a. (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation :. b. (0,5)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "a. (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation :. b. (0,5)"

Transcription

1

2 Exercice 1 : (5 points) 1 On choisit un candidat au hasard et on note : l évènement : «le candidat a un dossier jugé de bonne qualité»; l évènement : «le candidat est admis à suivre la formation» a (0,5) Probabilité que le candidat n ait pas un dossier de bonne qualité et soit admis à la formation : b (0,5) c (0,5) Probabilité qu un candidat soit admis sachant que son dossier est jugé de bonne qualité : d (0,5) Probabilité que le candidat ait un dossier de bonne qualité et qu'il ne soit pas admis à la formation : arbre :(0,25) 2 a (0,75) On répète 10 fois de suite, de manière indépendante, l'expérience "une personne postule à la formation" On note la variable aléatoire donnant le nombre de personnes admises à cette formation On appelle succès, l'évènement : "la personne est admise à la formation" suit une loi binomiale de paramètres et b (0,5) Probabilité pour qu'exactement 3 candidats soient admis : c (0,75) Probabilité qu au moins une des dix personnes soit admise : 3 (0,75) est la variable aléatoire donnant l heure d arrivée de Cédric On admet que suit la loi uniforme sur l intervalle [0;60] donc a pour fonction de densité La probabilité pour que Ninon attende Cédric plus de dix minutes est la probabilité que Cédric arrive entre 8h40 et 9h :

3 Exercice 2 : (5 points) Pour tout, où et sont des réels Partie A 1 (0,5) et 2 (0,5)? On pose : donc ; donc ; donc d où 3 (1,25) (car ) Partie B : 1 pour tout a (0,5) b (0,75) pour tout, donc est du signe de d'où le tableau de variations de : x 0 + -x + 0 e -x + + signe de f var f 2 (1) Sur l'intervalle est continue et strictement croissante, et et sont de signes contraires donc, d'après la propriété de la valeur intermédiaire, l'équation admet une unique solution α sur ]-2;-1[ Avec la calculatrice : x -2-1,7-1,6-1 f(x) -4,39-0,83 0, (0,5) Aire du domaine colorié en unités d'aires : EXERCICE 3 ( 5 points ) Commun à tous les candidats Le service commercial d une société possédant plusieurs salles de sport dans une grande ville a constaté que l évolution du nombre d abonnés était définie de la manière suivante : chaque année, la société accueille 400 nouveaux abonnés ; chaque année, 40% des abonnements de l année précédente ne sont pas renouvelés En 2010, cette société comptait 1500 abonnés On considère la suite définie par : et 1 1 correspond au nombre d abonnés de l année ; Lorsque l' on passe de l'année à l année suivante, 40% des abonnements ne sont pas renouvelés, donc est multiplié par La société accueille 400 nouveaux abonnés, donc on ajoute 400 à pour obtenir le nombre d abonnés de l année, c est-à-dire

4 2 On considère la suite définie par a (1)Pour tout entier naturel, on a est donc une suite géométrique de raison et de premier terme b (0,5)On a donc, pour tout entier naturel, c (0,5)On en déduit que : 3 En 2010, le prix d un abonnement annuel dans une salle de sport de cette société était de 400 Pour que la société continue de fonctionner, elle doit réaliser une recette supérieure ou égale à a (2 0,25)Recette en euros ; Recette en : euros b (0,5+0,25)A l aide de la calculatrice, on trouve une recette égale à pour l année 2015 et une recette égale à pour l année 2016 La société ne pourra plus fonctionner sans augmentation du prix de l abonnement au-delà de l année 2015 Cela représente 6 années de fonctionnement (de à inclus) c (0,25+0,5) Variables : est du type nombre est du type nombre Initialisation : prend la valeur prend la valeur Traitement : Tant que faire prend la valeur prend la valeur Fin Tant que Sortie : Afficher ou

5 EXERCICE 4 ( 5 points ) Candidats de ES n ayant pas suivi l enseignement de spécialité et candidats de la série L est la fonction définie sur par : 1 0,5La fonction reste positive sur l intervalle L intégrale donne donc la mesure, en unités d aire, du domaine délimité par les deux axes, la courbe et la droite d équation 2, et sont les points de d abscisses respectives, et a donc ; donc ; donc 3 Les quadrilatères et sont des rectangles On admet que la courbe reste en-dessous des segments et b L aire décrite à la question 1 est donc inférieure à la somme des aires des deux rectangles et 025 et 2*025 On a donc a ; vérifie l équation proposée ; ; vérifie l équation proposée ; admet pour équation 05 b On pose, pour tout réel de, Pour tout réel de, 05+05bonus Pour tout réel, et sont positifs Sur, 025 Donc pour tout réel de, 025 c On déduit de la question précédente que reste au-dessus de 05 d L aire grisée est donc supérieure à l aire du trapèze 05 05

6 EXERCICE 4 ( 5 points ) Candidats de la série ES ayant suivi l enseignement de spécialité Le graphe ci-dessous représente les autoroutes entre les principales villes du Sud de la France : Bordeaux (B), Clermont-Ferrand (C), Lyon (L), Marseille (M), Montpellier (P), Brive (R), Toulouse (T), Valence (V) et Biarritz (Z) 1 Pour cette question, on justifiera chaque réponse a L ordre du graphe est égal à 9 (c est le nombre de sommets) b Le graphe est connexe car deux sommets quelconques du graphe sont toujours reliés par une chaine c Le graphe n est pas complet car les sommets et (par exemple) ne sont pas adjacents 2 Un touriste atterrit à l aéroport de Lyon et loue une voiture On veut savoir si le graphe contient une chaine eulérienne : il est connexe, donc on peut appliquer le théorème d Euler On liste donc tous les sommets avec leur degré : Sommet Degré Il y a 4 sommets de degré impair, donc le touriste ne pourra pas visiter toutes les villes en empruntant une et une seule fois chaque autoroute 3 Il décide finalement d aller seulement de Lyon à Biarritz On note la matrice associée au graphe, les sommets étant rangés dans l ordre alphabétique :,,,,,,, et Voici les matrices et : et a Pour calculer on fait Le coefficient de la troisième ligne et dernière colonne de la matrice est donc b Il signifie qu il existe 4 chemins en 4 étapes liant le sommet au sommet ; c est-à-dire 4 trajets contenant exactement 4 autoroutes entre Lyon et Biarritz

7 4 Sur les arêtes du graphe sont maintenant indiqués les prix des péages en euros a À Le chemin que doit prendre le touriste pour minimiser le coût des péages de Lyon à Biarritz est :, c est-à-dire : Lyon, Clermont-Ferrand, Brives, Bordeaux, Biarritz b Le coût total du péage sera alors de 38, 10

CORRIGÉ DU DEVOIR SURVEILLÉ

CORRIGÉ DU DEVOIR SURVEILLÉ CORRIGÉ DU DEVOIR SURVEILLÉ DE MATHÉMATIQUES Exercice 1 (5 points) : 1/10 Exercice 2 (Pondichéry, avril 2013) (5 points) : 1. Construisez un arbre pondéré décrivant la situation. En référence aux données

Plus en détail

Baccalauréat ES Amérique du Nord 27 mai 2014 Corrigé

Baccalauréat ES Amérique du Nord 27 mai 2014 Corrigé Baccalauréat ES Amérique du Nord 7 mai 014 Corrigé A. P. M. E. P. EXECICE 1 4 points 1. éponse b. La courbe représentative de f est située au dessus de l axe des abscisses ; la fonction f est donc positive

Plus en détail

Corrigé du baccalauréat ES Asie 16 juin 2015

Corrigé du baccalauréat ES Asie 16 juin 2015 Corrigé du baccalauréat ES Asie 16 juin 015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 5 points 1. On lance une pièce de monnaie bien équilibrée 10

Plus en détail

Pondichéry Avril 2012 BAC ES Correction

Pondichéry Avril 2012 BAC ES Correction 1 / 5 Exercice 1 1. Pour passer du point B au point A, on se déplace de 2 carreaux horizontalement vers la droite et on descend de 3 carreaux. Par conséquent, le coefficient directeur de la droite (AB)

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPRTION DU BCCLURÉT MTHÉMTIQUES SÉRIE ES Obligatoire et Spécialité 8 Janvier Durée de l épreuve : heures Coefficient : 5 ou 7 L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014

Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014 Durée : 3 heures Corrigé du baccalauréat STMG Antilles Guyane 18 juin 2014 EXERCICE 1 5 points Partie A Cette partie est un questionnaire à choix multiples (QCM). Une agence de voyage, propose un itinéraire

Plus en détail

Correction Bac ES Pondichéry avril 2010

Correction Bac ES Pondichéry avril 2010 Correction Bac ES Pondichéry avril 2010 Exercice 1 (5 points) Commun à tous les candidats 1) a. On peut représenter la situation par l arbre pondéré suivant : b. On a : p(b V) = p(b) p B(V) = 0,6 0, =

Plus en détail

Corrigé du baccalauréat ES/L Amérique du Nord 1 er juin 2016

Corrigé du baccalauréat ES/L Amérique du Nord 1 er juin 2016 Corrigé du baccalauréat ES/L Amérique du Nord 1 er juin 2016 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 1. Comme somme de fonctions dérivables sur I=]0;+, f est dérivable sur I, et pour tout

Plus en détail

BACCALAUREAT BLANC. SERIE E.S. (obligatoire )

BACCALAUREAT BLANC. SERIE E.S. (obligatoire ) BACCALAUEAT BLANC Février 2014- Lycée de la côtière- La Boisse. SEIE E.S. (obligatoire ) Exercice 1 : (5points) Question 1 (0,5) 20 Le coefficient multiplicateur global est égal à ( 1+ 100) ( 15 38 1+

Plus en détail

Corrigé du baccalauréat ES Pondichéry 26 avril Exercice 1 Commun à tous les candidats 4 points

Corrigé du baccalauréat ES Pondichéry 26 avril Exercice 1 Commun à tous les candidats 4 points Corrigé du baccalauréat ES Pondichéry 26 avril 207 Exercice Commun à tous les candidats 4 points Soit f une fonction définie et dérivable sur l intervalle ]0 ; 0] dont la courbe représentative C f est

Plus en détail

Baccalauréat ES Antilles Guyane 19 juin 2013

Baccalauréat ES Antilles Guyane 19 juin 2013 Exercice Baccalauréat ES Antilles Guyane 9 juin Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions, quatre réponses sont proposées ; une seule de ces réponses est exacte.

Plus en détail

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire.

L'aire du domaine limité par la courbe, l'axe des abscisses et les droites d'équations 4 et 16 est d'environ 0,95 unités d'aire. T ES/L DEVOIR SURVEILLE 6 24 MAI 2013 Durée : 3h Calculatrice autorisée NOM : Prénom : «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Baccalauréat ES L Antilles Guyane juin 2016

Baccalauréat ES L Antilles Guyane juin 2016 Baccalauréat ES L ntilles Guyane juin 016 EXERCICE 1 Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. ucune justification n est demandée. Une bonne réponse rapporte

Plus en détail

Correction du bac blanc spécialtité N 1

Correction du bac blanc spécialtité N 1 Correction du bac blanc spécialtité N 1 Exercice I : QCM. ( 4 points ) Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 0,5 point. Pour chacune des questions posées, une

Plus en détail

Baccalauréat ES Centres étrangers 8 juin 2016

Baccalauréat ES Centres étrangers 8 juin 2016 Baccalauréat ES Centres étrangers 8 juin 2016 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre

Plus en détail

Corrigé du baccalauréat ES L Antilles Guyane juin 2016

Corrigé du baccalauréat ES L Antilles Guyane juin 2016 Corrigé du baccalauréat ES L ntilles Guyane juin 016 EXERCICE 1 Commun à tous les candidats 5 points 1. On donne le tableau de variation d une fonction f définie sur l intervalle [ 1 ; 3] : Dans l intervalle

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Liban Exercice 1 : 5 points Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des questions posées, une seule des quatre réponses

Plus en détail

Corrigé du baccalauréat ES/L Centres étrangers 8 juin 2016

Corrigé du baccalauréat ES/L Centres étrangers 8 juin 2016 Corrigé du baccalauréat ES/L Centres étrangers 8 juin 2016 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 1. Comme somme de fonctions dérivables sur I=]0;+, f est dérivable sur I, et pour tout réel

Plus en détail

Baccalauréat ES Liban 27 mai 2014 Corrigé

Baccalauréat ES Liban 27 mai 2014 Corrigé Baccalauréat ES Liban 7 mai 014 orrigé A. P. M. E. P. EXEIE 1 4 points ommun à tous les candidats Partie A 1. P(F ) est la probabilité que la table choisie au hasard soit occupée par une famille. On a

Plus en détail

Corrigé du baccalauréat ES Polynésie 10 juin 2016

Corrigé du baccalauréat ES Polynésie 10 juin 2016 Corrigé du baccalauréat ES Polynésie 0 juin 06 EXERCICE Commun à tous les candidats Partie 5 points. Voici un arbre qui convient (les données du texte sont en noir) : K 0,76 0,4 0,4 0,5 L 0,65 0,5 0, 0,8

Plus en détail

Correction Baccalauréat ES Pondichéry 17 avril 2012

Correction Baccalauréat ES Pondichéry 17 avril 2012 Correction Baccalauréat E Pondichéry 17 avril 2012 EXERCICE 1 Commun à tous les candidats 4 points 1. Réponse a. [En effet, la droite (AB) est tangente à C g au point A d abscisse 2, donc g (0)= y B y

Plus en détail

Réponse : c 2. le taux d évolution du SMIC (arrondi à 0,1 %) entre 2004 et 2014 est obtenu par le calcul : 25,2%

Réponse : c 2. le taux d évolution du SMIC (arrondi à 0,1 %) entre 2004 et 2014 est obtenu par le calcul : 25,2% Exercice 1 points 1. Le rapport est de 70 0,325. Soit environ 32,5 %. 15 Réponse : c 2. le taux d évolution du SMIC arrondi à 0,1 % entre 200 et 201 est obtenu par le calcul : Réponse : d 15 115 115 25,2%

Plus en détail

Bac Blanc Terminale ES - Février 2016 Correction de l épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2016 Correction de l épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 206 Correction de l épreuve de Mathématiques (durée 3 heures) Exercice (5 points) pour les candidats n ayant pas choisi la spécialité MATH Question : La population d une

Plus en détail

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Correction de l'épreuve de Mathématiques (durée 3 heures) Exercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l'indice

Plus en détail

Terminales L / ES Bac blanc 2017 EPREUVE DE MATHEMATIQUES

Terminales L / ES Bac blanc 2017 EPREUVE DE MATHEMATIQUES Terminales L / ES Bac blanc 2017 EPREUVE DE MATHEMATIQUES L utilisation de la calculatrice est autorisée. Les élèves de la série ES ayant choisi la spécialité mathématiques rédigeront l exercice 5 sur

Plus en détail

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé

Baccalauréat S Nouvelle-Calédonie 14/11/2013 Corrigé Baccalauréat S Nouvelle-Calédonie //0 Corrigé. P. M. E. P. EXERCICE Commun à tous les candidats Soit f la fonction dérivable, définie sur l intervalle ]0 ; + [ par f (x)=e x + x.. Étude d une fonction

Plus en détail

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7

BACCALAUREAT BLANC. Session Durée de l'épreuve : 4 heures Coefficient : 7 BACCALAUREAT BLANC Session 2014 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures Coefficient : 7 MATERIEL AUTORISE OU NON AUTORISE

Plus en détail

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4

BACCALAURÉAT BLANC SPÉCIALITÉ. Lycée JANSON DE SAILLY MATHÉMATIQUES. Série ES. Ce sujet comporte 4 pages numérotées de 1 à 4 BACCALAURÉAT BLANC Lycée JANSON DE SAILLY MATHÉMATIQUES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT 7 Ce sujet comporte 4 pages numérotées de 1 à 4 L utilisation de la calculatrice est autorisé SPÉCIALITÉ

Plus en détail

BAC BLANC Mathématiques

BAC BLANC Mathématiques Lycée Saint Charles Session Février 2013 BAC BLANC Mathématiques Série ES Enseignement Obligatoire et de Spécialité. Durée de l épreuve : 3 heures Coefficient : 5 ou 7 Ce sujet comporte 7 pages numérotées

Plus en détail

Corrigé du baccalauréat ES Polynésie 10 juin 2016

Corrigé du baccalauréat ES Polynésie 10 juin 2016 Corrigé du baccalauréat ES Polynésie juin 6 EXERCICE Commun à tous les candidats 5 points On s intéresse à l ensemble des demandes de prêts immobiliers auprès de trois grandes banques. Une étude montre

Plus en détail

Baccalauréat ES Asie 19 juin 2013

Baccalauréat ES Asie 19 juin 2013 Baccalauréat ES Asie 9 juin 20 EXERCICE 4 points On considère une fonction f définie et dérivable sur l intervalle [ 2 ; 5], croissante sur [ 2 ; 2] et décroissante sur [2 ; 5]. On note f la fonction dérivée

Plus en détail

Baccalauréat ES La Réunion juin 2004

Baccalauréat ES La Réunion juin 2004 Baccalauréat ES La Réunion juin 4 EXERCICE Commun à tous les candidats 5 points. La fonction f représentée (graphique ) par la courbe (C ) est définie sur ] ; + [ par f (x)=(ax+ b)ln x où a et b sont deux

Plus en détail

Corrigé du baccalauréat ES/L Métropole La Réunion 11 septembre 2015

Corrigé du baccalauréat ES/L Métropole La Réunion 11 septembre 2015 Corrigé du baccalauréat S/L Métropole La Réunion 11 septembre 2015 A. P. M.. P. XRCIC 1 Commun à tous les candidats 7 points Lors d une opération promotionnelle, un magasin d électroménager propose deux

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S Enseignement Obligatoire Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages numérotées de 1 à 6 Du papier millimétré est mis

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L DURÉE 3 HEURES. Coefficients 5, 7 ou 4. Année scolaire

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L DURÉE 3 HEURES. Coefficients 5, 7 ou 4. Année scolaire BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L DURÉE HEURES Coefficients, ou Année scolaire - L usage de la calculatrice est autorisé Il est rappelé aux candidats que la clarté du raisonnement et la qualité

Plus en détail

Il faut donc dessiner un graphe avec 5 sommets, chaque sommet étant adjacent aux quatre autres sommets donc chaque sommet est de degré 4.

Il faut donc dessiner un graphe avec 5 sommets, chaque sommet étant adjacent aux quatre autres sommets donc chaque sommet est de degré 4. TES Spécialité Corrigé DS n o 1 durée 1h Exercice 1 1. Dessiner un graphe G complet d ordre 5. Il faut donc dessiner un graphe avec 5 sommets, chaque sommet étant adjacent aux quatre autres sommets donc

Plus en détail

T ES/L DEVOIR SURVEILLE 5 12 AVRIL 2013

T ES/L DEVOIR SURVEILLE 5 12 AVRIL 2013 T ES/L DEVOIR SURVEILLE 5 12 AVRIL 2013 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Corrigé du baccalauréat ES/L Amérique du Sud 25 novembre 2015

Corrigé du baccalauréat ES/L Amérique du Sud 25 novembre 2015 orrigé du baccalauréat ES/L Amérique du Sud 25 novembre 2015 EXERIE 1 ommun à tous les candidats 5 points Une étude est menée par une association de lutte contre la violence routière. Des observateurs,

Plus en détail

Exercice 1 : «un gars, une fille» (3 points)

Exercice 1 : «un gars, une fille» (3 points) Exercice 1 : «un gars, une fille» (3 points) Simulation : On a simulé la situation sur un tableur. Le graphique ci-dessous indique l évolution de la fréquence de l évènement M «Avoir un garçon et une fille»

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 21 février 2015 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 février 015 MATHEMATIQUES durée de l épreuve : 3h coefficient Le sujet est paginé de 1 à 5. Veuillez vérifier que vous avez bien toutes les pages. En cas d anomalie,

Plus en détail

[ Baccalauréat ES Nouvelle-Calédonie \ 19 novembre 2015

[ Baccalauréat ES Nouvelle-Calédonie \ 19 novembre 2015 [ Baccalauréat ES Nouvelle-Calédonie \ 19 novembre 2015 A. P. M. E. P. EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte un point Une réponse fausse,

Plus en détail

Maths. Maths. Économique et Sociale. Obligatoire & Spécialité. Cab Cnalb TES

Maths. Maths. Économique et Sociale. Obligatoire & Spécialité. Cab Cnalb TES Terminale Économique et Sociale Maths Obligatoire & Spécialité ab nalb Maths Lycée Jay de Beaufort, Périgueux (Dordogne, France métropolitaine) Exercice 1. ommun à tous les candidats 5 points Un supermarché

Plus en détail

Baccalauréat S Métropole La Réunion 22 juin 2015

Baccalauréat S Métropole La Réunion 22 juin 2015 accalauréat S Métropole La Réunion 22 juin 205 EXERE 6 PNTS ommun à tous les candidats Les résultats des probabilités seront arrondis à 0 3 près. A. P. M. E. P. Partie. Soit X une variable aléatoire qui

Plus en détail

Mathématiques Durée : 3 heures

Mathématiques Durée : 3 heures EABJM BAC BLANC 2 Classes de Terminales ES et L Avril 2014 H. Chauveau D. Dachelet E. Tinelli Mathématiques Durée : 3 heures L utilisation de la calculatrice est autorisée. Le présent sujet devra être

Plus en détail

Corrigé du baccalauréat ES Nouvelle-Calédonie 19 novembre 2015

Corrigé du baccalauréat ES Nouvelle-Calédonie 19 novembre 2015 Corrigé du baccalauréat ES Nouvelle-Calédonie 19 novembre 2015 EXERCICE 1 Commun à tous les candidats 4 points On donne ci-contre la représentation graphique (C d une fonction f définie et dérivable sur

Plus en détail

Baccalauréat ES/L Amérique du Sud 23 novembre 2017

Baccalauréat ES/L Amérique du Sud 23 novembre 2017 accalauréat ES/L Amérique du Sud 23 novembre 2017 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes,

Plus en détail

Exercice 1. Probabilités

Exercice 1. Probabilités TS Eléments de correction de l évaluation n 1 du Mercredi 4 Novembre 015 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction de votre

Plus en détail

BACCALAURÉAT GÉNÉRAL. 18 Décembre 2014 SPÉCIALITÉ MATHÉMATIQUES. Série ES. Durée de l épreuve : 3 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL. 18 Décembre 2014 SPÉCIALITÉ MATHÉMATIQUES. Série ES. Durée de l épreuve : 3 heures Coefficient : 7 LURÉT GÉNÉRL 8 écembre 204 MTÉMTIQUS Série S urée de l épreuve : 3 heures oefficient : 7 e sujet comporte pages (y compris celle-ci) numérotées de à SPÉILITÉ L emploi des calculatrices est autorisé, dans

Plus en détail

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer

QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer QCM chapitre 4 (cf. p. 116 du manuel) Pour bien commencer Pour chaque question, il y a une ou plusieurs bonnes réponses. Tableaux de variations et tableaux de signes Les exercices 1 et se réfèrent au graphique

Plus en détail

Corrigé du baccalauréat ES Polynésie 9 septembre 2015

Corrigé du baccalauréat ES Polynésie 9 septembre 2015 orrigé du baccalauréat ES Polynésie 9 septembre 15 Exercice 1 ommun à tous les candidats 5 points Partie A À une roue de loterie dans une fête foraine, la probabilité annoncée de gagner une partie est

Plus en détail

Baccalauréat ES/L Amérique du Nord 30 mai 2014

Baccalauréat ES/L Amérique du Nord 30 mai 2014 Durée : 3 heures Baccalauréat ES/L Amérique du Nord 30 mai 2014 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte

Plus en détail

Baccalauréat ES France 15 juin 2006

Baccalauréat ES France 15 juin 2006 Baccalauréat ES France 15 juin 2006 EXERCICE 1 3 points Commun tous les candidats Soit f une fonction définie et dérivable sur l intervalle [ 3 ; + [, croissante sur les intervalles [ 3 ; 1] et [2 ; +

Plus en détail

EXERCICES SUR LES FONCTIONS

EXERCICES SUR LES FONCTIONS EXERCICES SUR LES FONCTIONS 1. Lecture graphique d'images et d'antécédents On considère la fonction f dont la représentation graphique correspond à la ligne brisée ABCDE Compléter f(1) = f(4) = f(-1) =

Plus en détail

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 2016 MATHÉMATIQUES - Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Corrigé du baccalauréat terminale ES Antilles-Guyane 16 juin 2017

Corrigé du baccalauréat terminale ES Antilles-Guyane 16 juin 2017 Durée : 3 heures Corrigé du baccalauréat terminale ES Antilles-Guyane 16 juin 017 Exercice 1 Commun à tous les candidats 5 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions

Plus en détail

Terminale ES - Travailler en autonomie - Pondichéry Avril 2016

Terminale ES - Travailler en autonomie - Pondichéry Avril 2016 Terminale ES - Travailler en autonomie - Pondichéry Avril 216 Exercice 1 4 points Commun à tous les candidats Cet exercice est un QCM (questionnaire à choix multiples). Pour chacune des quatre questions

Plus en détail

Baccalauréat ES / L spé Métropole / 24 juin 2015

Baccalauréat ES / L spé Métropole / 24 juin 2015 Baccalauréat ES / L spé Métropole / 24 juin 2015 Exercice 1 6 points Le service marketing d un magasin de téléphonie a procédé à une étude du comportement de sa clientèle. Il a ainsi observé que celle-ci

Plus en détail

Baccalauréat ES Polynésie 10 juin 2011

Baccalauréat ES Polynésie 10 juin 2011 Baccalauréat ES Polynésie 10 juin 20 Exercice 1 4 points 1. VRAI Sur l intervalle ] ; 1[, f est continue, strictement décroissante (cf tableau de variation fourni). Et l intervalle image de ] ; 1[ est

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Exercices sur les fonctions 2013

Exercices sur les fonctions 2013 Pondichéry 3 5 points Partie On s'intéresse à l'évolution de la hauteur d'un plant de maïs en fonction du temps. Le graphique en annexe représente cette évolution. La hauteur est en mètres et le temps

Plus en détail

TS Feuille de révision n 1 novembre 2017

TS Feuille de révision n 1 novembre 2017 TS Feuille de révision n 1 novembre 017 Exercice 1 Dans un pays de population constante égale à 10 millions, les habitants vivent soit en zone rurale, soit en ville. Les mouvements de population peuvent

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

Baccalauréat ES Polynésie juin 2007

Baccalauréat ES Polynésie juin 2007 Baccalauréat ES Polynésie juin EXERCICE Commun à tous les candidats points Cet exercice est un questionnaire à choix multiples. Pour chacune des trois questions, trois réponses sont proposées ; une seule

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

NOM : Prénom : Bilan Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 / 30 / 4 / 5 / 3 / 6 / 6 / 6

NOM : Prénom : Bilan Ex 1 Ex 2 Ex 3 Ex 4 Ex 5 Ex 6 / 30 / 4 / 5 / 3 / 6 / 6 / 6 DS JANVIER 206 Durée : 2h Avec Calculatrice NOM : Prénom : Bilan Ex Ex 2 Ex Ex Ex 5 Ex 6 / 0 / / 5 / / 6 / 6 / 6 Déterminer et exploiter la loi d'une variable aléatoire Construire et utiliser un arbre

Plus en détail

fonctions homographiques

fonctions homographiques fonctions homographiques Table des matières 1 aspect numérique et algébrique 3 1.1 activités.................................................. 3 1.1.1 activité 1 : différentes écritures.................................

Plus en détail

Correction Bac Blanc de juin : Liban 31 mai 2010 TES

Correction Bac Blanc de juin : Liban 31 mai 2010 TES Correction Bac Blanc de juin : Liban 31 mai 2010 Modalités : Durée de l épreuve : 3 heures ; Calculatrice autorisée ; Répondre sur votre copies) et non sur le présent sujet, sauf l annexe à remettre ;

Plus en détail

Corrigé du baccalauréat ES (spécialité) Antilles Guyane septembre 2016

Corrigé du baccalauréat ES (spécialité) Antilles Guyane septembre 2016 Corrigé du baccalauréat ES (spécialité) Antilles Guyane septembre 016 EXERCICE 1 Commun à tous les candidats 6 points 1. On considère la fonction f définie sur R par f (x)= x e x ; la fonction f est :

Plus en détail

E2 : MATHÉMATIQUES I ÉPREUVE OBLIGATOIRE

E2 : MATHÉMATIQUES I ÉPREUVE OBLIGATOIRE SESSION 00 E : MATHÉMATIQUES I Durée : 3 heures Coefficient : ÉPREUVE OBLIGATOIRE Le (la) candidat (e) doit traiter tous les exercices. La qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Corrigé du baccalauréat ES (spécialité) Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat ES (spécialité) Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat ES (spécialité) Nouvelle-Calédonie mars 2017 EXERCICE 1 Commun à tous les candidats 6 points À l occasion de la fête des Mères, un fleuriste décide de proposer à ses clients plusieurs

Plus en détail

Bac Blanc Terminale ES - Février 2017 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2017 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2017 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

constatée dans l'échantillon de taille n. Dans notre cas, n=200 et f = =0,91.

constatée dans l'échantillon de taille n. Dans notre cas, n=200 et f = =0,91. Correction Baccalauréat Blanc en TES Février 2013 Exercice 1 : QCM 1) «La probabilité que la variable aléatoire X soit strictement supérieure à 9 et inférieure ou égale à 12 est égale à 0,37%.» La probabilité

Plus en détail

Correction Baccalauréat ES Liban 31 mai 2010

Correction Baccalauréat ES Liban 31 mai 2010 Correction Baccalauréat ES Liban 31 mai 21 Exercice 1 4 points 1. A et B sont deux évènements indépendants donc p(a B)=p(A) p(b)=,1 et comme p(a B)= p(a)+ p(b) p(a B =,6 2. En appelant S l évènement «Le

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 24 BACCALAUREAT GENERAL Session 24 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

2. Recopier et compléter l arbre pondéré suivant : 0,70 0,4 0,4 0,35 0,25 0,9. 3. a. Calculer ( ). ( )=() ( )=0,4 0,7=0,28

2. Recopier et compléter l arbre pondéré suivant : 0,70 0,4 0,4 0,35 0,25 0,9. 3. a. Calculer ( ). ( )=() ( )=0,4 0,7=0,28 Liban Juin 2014 Exercice 1 5 points Commun à tous les candidats Un serveur, travaillant dans une pizzeria, remarque qu en moyenne, 40% des clients sont des familles, 25% des clients sont des personnes

Plus en détail

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ

SESSION 2017 ENSEIGNEMENT OBLIGATOIRE. Durée de l épreuve : 3 heures Coefficient : 4 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2017 MATHÉMATIQUES - Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures Coefficient : 5 MATHÉMATIQUES - Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve :

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

Baccalauréat ES Antilles-Guyane juin 2008

Baccalauréat ES Antilles-Guyane juin 2008 Baccalauréat ES Antilles-Guyane juin 2008 EXERCICE 1 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions, trois réponses sont proposées ; une seule de ces réponses

Plus en détail

Les fonctions en première L

Les fonctions en première L Les fonctions en première L Définition d'une fonction numérique de la variable réelle Définir une fonction f sur l ensemble f R, c'est donner un procédé, qui à chaque nombre réel x f, fait correspondre

Plus en détail

Baccalauréat S Polynésie 7 juin 2013

Baccalauréat S Polynésie 7 juin 2013 Baccalauréat S Polynésie 7 juin 203 EXERCICE Commun à tous les candidats 6 points On considère la fonction f définie sur R par f (x)=(x+ 2)e x. On note C la courbe représentative de la fonction f dans

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

Correction Bac ES Amérique du Nord juin 2010

Correction Bac ES Amérique du Nord juin 2010 Correction Bac ES Amérique du Nord juin 2010 EXERCICE 1 (5 points) On considère la fonction définie et dérivable sur l intervalle [ 2 ; 11], et on donne sa courbe ci-dessous. 1) (0) est égal à 2 : réponse

Plus en détail

Baccalauréat ES Antilles-Guyane 19 juin 2012

Baccalauréat ES Antilles-Guyane 19 juin 2012 Baccalauréat ES Antilles-Guyane 19 juin 2012 Exercice 1 On donne le prix moyen en euros d un litre de gasoil en France, entre 1998 et 2007 : Année 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 Rang

Plus en détail

Baccalauréat ES Antilles - Guyane 12 septembre 2014

Baccalauréat ES Antilles - Guyane 12 septembre 2014 urée : 3 heures Baccalauréat ES Antilles - Guyane 12 septembre 2014 Exercice 1 Commun à tous les candidats Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions suivantes,

Plus en détail

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7

SESSION 2016 ENSEIGNEMENT DE SPÉCIALITÉ. Durée de l épreuve : 3 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL SESSION 206 MATHÉMATIQUES - Série ES ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Baccalauréat S Métropole 20 juin 2013

Baccalauréat S Métropole 20 juin 2013 Baccalauréat S Métropole 20 juin 2013 EXERIE 1 ommun à tous les candidats 4 points Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 35 % des plants proviennent de

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

TES/ spé TL Eléments de correction de l évaluation n 1 du Jeudi 22 Novembre 2012 Calculatrice autorisée - Aucun document n'est autorisé.

TES/ spé TL Eléments de correction de l évaluation n 1 du Jeudi 22 Novembre 2012 Calculatrice autorisée - Aucun document n'est autorisé. TES/ spé TL Eléments de correction de l évaluation n 1 du Jeudi 22 Novembre 2012 Calculatrice autorisée - ucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la rédaction

Plus en détail

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1

TES BAC BLANC 2013 durée 3h. f(x) = 100xe x + 1 TES BAC BLANC 2013 durée 3h Exercice 1 ( 4,5 points ) Cet exercice est un questionnaire à choix multiples. Pour chacune des trois questions, trois réponses sont proposées ; une seule de ces réponses convient.

Plus en détail

Lycée Louis de Broglie

Lycée Louis de Broglie Lycée Louis de Broglie Livret de révisions de Mathématiques pour l entrée en classe de seconde Ce livret vous proposé pour vous remettre au travail avant votre entrée en seconde Il s agit d exercices divers

Plus en détail

U U. BAC BLANC MATHEMATIQUES Jeudi 17 janvier 2013, 9h00 12h00 TES 1/6

U U. BAC BLANC MATHEMATIQUES Jeudi 17 janvier 2013, 9h00 12h00 TES 1/6 BAC BLANC MATHEMATIQUES Jeudi 17 janvier 2013, 9h00 12h00 TES 1/6 Durée de l épreuve : 3 heures Calculatrice autorisée. Tout élève doit traiter quatre exercices. La feuille 5/6 est à rendre pour les élèves

Plus en détail

Variables : a et b sont des réels Initialisation : a prend la valeur 0. b prend la valeur 1 a

Variables : a et b sont des réels Initialisation : a prend la valeur 0. b prend la valeur 1 a EXERCICE 4 Candidats ayant suivi l enseignement de spécialité 5 points Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse en justifiant la réponse. Un point est attribué par réponse

Plus en détail

Corrigé TD N 2. Le graphe de l exercice est planaire car on peut le représenter de la façon suivante : C D E A 6 10 B 8

Corrigé TD N 2. Le graphe de l exercice est planaire car on peut le représenter de la façon suivante : C D E A 6 10 B 8 Corrigé TD N 2 GESTION D AUTOROUTES (1) Le graphe G = (X, E, v) correspondant au réseau autoroutier, où les sommets sont les villes et deux villes sont reliées s il existe une autoroute entre ces deux

Plus en détail

DS 6 18 MAI Rappel : tous les résultats seront à justifier sauf avis contraire

DS 6 18 MAI Rappel : tous les résultats seront à justifier sauf avis contraire Durée : 2h DS 6 18 MAI 2017 Avec Calculatrice NOM : Prénom : La notation tiendra compte de la présentation, ainsi que de la précision de la rédaction et de l argumentation. Aucun prêt n est autorisé entre

Plus en détail

Bac S 2015 Métropole - Correction épreuve de mathématiques. OAB B sont des rectangles. Le plan de face (OBD) est muni d un repère

Bac S 2015 Métropole - Correction épreuve de mathématiques. OAB B sont des rectangles. Le plan de face (OBD) est muni d un repère Bac S 2015 Métropole - Correction épreuve de mathématiques. Exercice 3 : 4 points Commun à tous les candidats Une municipalité a décidé d installer un module de skateboard dans un parc de la commune. Le

Plus en détail

Correction du bac blanc N 1

Correction du bac blanc N 1 Exercice I : QCM. ( 4 points ) Correction du bac blanc N 1 Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 0,5 point. Pour chacune des questions posées, une seule des quatre

Plus en détail

ÉPREUVES D ENTRAÎNEMENT AU BACCALAURÉAT SPÉCIALITÉ. Lycée JANSON DE SAILLY. MATHÉMATIQUES - Série ES. Le sujet comporte 4 pages numérotées de 1 à 4

ÉPREUVES D ENTRAÎNEMENT AU BACCALAURÉAT SPÉCIALITÉ. Lycée JANSON DE SAILLY. MATHÉMATIQUES - Série ES. Le sujet comporte 4 pages numérotées de 1 à 4 ÉPREUVES D ENTRÎNEMENT U BCCLURÉT Lcée JNSON DE SILLY MTHÉMTIQUES - Série ES DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT 7 Le sujet comporte 4 pages numérotées de 1 à 4 L utilisation de la calculatrice est

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

b) on calcule = = 0,03 0,2 = 0,15 La probabilité qu un automobiliste empruntant la voie de droite passe le péage en moins de 10 secondes est 0,15.

b) on calcule = = 0,03 0,2 = 0,15 La probabilité qu un automobiliste empruntant la voie de droite passe le péage en moins de 10 secondes est 0,15. Amérique du Nord Juin 2016 Exercice I Partie A 1 arbre pondéré 0,28 0,52 G 1 0 0,75 0,25 issues 0,2 D Données : p(g) =0,28 ; p(c) = 0,52 =1 et =0,75 Donnée déduite : =0 =0,25 Donnée supplémentaire : =0,7

Plus en détail