu'un savon et comment le fabrique-t-on? D'après épreuve BAC Liban 2005 Physique-Chimie dans la cuisine Chapitre 3 1/6 1- En vous

Plus en détail

Exercice 1. Exercice n 1 : Déséquilibre mécanique

Exercice 1. Exercice n 1 : Déséquilibre mécanique Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction

Plus en détail

Vitesse d une réaction chimique

Vitesse d une réaction chimique Chimie chapitre itesse d une réaction chimique A. Avancement d un mobile et vitesse de déplacement Soit un mobile supposé ponctuel P se déplaçant le long d un axe x [Doc. ] : sa position instantanée est

Plus en détail

Chapitre 1: Facteurs d'échelle

Chapitre 1: Facteurs d'échelle Chapitre 1: Facteurs d'échelle Des considérations générales sur la taille des objets ou des êtres vivants et leur influence sur différents paramètres, permettent d'établir simplement quelques lois ou tendances,

Plus en détail

4.14 Influence de la température sur les résistances

4.14 Influence de la température sur les résistances nfluence de la température sur la résistance 4.14 nfluence de la température sur les résistances ne résistance R, parcourue par un courant pendant un certain temps t, dissipe une énergie calorifique (W

Plus en détail

A B C Eau Eau savonneuse Eau + détergent

A B C Eau Eau savonneuse Eau + détergent 1L : Physique et chimie dans la cuisine Chapitre.3 : Chimie et lavage I. Les savons et les détergents synthétiques 1. Propriétés détergentes des savons Le savon est un détergent naturel, les détergents

Plus en détail

1 Thermodynamique: première loi

1 Thermodynamique: première loi 1 hermodynamique: première loi 1.1 Énoncé L énergie d un système isolé est constante, L énergie de l univers est constante, de univers = de syst + de env. = 0 1 L énergie d un système est une fonction

Plus en détail

pka D UN INDICATEUR COLORE

pka D UN INDICATEUR COLORE TP SPETROPHOTOMETRIE Lycée F.BUISSON PTSI pka D UN INDIATEUR OLORE ) Principes de la spectrophotométrie La spectrophotométrie est une technique d analyse qualitative et quantitative, de substances absorbant

Plus en détail

P17- REACTIONS NUCLEAIRES

P17- REACTIONS NUCLEAIRES PC A DOMICILE - 779165576 P17- REACTIONS NUCLEAIRES TRAVAUX DIRIGES TERMINALE S 1 Questions de cours 1) Définir le phénomène de la radioactivité. 2) Quelles sont les différentes catégories de particules

Plus en détail

Présentation générale des principales sources d énergies fossiles.

Présentation générale des principales sources d énergies fossiles. Présentation générale des principales sources d énergies fossiles. Date : 19/09/2012 NOM / Name SIGNATURE Etabli / Prepared Vérifié / Checked Approuvé /Approved G J-L & R-SENE R.SENE R.SENE Sommaire 1.

Plus en détail

Table des matières. Acides et bases en solution aqueuse... 10. Oxydo Réduction... 26

Table des matières. Acides et bases en solution aqueuse... 10. Oxydo Réduction... 26 Annales de Chimie aux BTS 2000-2004 Table des matières Table des matières Table des matières... 1 Réactions chimiques...5 BTS Agroéquipement 2003 et BTS Maintenance et après vente des équipement de travaux

Plus en détail

CHAPITRE VIII : Les circuits avec résistances ohmiques

CHAPITRE VIII : Les circuits avec résistances ohmiques CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On

Plus en détail

Chapitre 11: Réactions nucléaires, radioactivité et fission

Chapitre 11: Réactions nucléaires, radioactivité et fission 1re B et C 11 Réactions nucléaires, radioactivité et fission 129 Chapitre 11: Réactions nucléaires, radioactivité et fission 1. Définitions a) Nucléides (= noyaux atomiques) Les nucléides renferment les

Plus en détail

Les effets de température

Les effets de température Les effets de température 1. Introduction La chaleur issue du combustible est transférée au caloporteur (eau) grâce au gradient de température qui existe entre ces deux milieux. Combustible Gaine Eau Profil

Plus en détail

Atelier : L énergie nucléaire en Astrophysique

Atelier : L énergie nucléaire en Astrophysique Atelier : L énergie nucléaire en Astrophysique Elisabeth Vangioni Institut d Astrophysique de Paris Fleurance, 8 Août 2005 Une calculatrice, une règle et du papier quadrillé sont nécessaires au bon fonctionnement

Plus en détail

Plan du chapitre «Milieux diélectriques»

Plan du chapitre «Milieux diélectriques» Plan du chapitre «Milieux diélectriques» 1. Sources microscopiques de la polarisation en régime statique 2. Etude macroscopique de la polarisation en régime statique 3. Susceptibilité diélectrique 4. Polarisation

Plus en détail

COURS DE THERMODYNAMIQUE

COURS DE THERMODYNAMIQUE I.U.T. de Saint-Omer Dunkerque Département Génie Thermique et énergie COURS DE THERMODYNAMIQUE eme Semestre Olivier PERROT 010-011 1 Avertissement : Ce cours de thermodynamique présente quelques applications

Plus en détail

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire

Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT. W = F * d. Sommaire Chapitre 6 ÉNERGIE PUISSANCE - RENDEMENT Sommaire 1. Définitions symboles - unités 2. Chute de tension dans les conducteurs 3. Effets calorifiques du courant 1. DÉFINITIONS SYMBOLES - UNITÉS 1.1 Force

Plus en détail

Unités: m 3. 1,3 kg m 3 * V = πr 2 h.

Unités: m 3. 1,3 kg m 3 * V = πr 2 h. 1. Masse volumique Définition: La masse volumique ρ est définie comme étant la masse M par unité de volume V: ρ = M V Unités: kg ou éventuellement 3 m g cm 3. Ordres de grandeur: Matière Eau Air * Aluminium

Plus en détail

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre

Bilan GES Entreprise. Bilan d émissions de Gaz à effet de serre Bilan GES Entreprise Bilan d émissions de Gaz à effet de serre Conformément à l article 75 de la loi n 2010-788 du 12 Juillet 2010 portant engagement national pour l environnement (ENE) Restitution pour

Plus en détail

SARM: Simulation of Absorption Refrigeration Machine

SARM: Simulation of Absorption Refrigeration Machine Revue des Energies Renouvelables Vol. 11 N 4 (2008) 587 594 SARM: Simulation of Absorption Refrigeration Machine S. Kherris 1*, M. Makhlouf 1 et A. Asnoun 2 1 Laboratoire des Matériaux et des Systèmes

Plus en détail

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile?

LA PUISSANCE DES MOTEURS. Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? LA PUISSANCE DES MOTEURS Avez-vous déjà feuilleté le catalogue d un grand constructeur automobile? Chaque modèle y est décliné en plusieurs versions, les différences portant essentiellement sur la puissance

Plus en détail