1 Connecteurs logiques et langage ensembliste
|
|
|
- Samuel Faubert
- il y a 9 ans
- Total affichages :
Transcription
1 Ecole Polytechnique, EV2- Mathématiques Appliquées Fiche de cours 1 : Quelques rappels sur le langage ensembliste 1 Connecteurs logiques et langage ensembliste Etant donnée une proposition A dépendant d une variable x appartenant un ensemble X, on note {x X, A(x)} l ensemble des x pour lesquels l assertion A(x) est vérifiée. Par exemple, considérons A(n) : n est premier. Alors {n N, A(n)} est l ensemble des nombres premiers. Dans la suite on omettra d écrire X pour alléger les notations. La négation A (non A) de la proposition A correspond au complémentaire : {x, A(x)} = {x, A(x)} c. La conjonction A B (A et B) correspond à l intersection : {x, A(x) B(x)} = {x, A(x)} {x, B(x)}. La disjonction A B (A ou B, le ou étant non exclusif) correspond à la réunion : {x, A(x) B(x)} = {x, A(x)} {x, B(x)}. Le quantificateur universel (quel que soit, pour tout) correspond à une intersection : {x, i I, A i (x)} = i I {x, A i (x)}. Le quantificateur universel (il existe) correspond à une réunion : {x, i I, A i (x)} = i I {x, A i (x)}. L implication A B (A implique B) correspond à une inclusion : Quelques règles sur les connecteurs logiques : A B si et seulement si {x, A(x)} {x, B(x)}. (A B) (A B), A A, A B A B, A B A B, A (B C) (A B) (A C), A (B C) (A B) (A C), ( ) ( ) ( x, A(x)) x, A(x), ( x, A(x)) x, A(x). Ces formules ont leur équivalent ensembliste. Par exemple, A B A B se retrouve facilement si l on se souvient que (A B) c = A c B c (le complémentaire de la réunion est l intersection des complémentaires). Attention aux quantificateurs universels : la négation de il existe un entier naturel n, tel que 2 n + 3 n soit premier est pour tout entier naturel n, 2 n + 3 n n est pas premier et vice versa. 1
2 2 Applications 2.1 Injection, surjection, bijection Définition. Soient E et F deux ensembles et f : E F une application. 1. f est injective si la relation suivante est vérifiée : x E, y E, x y f(x) f(y). (1) 2. f est surjective si, pour tout y F, il existe x E tel que f(x) = y. 3. f est bijective si elle est la fois injective et surjective. Remarque. 1. Pour vérifier qu une application f : E F est injective, on utilise souvent la contraposée de (1) en prouvant que deux éléments x et y de E ayant mme image sont nécessairement égaux. 2. Une bijection d un ensemble E sur lui-mme est parfois appelée permutation de E. Proposition. La composée de deux applications injectives (resp. surjectives, bijectives) est injective (resp. surjective, bijective). Théorème. Soient f : E F et g : F G des applications. Si g f est injective, f est injective. Si g f est surjective, g est surjective. 2.2 Application réciproque Considérons une application f : E F bijective. Pour tout y F il existe un unique élément x E tel que f(x) = y. Posons x = f 1 (y). Définition. L application f 1 : F E ainsi définie est appelée application réciproque de l application f. Proposition. L application f 1 est aussi bijective, et vérifie : 1. f 1 f(x) = x pour tout x E, 2. f f 1 (y) = y pour tout y F, 3. (f 1 ) 1 = f. Les applications f et f 1 sont dites réciproques l une de l autre. Théorème. Soit f : E F une application. S il existe g : F E telle que g f = Id E et f g = Id F, alors f est bijective et g = f 1. Remarque. Le résultat ci-dessus est très utile dans la pratique. Proposition. Soient f : E F et g : F G deux applications bijectives. Alors g f : E G est bijective et : (g f) 1 = f 1 g Ensembles et applications On considère deux ensembles E et F et f : E F une application. Définition. Pout toute partie A de E, l ensemble f(a) = {y F x A, f(x) = y} s appelle image directe de A par f. Pour toute partie B de F, l ensemble f 1 (B) = {x E f(x) B} s appelle image réciproque de B par f. Remarque. On peut aussi écrire f(a) = {f(x), x A}. 2
3 Proposition. Soient quatre parties A 1, A 2 E et B 1, B 2 F. (1) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ), (5) f(f 1 )(B 1 ) B 1, (2) f 1 (B 1 B 2 ) = f 1 (B 1 ) f 1 (B 2 ), (6) f 1 (f(a 1 )) A 1, (3) f(a 1 A 2 ) = f(a 1 ) f(a 2 ), (7) f 1 (F \B 1 ) = E\f 1 (B 1 ), (4) f(a 1 A 2 ) f(a 1 ) f(a 2 ). Proposition. Si l application f est injective, alors les inclusions (4) et (6) ci-dessus deviennent des égalités. Si l application f est surjective, alors l inclusion (5) ci-dessus devient une égalité. 3 Notions de dénombrement 3.1 Ensembles finis et exemples Définition. Le cardinal d un ensemble fini Ω, noté card(ω), représente son nombre d éléments. Exemples et définitions. 1. Soient E 1, E 2,..., E p des ensembles (pas forcément finis). Le produit cartésien de ces ensembles est noté E 1 E 2... E p et représente l ensemble des p-uplets (e 1,..., e p ) o e i E i, pour i {1,..., p}. Si E 1, E 2,..., E p sont finis alors card(e 1 E 2... E p ) = p card(e i ). 2. Soient X et Y deux ensembles (pas forcément finis). On note X Y l ensemble des applications de Y dans X. i=1 Si X et Y sont finis alors card(x Y ) = card(x) card(y ). 3. Une partition d un ensemble Ω est une famille d ensembles non vides {A i } i I telle que A i = Ω et A i A j =, pour i j. i I Une telle partition est aussi notée i I A i. Si Ω et I sont finis, on a card(ω) = i I card(a i ). Conséquences : Soient A et B deux parties d un ensemble fini Ω. Alors : (a) card(a c ) = card(ω) card(a), (A c = Ω \ A). (b) card(a B) = card(a) + card(b) card(a B). Proposition. Soient E et F deux ensembles finis. Alors : 1. S il existe une injection de E dans F alors card(e) card(f ). 2. S il existe une surjection de E dans F alors card(e) card(f ). 3
4 Proposition. Soit E un ensemble fini. Soit f : E E une application. Alors les trois conditions suivantes sont équivalentes : 1. f est injective 2. f est bijective 3. f est surjective 3.2 Ensembles dénombrables Définition. Un ensemble est dénombrable s il est fini ou s il est en bijection avec N. Proposition. 1. Un sous-ensemble d un ensemble dénombrable est dénombrable. 2. Si φ : X Y est injective et si Y est dénombrable, alors X est dénombrable. 3. Si φ : X Y est surjective et si X est dénombrable, alors Y est dénombrable. 4. Un produit cartésien fini d ensembles dénombrables est dénombrable. 5. Une réunion dénombrable d ensembles dénombrables est dénombrable. Exemple. Z, Q et Q[X] sont dénombrables. Théorème. R et l ensemble {0, 1} N des suites valeurs dans {0, 1} ne sont pas dénombrables. Définition. Soit E un ensemble. On note P(E) l ensemble des parties de E. Corollaire. P(N) n est pas dénombrable. 3.3 Analyse combinatoire Dans cette sous-section, Ω désignera un ensemble non vide de cardinal fini égal n qui est dans N. n! désignera n. On convient que 0! = 1. Définition. Soit p N. Une p-liste de Ω est un élément de Ω p Proposition. L ensemble des p-listes de Ω est de cardinal n p. Définition. Soit p {0,..., n}. Un p-arrangement de Ω (ou un arrangement p éléments) est une p-liste ou p-uplet (x 1,..., x p ) Ω p tel que x 1,..., x p soient deux deux distincts. Une permutation de Ω est un arrangement n élements. On note S n l ensemble des permutations. Proposition. Le nombre de p-arrangements de Ω, noté A p n est A p n = n(n 1)...(n p + 1) = Le nombre de permutation de Ω est card(s n ) = A n n = n!. Remarque. Si p > n alors A p n = 0. n! (n p)! Définition. Soit p {0,..., n}. On appelle combinaison de p élements de Ω toute partie de Ω de cardinal p. Proposition. Le nombre de combinaisons de p élements de Ω noté C p n ou ( n p) est Remarque. 1. Si p > n alors C p n = A p n = p!c p n. C p n = n! (n p)!p!. 4
5 Proposition. Pour 0 p n et 1 n, on a : 1. C p n = C n p n. 2. C 0 n = C n n = Cn 1 = Cn n 1 = n. 4. Cn p = C p 1 n 1 + Cp n 1, n 2, p {1,..., n 1}. 5. (a + b) n = n k=0 Ck na k b n k, a, b C. Remarque. card (P(Ω)) = n k=0 Ck n = 2 n. 3.4 Application aux probabilités Dans cette sous-section, Ω désignera un ensemble non vide de cardinal fini égal n qui est dans N. Définition. Une probabilité est une fonction P de P(Ω) dans [0; 1] telle que 1. P(Ω) = P(A B) = P(A) + P(B), si A et B sont deux parties disjointes de Ω. Proposition. 2. P( ) = P(A c ) = 1 P(A). 3. P(A) = P(A B) + P(A B c ). 4. P(A B) = P(A) + P(B) P(A B). Remarque. Supposons que (ω, ω ) Ω 2, P({ω}) = P({ω }). On est dans le cas d équiprobabilité et pour tout A P(Ω), on a P(A) = card(a) card(ω). 5
Distribution Uniforme Probabilité de Laplace Dénombrements Les Paris. Chapitre 2 Le calcul des probabilités
Chapitre 2 Le calcul des probabilités Equiprobabilité et Distribution Uniforme Deux événements A et B sont dits équiprobables si P(A) = P(B) Si il y a équiprobabilité sur Ω, cad si tous les événements
Probabilités. C. Charignon. I Cours 3
Probabilités C. Charignon Table des matières I Cours 3 1 Dénombrements 3 1.1 Cardinal.................................................. 3 1.1.1 Définition............................................. 3
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8
COURS DE MATHÉMATIQUES PREMIÈRE ANNÉE (L1) UNIVERSITÉ DENIS DIDEROT PARIS 7 Marc HINDRY Introduction et présentation. page 2 1 Le langage mathématique page 4 2 Ensembles et applications page 8 3 Groupes,
Indépendance Probabilité conditionnelle. Chapitre 3 Événements indépendants et Probabilités conditionnelles
Chapitre 3 Événements indépendants et Probabilités conditionnelles Indépendance Indépendance Probabilité conditionnelle Definition Deux événements A et B sont dits indépendants si P(A B) = P(A).P(B) Attention
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur
Probabilité. Table des matières. 1 Loi de probabilité 2 1.1 Conditions préalables... 2 1.2 Définitions... 2 1.3 Loi équirépartie...
1 Probabilité Table des matières 1 Loi de probabilité 2 1.1 Conditions préalables........................... 2 1.2 Définitions................................. 2 1.3 Loi équirépartie..............................
Coefficients binomiaux
Probabilités L2 Exercices Chapitre 2 Coefficients binomiaux 1 ( ) On appelle chemin une suite de segments de longueur 1, dirigés soit vers le haut, soit vers la droite 1 Dénombrer tous les chemins allant
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
CALCUL DES PROBABILITES
CALCUL DES PROBABILITES Exemple On lance une pièce de monnaie une fois. Ensemble des événements élémentaires: E = pile, face. La chance pour obtenir pile vaut 50 %, pour obtenir face vaut aussi 50 %. Les
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Probabilités sur un univers fini
[http://mp.cpgedupuydelome.fr] édité le 10 août 2015 Enoncés 1 Proailités sur un univers fini Evènements et langage ensemliste A quelle condition sur (a,, c, d) ]0, 1[ 4 existe-t-il une proailité P sur
Logique : ENSIIE 1A - contrôle final
1 Logique : ENSIIE 1A - contrôle final - CORRIGÉ Mardi 11 mai 2010 - Sans documents - Sans calculatrice ni ordinateur Durée : 1h30 Les exercices sont indépendants. Exercice 1 (Logique du premier ordre
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Premiers exercices d Algèbre. Anne-Marie Simon
Premiers exercices d Algèbre Anne-Marie Simon première version: 17 août 2005 version corrigée et complétée le 12 octobre 2010 ii Table des matières 1 Quelques structures ensemblistes 1 1.0 Ensembles, relations,
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
EI - EXERCICES DE PROBABILITES CORRIGES
EI 1 EI - EXERCICES DE PROBABILITES CORRIGES Notations 1 Les coefficients du binôme sont notés ( n p 2 Un arrangement de n objets pris p à p est noté A p n 3 Si A est un ensemble fini, on notera A ou card
ILT. Interfacultair Instituut voor Levende Talen. T@@lvaardig. Actes de communication. Serge Verlinde Evelyn Goris. Katholieke Universiteit Leuven
IL If I L S V Ey G Khk U L 13/02/02 pé? xp qé xp pz à pz p héhq pé p à q z p à p héhq fé à p à q pz xp q 'p (è) f, '-à- p. x. ' é ff. N xp à py qq' q z b ( f) P xp pô pp L p - pé pz ': z qq', q -? Bj,
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Calculs de probabilités
Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
GEA II Introduction aux probabilités Poly. de révision. Lionel Darondeau
GEA II Introduction aux probabilités Poly. de révision Lionel Darondeau Table des matières Énoncés 4 Corrigés 10 TD 1. Analyse combinatoire 11 TD 2. Probabilités élémentaires 16 TD 3. Probabilités conditionnelles
Bureau N301 (Nautile) [email protected]
Pre-MBA Statistics Seances #1 à #5 : Benjamin Leroy-Beaulieu Bureau N301 (Nautile) [email protected] Mise à niveau statistique Seance #1 : 11 octobre Dénombrement et calculs de sommes 2 QUESTIONS
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
INF 232: Langages et Automates. Travaux Dirigés. Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies
INF 232: Langages et Automates Travaux Dirigés Université Joseph Fourier, Université Grenoble 1 Licence Sciences et Technologies Année Académique 2013-2014 Année Académique 2013-2014 UNIVERSITÉ JOSEPH
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Définitions. Numéro à préciser. (Durée : )
Numéro à préciser (Durée : ) On étudie dans ce problème l ordre lexicographique pour les mots sur un alphabet fini et plusieurs constructions des cycles de De Bruijn. Les trois parties sont largement indépendantes.
Qu est-ce qu une probabilité?
Chapitre 1 Qu est-ce qu une probabilité? 1 Modéliser une expérience dont on ne peut prédire le résultat 1.1 Ensemble fondamental d une expérience aléatoire Une expérience aléatoire est une expérience dont
Résumé du cours d algèbre 1, 2013-2014. Sandra Rozensztajn. UMPA, ENS de Lyon, [email protected]
Résumé du cours d algèbre 1, 2013-2014 Sandra Rozensztajn UMPA, ENS de Lyon, [email protected] CHAPITRE 0 Relations d équivalence et classes d équivalence 1. Relation d équivalence Définition
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
Probabilités et statistique. Benjamin JOURDAIN
Probabilités et statistique Benjamin JOURDAIN 11 septembre 2013 2 i ii À Anne Préface Ce livre est issu du polycopié du cours de probabilités et statistique de première année de l École des Ponts ParisTech
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
Extrait du poly de Stage de Grésillon 1, août 2010
MINI-COURS SUR LES POLYNÔMES À UNE VARIABLE Extrait du poly de Stage de Grésillon 1, août 2010 Table des matières I Opérations sur les polynômes 3 II Division euclidienne et racines 5 1 Division euclidienne
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
Bougez, protégez votre liberté!
> F a Bgz, pégz v bé! www.a-. CAT.ELB.a240215 - Cé ph : Fa Daz à v p aé N az p a v gâh a v! Aj h, p g évq v ; Pa, p 4 aça q, v, éq qaé v. Ca ax é ç, b pa évé ax p âgé a h a p j. E pè v, h pa épagé. Pa
Loi d une variable discrète
MATHEMATIQUES TD N : VARIABLES DISCRETES - Corrigé. P[X = k] 0 k point de discontinuité de F et P[X = k] = F(k + ) F(k ) Ainsi, P[X = ] =, P[X = 0] =, P[X = ] = R&T Saint-Malo - nde année - 0/0 Loi d une
PROBABILITES ET STATISTIQUE I&II
PROBABILITES ET STATISTIQUE I&II TABLE DES MATIERES CHAPITRE I - COMBINATOIRE ELEMENTAIRE I.1. Rappel des notations de la théorie des ensemble I.1.a. Ensembles et sous-ensembles I.1.b. Diagrammes (dits
Probabilités conditionnelles
Probabilités conditionnelles Exercice Dans une usine, on utilise conjointement deux machines M et M 2 pour fabriquer des pièces cylindriques en série. Pour une période donnée, leurs probabilités de tomber
Introduction au Calcul des Probabilités
Université des Sciences et Technologies de Lille U.F.R. de Mathématiques Pures et Appliquées Bât. M2, F-59655 Villeneuve d Ascq Cedex Introduction au Calcul des Probabilités Probabilités à Bac+2 et plus
Suites numériques 4. 1 Autres recettes pour calculer les limites
Suites numériques 4 1 Autres recettes pour calculer les limites La propriété suivante permet de calculer certaines limites comme on verra dans les exemples qui suivent. Propriété 1. Si u n l et fx) est
Les équations différentielles
Les équations différentielles Equations différentielles du premier ordre avec second membre Ce cours porte exclusivement sur la résolution des équations différentielles du premier ordre avec second membre
Intégrale de Lebesgue
Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
CHAPITRE IV. L axiome du choix
CHAPITRE IV L axiome du choix Résumé. L axiome du choix AC affirme qu il est légitime de construire des objets mathématiques en répétant un nombre infini de fois l opération de choisir un élément dans
1 Définition et premières propriétés des congruences
Université Paris 13, Institut Galilée Département de Mathématiques Licence 2ème année Informatique 2013-2014 Cours de Mathématiques pour l Informatique Des nombres aux structures Sylviane R. Schwer Leçon
F7n COUP DE BOURSE, NOMBRE DÉRIVÉ
Auteur : S.& S. Etienne F7n COUP DE BOURSE, NOMBRE DÉRIVÉ TI-Nspire CAS Mots-clés : représentation graphique, fonction dérivée, nombre dérivé, pente, tableau de valeurs, maximum, minimum. Fichiers associés
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Probabilités. I Petits rappels sur le vocabulaire des ensembles 2 I.1 Définitions... 2 I.2 Propriétés... 2
Probabilités Table des matières I Petits rappels sur le vocabulaire des ensembles 2 I.1 s................................................... 2 I.2 Propriétés...................................................
I. Introduction. 1. Objectifs. 2. Les options. a. Présentation du problème.
I. Introduction. 1. Objectifs. Le but de ces quelques séances est d introduire les outils mathématiques, plus précisément ceux de nature probabiliste, qui interviennent dans les modèles financiers ; nous
COMBINATOIRES ET PROBABILITÉS
COMBINATOIRES ET PROBABILITÉS ème année. Analyse combinatoire.. Outils.. Principe de décomposition.. Permutations.. Arrangements..5 Combinaisons 8.. Développement du binôme 9..7 Ce qu il faut absolument
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
Modèles de Calcul. Yassine Lakhnech. 2007/08 Université Joseph Fourier Lab.: VERIMAG. [email protected]. Modèles de Calcul Start p.
Modèles de Calcul Yassine Lakhnech [email protected] 2007/08 Université Joseph Fourier Lab.: VERIMAG Modèles de Calcul Start p.1/81 Équipe pédagogique Cours : Saddek Bensalem et Yassine Lakhnech
Exercices sur le chapitre «Probabilités»
Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Pour démarrer Exercices sur le chapitre «Probabilités» Exercice 1 (Modélisation d un dé non cubique) On considère un parallélépipède rectangle de
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390
PROBABILITÉS: COURS DE LICENCE DE MATHÉMATIQUES APPLIQUÉES LM 390 Université PARIS 6 2008/2009 Jean BERTOIN 1 Table des Matières ( ) ces parties peuvent ^etre omises en première lecture, et ne feront pas
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Objets Combinatoires élementaires
Objets Combinatoires élementaires 0-0 Permutations Arrangements Permutations pour un multi-ensemble mots sous-ensemble à k éléments (Problème du choix) Compositions LE2I 04 1 Permutations Supposons que
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Probabilités et Statistique
Ricco Rakotomalala Probabilités et Statistique Notes de cours Université Lumière Lyon 2 Avant-propos Ce document est un support de cours pour les enseignements des probabilités et de la statistique. Il
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
Cours arithmétique et groupes. Licence première année, premier semestre
Cours arithmétique et groupes. Licence première année, premier semestre Raphaël Danchin, Rejeb Hadiji, Stéphane Jaffard, Eva Löcherbach, Jacques Printems, Stéphane Seuret Année 2006-2007 2 Table des matières
Systèmes d informations nouvelles générations. Répartition, Parallèlisation, hétérogénéité dans les SGBD. Exemple d application d un futur proche
Répartition, Parallèlisation, hétérogénéité dans les SGBD AI Mouaddib Département Informatique Université de Caen Systèmes d informations nouvelles générations! Constat :! Utilisation de nouveaux support
Votre succès notre spécialité!
V ccè pécé! C Cchg Fm Igé Rcm V ccè pécé! L p mbx mché. E MPS I C g démq p ff pé pf d chq c : p é. N Fc: EMPSI Cg éé céé 2010 P Bddd Bchb q pé p d 8 d md d p. I dévpp N cmp xgc d é d. N c pfm mé d q gg
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Cours de mathématiques Première année. Exo7
Cours de mathématiques Première année Eo7 2 Eo7 Sommaire Logique et raisonnements 9 Logique 9 2 Raisonnements 4 2 Ensembles et applications 9 Ensembles 20 2 Applications 23 3 Injection, surjection, bijection
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE. Mathématiques financières
FONDEMENTS MATHÉMATIQUES 12 E ANNÉE Mathématiques financières A1. Résoudre des problèmes comportant des intérêts composés dans la prise de décisions financières. [C, L, RP, T, V] Résultat d apprentissage
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot. 1 Ensemble fondamental loi de probabilité
Université Paris 8 Introduction aux probabilités 2014 2015 Licence Informatique Exercices Ph. Guillot 1 Ensemble fondamental loi de probabilité Exercice 1. On dispose de deux boîtes. La première contient
Calculs de probabilités conditionelles
Calculs de probabilités conditionelles Mathématiques Générales B Université de Genève Sylvain Sardy 20 mars 2008 1. Indépendance 1 Exemple : On lance deux pièces. Soit A l évènement la première est Pile
Baccalauréat ES Pondichéry 7 avril 2014 Corrigé
Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques
Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de
Réalisabilité et extraction de programmes
Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Analyse Combinatoire
Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
