Logique et théorie des ensembles

Dimension: px
Commencer à balayer dès la page:

Download "Logique et théorie des ensembles"

Transcription

1 Rappels : Logique et théorie des ensembles N : ensemble des entiers naturels = { 0,, 2, } A part 0, un nombre n a pas d opposé dans N = {0} : ensemble des entiers relatifs = {, 2,, 0,, 2, } = { n, -n ; n N } A part -,, un entier relatif n a pas d inverse dans = {0} p p p2 : ensemble des nombres rationnels = { ;( pq, ) } avec = pq. 2 = pq 2. } q q q Mais π, 2, e : ensemble des nombres réels = {0} : ensemble des réels strictement positifs Mais les racine i et i de x² ne sont pas dans 2 : ensemble des nombres complexes = { aib ;(a,b) } 2 = {0} = {0}. Logique.. Propositions logiques Définition : On appelle proposition, un énoncé qui ne prend que 2 valeurs : vrai (V) ou faux (F). xemple : «3 < 4» est une proposition de valeur vraie. «2 est un rationnel» est une proposition de valeur fausse..2. Négation d une proposition Soit P une proposition, on note P ou non P sa négation. La table de vérité résume la négation : P V F P F V xemple : P : 3 < 4 est vraie P : 3 4 est fausse.3. Connecteurs logiques 2 propositions P et Q peuvent être connectées pour obtenir une troisième proposition R. Le connecteur est défini par la valeur de la proposition R en fonction des valeurs de P et Q..3.. Connecteur «et» La conjonction de P et Q est P et Q ou P Q ou P Q est vraie si et seulement si P est vraie et Q est vraie. P Q Logique et théorie des ensembles / 8 A Chevalley

2 P Q P Q V V V V F F F V F F F F xemple : P P est toujours fausse Connecteur «ou» La disjonction de P et Q est P ou Q ou P Q («ou» inclusif). P Q est fausse si et seulement si P est fausse et Q est fausse. xemple : P P Q P Q V V V V F V F V V F F F P est toujours vraie Connecteur «implique» L implication de P vers Q est P Q : P est l hypothèse, Q est la conclusion P Q est fausse si et seulement si P est vraie et Q est fausse. - si P est vraie alors Q est vraie - il suffit que P soit vraie pour que Q soit vraie - il est nécessaire (il faut) que Q soit vraie pour que P soit vraie P Q est équivalent à P Q P Q P Q P P Q V V V F V V F F F F F V V V V F F V V V xemple : P P est toujours vraie. P Q : si ABCD est un carré alors ABCD est un parallélogramme P : ABCD est un carré Q : ABCD est un parallélogramme il suffit que P soit vraie pour que Q soit vraie Il suffit que ABCD soit un carré pour que ABCD soit un parallélogramme il est nécessaire (il faut) que Q soit vraie pour que P soit vraie il est nécessaire (il faut) que ABCD soit un parallélogramme pour que ABCD soit un carré mais ce n est pas suffisant. Réciproque La réciproque de P Q est Q P Logique et théorie des ensembles 2 / 8 A Chevalley

3 ATTNTION : P Q n est pas équivalent à Q Contraposée P La contraposée de P Q est : Q P P Q est équivalent à Q P P Q P Q P Q Q P V V V F F V V F F F V F F V V V F V F F V V V V Négation La négation d une implication n est pas une implication (P Q) ( P Q) ( P Q ).3.4. Connecteur «équivalent» Si P Q et Q P, on dit que P est équivalente à Q et on note P Q P Q est vraie si et seulement si P et Q sont vraies ou fausses, simultanément. - P est vraie si et seulement si (ssi) Q est vraie - il faut et il suffit que Q soit vraie pour que P soit vraie - P est une condition nécessaire et suffisante (CNS) pour que Q soit vraie P Q et Q P est équivalent à P Q P Q P Q Q P P Q V V V V V V F F V F F V V F F F F V V V xemple : P P est toujours vraie Théorème On appelle théorème une proposition logique toujours vraie Propriétés Négation ( P) P non (non P) P ( P Q) ( P Q) non (P ou Q) (non P et non Q) Logique et théorie des ensembles 3 / 8 A Chevalley

4 ( P Q) ( P Q) non ( P et Q) (non P ou non Q) Associativité ( P Q) R (P (Q R)) (P ou Q) ou R (P ou (Q ou R) ( P Q) R (P (Q R)) (P et Q) et R (P et (Q et R) Distributivité ( P Q) R (P R) (Q R) (P ou Q) et R (P et R) ou (Q et R) ( P Q) R (P R) (Q R) (P et Q) ou R (P ou R) et (Q ou R) Transitivité ((P Q) (Q R)) (P R) (P Q) et (Q R) (P R) 2. Quantificateurs 2.. Deux quantificateurs Une proposition logique peut dépendre d une variable appartenant à un ensemble donné. 3 3 Par exemple, x x > signifie «pour tout, on a x >». x On introduit le quantificateur qui signifie «pour tout» ou «quel que soit». 3 L exemple précédent devient : x x > A l inverse, une proposition peut être vraie que pour certains éléments d un ensemble. On introduit le quantificateur qui signifie «il existe». Le symbole / signifie «tel que». / se place après. S il y a plusieurs dans une proposition, / se place après le dernier. Remarque : signifie «il existe un unique élément»! x /3x 2> x /3x 2> xemples : signifie «il existe au moins un réel tel 3x2 >» x=0 Vrai signifie «tous les réels vérifient 3x2 >» x = Faux 2.2. Négation d une phrase quantifiée La négation de est ( x, P(x) ) ( x / P(x) ) La négation de est ( x, P(x) ) ( x / P(x) ) 2.3. Propriété On ne peut pas modifier l ordre des quantificateurs sans changer le sens de la proposition. xemple : x, y / x y signifie «tout entier est majoré par un autre entier» VRAI car N est infini. On modifie l ordre des quantificateurs : y / x, x y signifie «il existe un entier supérieur ou égal à tous les autres» FAUX (il n y a pas de borne supérieure) xemples Les propositions suivantes sont-elles vraies? Quelle est la négation de celles qui sont fausses? a) x, x b) x / x c) x,ln( x) = d) x, n / n x< n e) n / x, n x< n 3. Théorie des ensembles 3.. Définitions Logique et théorie des ensembles 4 / 8 A Chevalley

5 Un ensemble est une collection d objets qui présentent une ou plusieurs propriétés communes. xemple : l ensemble des étudiants de. est l ensemble des nombres rationnels. Les éléments d un ensemble sont écrits entre accolades, les uns derrière les autres séparés par des virgules. nsemble des nombres pairs {0, 2, 4, } Soient, A des ensembles x A signifie «x est un élément de A» ou «x appartient à A». On désigne par l ensemble vide qui n a aucun élément. Si A est fini le cardinal de A, Card(A) ou #A, désigne le nombre d éléments de A. xemple : A = {, 2, 5, 0} Card (A) = 4 = { n N n² < 0 } donc = 3.2. Inclusion Définition : On dit que A est inclus dans B, noté A B si la proposition suivante est vraie : A est alors un sous ensemble ou une partie de B. On dit que xemple : ( x A ) ( x B ) A = B ssi A B et B A 3.3. Opération sur les ensembles Réunion Définition : Soient A et B deux ensembles. La réunion de A et B, noté A appartenant à A ou à B : ( x A B) ( x A) ou ( x B) xemple : = { nn, } Intersection B, est l ensemble des éléments Définition : Soient A et B deux ensembles. L intersection de A et B, noté A B, est l ensemble des éléments appartenant à A et à B : xemple : = = { x / Imx ( ) 0} = ( x A B) ( x A) et ( x B) Logique et théorie des ensembles 5 / 8 A Chevalley

6 Complémentaire c Définition : Soient A et deux ensembles avec A. Le complémentaire de A dans, noté A ou A ou A ( s il n y a pas de risque de confusion au niveau de l ensemble ), est l ensemble des éléments de n appartenant pas à A : ( x A ) ( x ) et ( x A) xemple : = {-n,n } Différence ( x A ) ( x A) Définition : Soient A et B deux ensembles. La différence de A moins B, noté A B ou A \ B, est l ensemble des éléments appartenant à A et n appartenant pas à B : ( x A \ B ) ( x A) et ( x B) A \ B = A B Différence symétrique Définition : Soient A et B deux ensembles. La différence symétrique de A et B, noté A des éléments appartenant à A et n appartenant pas à B ou appartenant à B et pas à A : ( x A B ) ( x A \ B) ou ( x B \ A) B, est l ensemble A B = (A B ) (B A ) xemple : Démontrer que A B = ( A B)\( A B) A B = (A B ) (B A ) et ( A B) \ ( A B) = ( A B) ( A B) = ( A B) ( A B ) =( ( A B) A ) ( ( A B ) B ) = ( ( A A ) ( B A ) ) ( ( A B ) ( B B ) ) = ( ( B A ) ) ( ( A B ) ) = ( B A ) ( A B ) = A B 3.4. Propriétés Négation = = ( ) A = A A = A e Logique et théorie des ensembles 6 / 8 A Chevalley

7 Commutativité A B = B A (A B) C = A (B C) A = A = A A A = A A = A B = B A B A = A = A A = A A = A A B = A A B A B = B A (A B) C = A (B C) Lois de Morgan A B = A B A B = A B Distributivité A (B C) = (A B) (A C) A (B C) = (A B) (A C) A (B A) = A (A B) = A Différence A = \ A A \ = A A \ B = A B A \ B = A B = A \ (A B) Différence symétrique A B = B A A = A A A = A B = ( A B) \ (A B) Cardinaux Card (A B) = Card (A) Card (B) Card ( A B) Card ( A ) = Card () Card (A) Card (A \ B) = Card (A) Card ( A B) 3.5. nsemble des parties d un ensemble Soit un ensemble. Les sous ensembles ou parties de constituent un ensemble que l on note P ( ). A P ( ) A Remarque : Les éléments de P ( ) sont des ensembles et en particulier P ( ) et P ( ) Si Card (A) = n alors Card (P (A)) = 2 n xemple : A = {, 2, 3 } Les différentes parties de A sont :, { }, { 2 }, { 3 }, {, 2 }, {, 3 }, { 2, 3 }, {, 2, 3 } = A Card (A) = 3 et Card (P (A)) = 2 3 = Produit cartésien (d ensembles) Définition : Soient A et B deux ensembles. On appelle produit de A par B l ensemble : Souvent A x B B x A A x B = { ( a, b ), a A, b B } 2 xemple : = {( uv, ), u, v } {, 2, 3 } x { i, - i } = { (, i ), ( 2, i ), ( 3, i ), (, - i ), ( 2, - i ), ( 3, - i ) } Remarque : Si les ensembles A et B sont finis alors card ( A x B ) = card (A). card ( B) Logique et théorie des ensembles 7 / 8 A Chevalley

8 4. Récapitulatif Propositions nsembles et ou ou exclusif négation non A, A A ou A = Logique et théorie des ensembles 8 / 8 A Chevalley

Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES

Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES Algèbre - chap 1 1/8 Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES 1. ELEMENTS DE LOGIQUE 1.1 Propositions Règles logiques Définition 1 : On appelle propriété ou assertion une affirmation

Plus en détail

Propositions et prédicats

Propositions et prédicats Propositions et prédicats 1 introduction Définition : Une proposition est un énoncé mathématiques qui peut être démontré comme vrai ou faux, il a valeur de vérité. La logique en mathématique permet d établir

Plus en détail

Cours de Mathématiques Ensembles, applications, relations

Cours de Mathématiques Ensembles, applications, relations Table des matières I Un peu de logique................................... 2 I.1 Assertions................................... 2 I.2 Opérations sur les assertions......................... 2 I.3 Tableaux

Plus en détail

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2 logique Table des matières I démonstration et théorie axiomatique 1 généralités proposition, prédicat simple 3 prédicats composés 3 3.1 prédicat de négation....................................... 3 3.

Plus en détail

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs

À partir de différentes propositions logiques, on peut en construire d autres grâce aux connecteurs Assertion Une assertion est une phrase (énoncé mathématique) qui peut être «vraie» ou «fausse», mais jamais les deux à la fois. Exemples: (3 > 0), (3 = 0) sont des assertions. L énoncé «L avenue des Champs

Plus en détail

Formalisation mathématique

Formalisation mathématique Formalisation mathématique Tony Bourdier (2012) Table des matières 1 Logique de base 1 1.1 Implication, condition nécéssaire, condition suffisante............. 1 1.2 Contraposée....................................

Plus en détail

Logique. Propositions, Raisonnements, Quantificateurs, Prédicats, Récurrence

Logique. Propositions, Raisonnements, Quantificateurs, Prédicats, Récurrence Logique Propositions, Raisonnements, Quantificateurs, Prédicats, Récurrence 1 INTRODUCTION {La présente affirmation est fausse}????? ni vraie ni fausse Vraie, Fausse, indécidable imprécise : {-1 n est

Plus en détail

Chapitre 1 : s exprimer en mathématiques

Chapitre 1 : s exprimer en mathématiques Université Paris-Dauphine DUMI2E, Algèbre 1, 2009-2010 Chapitre 1 : s exprimer en mathématiques Ces notes correspondent au cours qui a été donné en amphi. C est une version condensée du polycopié de logique,

Plus en détail

Différents types de raisonnement en mathématiques

Différents types de raisonnement en mathématiques Différents types de raisonnement en mathématiques I) Symboles logiques 1) Les quantificateurs Les quantificateurs permettent de connaitre le domaine de validité d une propriété. a) Pour une propriété universelle

Plus en détail

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen

Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen Lycée Maximilien Sorre Année 2015-2016 BTS SIO 1 Chapitre 4 - Calcul des propositions et des prédicats, langage ensembliste et calcul booléen 1 Calcul des propositions 1.1 Propositions, valeurs de vérité

Plus en détail

Logique et Raisonnement

Logique et Raisonnement INSA Toulouse Cycle Préparatoire IFCI Module Outils Mathématiques Regroupement n 1 Logique et Raisonnement Introduction En mathématiques, on travaille avec des objets abstraits (nombres, ensembles, applications,

Plus en détail

LES FONDEMENTS : LA LOGIQUE ET LES ENSEMBLES

LES FONDEMENTS : LA LOGIQUE ET LES ENSEMBLES LES FONDEMENTS : LA LOGIQUE ET LES ENSEMBLES 1. LES PROPOSITIONS MATHÉMATIQUES Faire des mathématiques, c est faire avant tout des raisonnements, c est à dire partir d une ou plusieurs hypothèses et par

Plus en détail

Les implications dans le raisonnement mathématique

Les implications dans le raisonnement mathématique I Les implications dans le raisonnement mathématique I.1 L implication - L équivalence 1 (De la logique en français) Une réunion de cosmonautes du monde entier a lieu à Paris. Les cosmonautes américains

Plus en détail

Chapitre 3. S exprimer en mathématiques

Chapitre 3. S exprimer en mathématiques Chapitre 3 S exprimer en mathématiques 1. Les énoncés Des énoncés mathématiques sont des phrases qui ont pour but de définir des objets mathématiques ou bien d en donner des propriétés. Voici des exemples

Plus en détail

ANNEXE 5 : Quelques notions de mathématiques

ANNEXE 5 : Quelques notions de mathématiques ANNEXE 5 : Quelques notions de mathématiques 1. Inclusion et appartenance. Sur tout ensemble, on peut considérer deux relations très différentes (leur confusion conduisant à des difficultés innombrables),

Plus en détail

ÉLÉMENTS DE THÉORIE DES ENSEMBLES. 1 Les ensembles. 1.1 Définition d un ensemble

ÉLÉMENTS DE THÉORIE DES ENSEMBLES. 1 Les ensembles. 1.1 Définition d un ensemble 2015-2016 MPSI2 du lycée Condorcet 1/22 ÉLÉMENTS DE THÉORIE DES ENSEMBLES 1 Les ensembles 1.1 Définition d un ensemble Définition 1. Un ensemble est une collection d objets mathématiques. Les objets qui

Plus en détail

Logique/Ensembles. Logique 2. 1 Rudiments de logique. 1.1 Assertions, connecteurs, synonymie.

Logique/Ensembles. Logique 2. 1 Rudiments de logique. 1.1 Assertions, connecteurs, synonymie. Logique 2 Logique/Ensembles 1 Rudiments de logique. 1.1 Assertions, connecteurs, synonymie. La notion d'assertion est considérée comme intuitive : on se donne la dénition vague ci-dessous. Dénition 1.

Plus en détail

Notions de logique. 1 Proposition. 2 Les quantificateurs. 2.1 Le quantificateur universel

Notions de logique. 1 Proposition. 2 Les quantificateurs. 2.1 Le quantificateur universel Notions de logique 1 Proposition Définition préliminaire : En mathématiques, on appelle proposition toute phrase correctement construite, dont on peut dire sans ambiguïté si elle est VRAIE ou FAUSSE. Exemples

Plus en détail

Polycopié de Logique Mathématique

Polycopié de Logique Mathématique 1. Propositions. Université de la Nouvelle Calédonie. Licences Math, PC, SPI. Semestre 2. Polycopié de Logique Mathématique Une proposition est un enoncé mathématique qui peut être soit vrai (V) soit faux

Plus en détail

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot RAISONNEMENTS 1 Propositions logiques 1.1 Définition et négation Définition 1.1 Proposition On appelle proposition un énoncé mathématique qui peut être vrai ou faux. Exemple 1.1 Deux propositions simples.

Plus en détail

Les ensembles. Représentation graphique : On peut représenter les ensembles par le diagramme de Venn ou le diagramme de Caroll : b b

Les ensembles. Représentation graphique : On peut représenter les ensembles par le diagramme de Venn ou le diagramme de Caroll : b b Les ensembles 1 Définitions et notations 1.1 Notation d ensemble, ensembles des nombres 1.1.1 nsembles xiome : Un ensemble est un groupement d objets, on notera un ensemble. Un objet a est dans se note

Plus en détail

LOGIQUE PROPOSITIONNELLE ET PRÉDICATS

LOGIQUE PROPOSITIONNELLE ET PRÉDICATS LOGIQUE PROPOSITIONNELLE ET PRÉDICATS IFT 1065 AUTOMNE 2007 Les objectifs visés sont de Développer la capacité à exprimer en langage logique des énoncés simples Développer un esprit de rigueur Pouvoir

Plus en détail

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions Logique Exercice 1 : Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi? 1. Si Napoléon était chinois alors 2. Soit Cléopâtre était chinoise, soit les grenouilles

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Mathématiques - ECS1. Vocabulaire ensembliste. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année.

Mathématiques - ECS1. Vocabulaire ensembliste. 30 avenue de Paris Versailles. c 2015, Polycopié du cours de mathématiques de première année. Mathématiques - ECS1 7 Vocabulaire ensembliste Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 2015, Polycopié du cours de mathématiques de première année. 7 Vocabulaire ensembliste. 7.1 Objectifs

Plus en détail

Les ensembles D. Daigle

Les ensembles D. Daigle Les ensembles D. Daigle 1. Notions de base La notation x A signifie que x est un élément de l ensemble A (elle se lit x est élément de A ou encore x appartient à A ). Remarquez que le symbole d appartenance

Plus en détail

Logique, ensembles et applications.

Logique, ensembles et applications. Logique, ensembles et applications. I Outils du raisonnement mathématique 1 I.A Assertions et connecteurs logiques................. 1 I.A.1 Assertions........................... 1 I.A.2 Connecteurs logiques.....................

Plus en détail

Leçon 69 : Les différents types de raisonnement en mathématiques

Leçon 69 : Les différents types de raisonnement en mathématiques Leçon 69 : Les différents types de raisonnement en mathématiques 1 er avril 01 En mathématiques, pour démontrer divers propriétés ou théorèmes, nous avons besoin d appliquer rigoureusement un raisonnement

Plus en détail

Chapitre 5. Applications

Chapitre 5. Applications Chapitre 5 Applications 1. Définitions et exemples Définition 5.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Les connecteurs logiques «ou» et «et»

Les connecteurs logiques «ou» et «et» Les connecteurs logiques «ou» et «et» 1. Dans le langage courant : «ET», «OU» en mathématiques «et» est employé avec différentes significations («et en plus» : un cahier et un stylo et..., «et puis» :

Plus en détail

Chapitre 2. Ensembles et sous-ensembles

Chapitre 2. Ensembles et sous-ensembles Chapitre 2 Ensembles et sous-ensembles 1. Notion d ensemble - Elément d un ensemble Dans une théorie mathématique, il est rare qu un objet intervienne seul ; d où l idée de considèrer des collections,

Plus en détail

CHAPITRE 1 INTRODUCTION : UN PEU DE LOGIQUE

CHAPITRE 1 INTRODUCTION : UN PEU DE LOGIQUE CHAPITRE 1 INTRODUCTION : UN PEU DE LOGIQUE Les mathématiques demandent une grande rigueur dans l exposition des résultats et des démonstrations. Si l intuition et la persuasion sont des outils indispensables

Plus en détail

Le calcul propositionnel

Le calcul propositionnel MTA - ch2 Page 1/8 Éléments de logique - Raisonnements I Le calcul propositionnel Dénition 1 Une assertion est un énoncé dont on peut dire sans ambiguïté s'il est Vrai ou Faux. Cette convention permet

Plus en détail

Logique et Langage des ensembles

Logique et Langage des ensembles 1 Logique et Langage des ensembles Les notions abordées dans ce module sont des notions de base qui interviennent dans tous les domaines des mathématiques. Souvent considérées comme acquises par les étudiants

Plus en détail

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions

5. ( ) ( ) Aller à : Correction exercice 6 : Exercice 7 : Soient et deux parties de. Ecrire en utilisant les assertions Logique Exercice 1 : Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi? 1. Si Napoléon était chinois alors 2. Soit Cléopâtre était chinoise, soit les grenouilles

Plus en détail

Un peu de langage mathématique

Un peu de langage mathématique Chapitre 1 Un peu de langage mathématique 1.1 La Phrase mathématique 1.1.1 Les Assertions Dans l imaginaire collectif, les mathématiques sont souvent considérées comme la science des nombres du calcul.

Plus en détail

Fondements des mathématiques

Fondements des mathématiques Fondements des mathématiques MAT 2762 Automne 2014 A B C Alistair Savage Département de Mathématiques et de Statistique Université d Ottawa Table des matières Préface iii 1 Logique propositionnelle 1 1.1

Plus en détail

Chapitre premier Quelques éléments de logique

Chapitre premier Quelques éléments de logique Chapitre premier Quelques éléments de logique 1.1 Lettres grecques et symboles mathématiques α alpha κ kappa τ tau Λ Lambda Pour tout β beta λ lambda υ upsilon Ξ Xi Il existe γ gamma μ mu ϕ phi Π Pi Implique

Plus en détail

Logique. P 2 : doc 1 Logique et Raisonnement Largement inspiré de «PRÉPAS SCIENCES - PCSI - Éllipses» Plusieurs définitions :

Logique. P 2 : doc 1 Logique et Raisonnement Largement inspiré de «PRÉPAS SCIENCES - PCSI - Éllipses» Plusieurs définitions : Largement inspiré de «PRÉPAS SCIENCES - PCSI - Éllipses» I Logique Plusieurs définitions : Une proposition est un énoncé mathématique qui peut prendre deux valeurs : vrai (V ) ou faux (F) ; On appelle

Plus en détail

Notations mathématiques et rédaction

Notations mathématiques et rédaction Notations mathématiques et rédaction 1 Introduction 2 Symboles mathématiques 3 Un peu de français 4 Les clés de la réussite () Notations mathématiques et rédaction 1 / 33 Plan 1 Introduction 2 Symboles

Plus en détail

Logique, ensembles, preuves mathématiques

Logique, ensembles, preuves mathématiques 009-00 MA Université d Orléans S.Falguières Logique, ensembles, preuves mathématiques Logique Exercice. Soient les quatre assertions suivantes : a. x R, y R, x + y > 0. b. x R, y R, x + y > 0. c. x R,

Plus en détail

Notions de bases. 2 Ensembles Vocabulaire ensembliste Ensemble des parties d un ensemble... 5

Notions de bases. 2 Ensembles Vocabulaire ensembliste Ensemble des parties d un ensemble... 5 Maths PCSI Cours Notions de bases Table des matières 1 Logique 2 1.1 Proposition logique.......................................... 2 1.2 Disjonction, conjonction et implication...............................

Plus en détail

Chapitre 2 : ensembles

Chapitre 2 : ensembles Université Paris-Dauphine DUMI2E, Algèbre 1, 2009-2010 1 Définitions Chapitre 2 : ensembles Un ensemble est une collection d objets. Ces objets sont appelés éléments de l ensemble. Pour dire que x est

Plus en détail

Logique - Calcul propositionnel

Logique - Calcul propositionnel Logique 1/ 6 Logique - Calcul propositionnel En mathématiques, les théorèmes sont des propriétés très importantes. Ils s écrivent le plus souvent à l aide de liens logiques liant entre elles des propositions.

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

Langage mathématique et logique

Langage mathématique et logique Table des matières 1 Langage mathématique et logique 2 1 Présentation du langage................................. 2 1.1 Expressions mathématiques........................... 2 1.2 Variables.....................................

Plus en détail

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble.

Mathématiques. Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. ENSEMBLE DE NOMBRES I. Rappels sur les ensembles 1. Définitions Un ensemble est une collection d objets nommés éléments ou membres de l ensemble. Il est décrit : - par la liste de ces éléments (il est

Plus en détail

.:: Module Mathématiques I : Algèbre ::.

.:: Module Mathématiques I : Algèbre ::. Université Mohammed V - Agdal Faculté des Sciences Département de Mathématiques et Informatique Avenue Ibn Batouta, B.P. 1014 Rabat, Maroc.:: Module Mathématiques I : Algèbre ::. Filière : Sciences de

Plus en détail

Langage mathématique

Langage mathématique Université Joseph Fourier, Grenoble Maths en Ligne Langage mathématique Eric Dumas, Emmanuel Peyre et Bernard Ycart Ce chapitre vous explique la règle du jeu mathématique. Rien n est vraiment nouveau ni

Plus en détail

Logique mathématique et théorie des ensembles

Logique mathématique et théorie des ensembles DERNIÈRE IMPRESSION LE 20 avril 2016 à 9:53 Logique mathématique et théorie des ensembles Table des matières 1 Logique mathématique 2 1.1 Introduction................................ 2 1.2 Vocabulaire

Plus en détail

SCI110 Outils mathématiques pour l informatique (1/4) Logique des propositions. IUT1 dept. SRC Grenoble Jean-François Berdjugin Jean-François Remm

SCI110 Outils mathématiques pour l informatique (1/4) Logique des propositions. IUT1 dept. SRC Grenoble Jean-François Berdjugin Jean-François Remm SCI110 Outils mathématiques pour l informatique (1/4) Logique des propositions IUT1 dept. SRC Grenoble Jean-François Berdjugin Jean-François Remm M1.22.2 Outils mathématiques pour l informatique Ouvrages

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

Phrases quantifiées. «Tout parallélogramme dont les diagonales sont de même longueur est un rectangle.»

Phrases quantifiées. «Tout parallélogramme dont les diagonales sont de même longueur est un rectangle.» Phrases quantifiées Les étapes «comprendre la nécessité de quantifier», «être capable d expliciter les quantifications» et «être capable de rédiger avec des quantificateurs» sont des étapes différentes

Plus en détail

Logique, ensembles, raisonnements

Logique, ensembles, raisonnements Bibliothèque d exercices Énoncés L1 Feuille n Logique, ensembles, raisonnements 1 Logique Exercice 1 Soient les quatre assertions suivantes : (a) x R y R x + y > 0 ; (b) x R y R x + y > 0 ; (c) x R y R

Plus en détail

MAT : Exercices COURS Série 1 1 Réponses et\ou solutions.

MAT : Exercices COURS Série 1 1 Réponses et\ou solutions. MAT-22257 : Exercices COURS Série 1 1 Réponses et\ou solutions. Exercice 0 revision : Dans les notes de cours, faites : a Section 1.3 : Exercice : 1.12 ; b Section 1.5 : Exercices : 2 et 3 ; c Section

Plus en détail

Logique et raisonnement mathématique

Logique et raisonnement mathématique CHAPITRE 1 Logique et raisonnement mathématique 1.1 Un peu de logique mathématique 1.1.1 Dénitions, propriétés, propositions, théorèmes,... Dénition 1 Donner une dénition, c'est nommer un objet ou un type

Plus en détail

C O U R S D E M AT H É M AT I Q U E S P R E M I È R E A N N É E. Exo7

C O U R S D E M AT H É M AT I Q U E S P R E M I È R E A N N É E. Exo7 ALGÈBRE C O U R S D E M AT H É M AT I Q U E S P R E M I È R E A N N É E Exo7 À la découverte de l algèbre La première année d études supérieures pose les bases des mathématiques Pourquoi se lancer dans

Plus en détail

Introdution à la logique en mathématique

Introdution à la logique en mathématique Introdution à la logique en mathématique Mickaël Péchaud 2008 Table des matières 1 Introduction 3 1.1 Propositions.................................... 3 1.2 Un peu d abstraction...............................

Plus en détail

Ensembles, applications, relations

Ensembles, applications, relations Ensembles, applications, relations Notations : : «il existe» ; : «appartient à» ; : «contenu dans» : «quel que soit» ; : «n appartient pas à» ; : «n est pas contenu dans» : «contenu ou égal à» I) Ensembles

Plus en détail

Logique et théorie des ensembles

Logique et théorie des ensembles Chapitre 1 Logique et théorie des ensembles Les buts de ce chapitre sont : définir les énoncés que l on peut démontrer en mathématiques, être capable de comprendre un énoncé mathématique complexe, introduire

Plus en détail

2. Ensembles et dénombrabilité

2. Ensembles et dénombrabilité 2. Ensembles et dénombrabilité Ensembles et éléments Un ensemble d éléments est une collection d objets distincts. Un ensemble est défini par les éléments qu il contient et qui lui appartiennent. La relation

Plus en détail

E E[v := F ] (1.8) Réflexivité :x = x (1.9) Symétrie (commutativité) : (x = y) =(y = x) (1.7) Substitution : (1.10) Transitivité : X = Y, Y = Z X = Z

E E[v := F ] (1.8) Réflexivité :x = x (1.9) Symétrie (commutativité) : (x = y) =(y = x) (1.7) Substitution : (1.10) Transitivité : X = Y, Y = Z X = Z (1.7) Substitution : E E[v := F ] (1.8) Réflexivité :x = x (1.9) Symétrie (commutativité) : (x = y) =(y = x) (1.10) Transitivité : X = Y, Y = Z X = Z (1.11) Leibniz: X = Y E[z := X] =E[z := Y ] X = Y (1.14)

Plus en détail

Université de Provence Feuille d exercices n 4. Théorie des ensembles, relations, applications. I. Un peu de logique

Université de Provence Feuille d exercices n 4. Théorie des ensembles, relations, applications. I. Un peu de logique Université de Provence 2010 2011 Mathématiques Générales 1 Feuille d exercices n 4 Théorie des ensembles, relations, applications I. Un peu de logique Exercice 1 Ecrire à l aide de quantificateurs (, )

Plus en détail

Introduction Les Opérateurs logiques les lois de la logique Utilisation en informatique. La logique É.FAVIER. Master SIG

Introduction Les Opérateurs logiques les lois de la logique Utilisation en informatique. La logique É.FAVIER. Master SIG La logique É.FAVIER Master SIG Année universitaire 2007-2008 Sommaire 1 Introduction Définition algèbres de Boole binaires 2 Les Opérateurs logiques 3 les lois de la logique 4 Utilisation en informatique

Plus en détail

et ou non xor

et ou non xor Architecture & Système Travaux dirigés n o 3 : Algèbre de Boole (CORRECTIONS) Les composants électroniques d un ordinateur manipulent des données binaires via des circuits logiques. Ces circuits effectuent

Plus en détail

Logique. Exercice 2 : Soient (P), (Q) et (R) trois propositions, donner la négation de. Aller à : Correction exercice 2 :

Logique. Exercice 2 : Soient (P), (Q) et (R) trois propositions, donner la négation de. Aller à : Correction exercice 2 : Logique Exercice 1 : Parmi les assertions suivantes, lesquelles sont vraies, lesquelles sont fausses et pourquoi? 1. Si Napoléon était chinois alors 3 2 = 2 2. Soit Cléopâtre était chinoise, soit les grenouilles

Plus en détail

Table des matières Logique et raisonnements Ensembles et applications

Table des matières Logique et raisonnements Ensembles et applications Table des matières 1 Logique et raisonnements 5 1.1 Logique............................................. 5 1.1.1 Assertions....................................... 5 1.1. Quantificateurs...................................

Plus en détail

ENSEMBLES, FONCTIONS, SUITES 1. ENSEMBLES {1,2,2,4,3} = {1,2,3,4}

ENSEMBLES, FONCTIONS, SUITES 1. ENSEMBLES {1,2,2,4,3} = {1,2,3,4} ENSEMBLES, FONCTIONS, SUITES IFT1065 AUT. 2007 - SEMAINE 3 1. ENSEMBLES 1.1. Définition par extension. On peut définir un ensemble en listant ces éléments. Une telle définition est dite par extension.

Plus en détail

TD 1: Calcul propositionnel

TD 1: Calcul propositionnel Université Paris 1 Panthéon-Sorbonne. L1 MIASHS -Fondement des mathématiques TD 1: Calcul propositionnel Exercice 1. Soit p la proposition il fait froid et q il pleut. Donner l énoncé en language naturel

Plus en détail

Le formalisme mathématique

Le formalisme mathématique Le formalisme mathématique Bcpst 1 4 mars 2016 Les mathématiques modernes forment une science essentiellement formelle. Tout d abord, tout texte mathématique peut être entièrement formalisé dans un langage

Plus en détail

Cours d arithmétique. Khaoula Ben Abdeljelil

Cours d arithmétique. Khaoula Ben Abdeljelil Cours d arithmétique Khaoula Ben Abdeljelil 2 Table des matières Table des matières............................... i 1 LES ENTIERS NATURELS 1 1.1 Les opérations élémentaires sur N.................... 1

Plus en détail

Outils formels pour l étude du langage

Outils formels pour l étude du langage Outils formels pour l étude du langage Cours de Master, ENS, MasterCog + LTD, A. Lecomte, 2009-2010 Ensembles et logique 1 Ensembles Rappelons brièvement quelques notions de théorie des ensembles. Notons

Plus en détail

Logique. Chapitre Connecteurs logiques

Logique. Chapitre Connecteurs logiques Chapitre 1 Logique Un scientifique étudie des objets, à propos desquels il énonce des faits (ou propositions). La logique manipule de façon formelle les propositions. Elle permet de modéliser les bases

Plus en détail

LE RAISONNEMENT MATHÉMATIQUE SOUS TOUTES SES FORMES

LE RAISONNEMENT MATHÉMATIQUE SOUS TOUTES SES FORMES LE RAISONNEMENT MATHÉMATIQUE SOUS TOUTES SES FORMES Colloque International des IREM du 2 au 4 Juin 2016 STRASBOURG Denise GRENIER Université Grenoble Alpes (France) Judith NJOMGANG NGANSOP Université de

Plus en détail

MATHÉMATIQUES. 1. PROPRIÉTES et ENSEMBLES.

MATHÉMATIQUES. 1. PROPRIÉTES et ENSEMBLES. MATHÉMATIQUES. Le Petit Larousse Illustré 1994 donne la définition suivante : Mathématique (de mathêma = science en grec) : nom s. ou pl. 1. Science qui étudie par le moyen du raisonnement déductif les

Plus en détail

Chapitre 1 : Calcul dans R

Chapitre 1 : Calcul dans R Chapitre 1 : Calcul dans R PTSI B Lycée Eiffel 6 septembre 13 Le calcul que vous trouvez si mauvais est pourtant celui de toutes les passions. Des années entières de poursuite, pour la jouissance d un

Plus en détail

Le quantificateur universel

Le quantificateur universel Le quantificateur universel Dans tout ce qui suit, nous nous intéressons à la quantification universelle. Quantifier ne va pas de soi. C est une habitude à prendre. On doit quantifier dans le quotidien.

Plus en détail

CHAPITRE 1 : FONCTION

CHAPITRE 1 : FONCTION CHAPITRE : FONCTION Ensemble de nombres et intervalles.. Ensemble de nombre. N est l ensemble des entiers naturels :,,,... Z est l ensemble des entiers relatifs :...,,,,,,... D est l ensemble des nombres

Plus en détail

Cours de Logique. Alain LECOMTE UFR Sciences du Langage Université Paris 8. (iii) rien n est une formule hormis par (i) et (ii)

Cours de Logique. Alain LECOMTE UFR Sciences du Langage Université Paris 8. (iii) rien n est une formule hormis par (i) et (ii) Cours de Logique Alain LECOMTE UFR Sciences du Langage Université Paris 8 1 Logique propositionnelle 1.1 Syntaxe des formules Alphabet de base : A = {p, q, r,...,,,,,,,, } où p, q, r,... sont appelés variables

Plus en détail

Ensembles de nombres Ordre dans R

Ensembles de nombres Ordre dans R Chapitre 1 Ensembles de nombres Ordre dans R 1. Différents ensembles de nombres 1.1) Des nombres de différentes natures Exemple : Les différentes écritures suivantes désignent un même nombre 2,8 : 7 10

Plus en détail

1 Réunion, intersection, différence, produit cartésien d ensembles

1 Réunion, intersection, différence, produit cartésien d ensembles Université Claude Bernard Lyon 1 Licence Mathématiques et informatique Première année UE Math I-ALGEBRE Année 008-009 CHAPITRE 1 1 Réunion, intersection, différence, produit cartésien d ensembles Exercice

Plus en détail

La logique équationnelle

La logique équationnelle Chapitre 2 La logique équationnelle Buts du chapitre : Donner une sémantique à une spécification de TAD Raisonner sur des spécifications, déduire des proporiétés 2.1 Interprétations d une spécification

Plus en détail

Logique et théorie des modèles

Logique et théorie des modèles Logique et théorie des modèles Cours de P. Joray Définition 0.1 Dans un langage L, une proposition est un énoncé qui possède l une des deux valeurs de vérité suivante : vrai ou faux. «2 + 2 = 4», «2 +

Plus en détail

Notions de base et notations courantes en mathématiques

Notions de base et notations courantes en mathématiques Algèbre linéaire avancée I Automne 015 EPFL Notions de base et notations courantes en mathématiques A. Théorie des ensembles 1. Un ensemble est une collection d objets appelés les éléments de l ensemble.

Plus en détail

Rappels sur les nombres et les calculs élémentaires

Rappels sur les nombres et les calculs élémentaires Rappels sur les nombres et les calculs élémentaires I- Les entiers et l addition des relatifs : La première famille de nombres que vous avez rencontrée dans votre vie est celle des entiers naturels : 0

Plus en détail

ENSEMBLES DE NOMBRES. I - Les entiers naturels. L'ensemble des entiers naturels non nuls est noté N *

ENSEMBLES DE NOMBRES. I - Les entiers naturels. L'ensemble des entiers naturels non nuls est noté N * ENSEMBLES DE NOMBRES Ne pas confondre «nombre» et «chiffre» Les nombres servent à dénombrer, calculer.les chiffres servent à écrire les nombres. Numération de position : Principe selon lequel la signification

Plus en détail

LOGIQUE. Logique des propositions Algèbre de Boole Méthodes de simplification des fonctions booléennes

LOGIQUE. Logique des propositions Algèbre de Boole Méthodes de simplification des fonctions booléennes LOGIQUE Logique des propositions Algèbre de Boole Méthodes de simplification des fonctions booléennes OBJECTIFS Traiter formellement les notions de vérité et de fausseté Formaliser ce qu on appelle le

Plus en détail

Logique. Logique Propositionnelle. Thomas Pietrzak Licence Informatique

Logique. Logique Propositionnelle. Thomas Pietrzak Licence Informatique Logique Logique Propositionnelle Thomas Pietrzak Licence Informatique Logique propositionnelle Logique de base Raisonnements simples Connecteurs usuels : ET, OU, NON, Syntaxe Variables propositionnelles

Plus en détail

LOGIQUE ÉLÉMENTAIRE bjectif, outils, et limites de la logique. (1) Qu est-ce que la logique? Quelques points de vues.

LOGIQUE ÉLÉMENTAIRE bjectif, outils, et limites de la logique. (1) Qu est-ce que la logique? Quelques points de vues. 2 LOGIQUE ÉLÉMENTAIRE I 1.1 0bjectif, outils, et limites de la logique. (1) Qu est-ce que la logique? Quelques points de vues. 1.2 Outils de la logique : définition et propriétés (1) Propositions (logiques)

Plus en détail

QUELQUES RAPPELS ET COMPLÉMENTS. 1. Relation d équivalence, relation d ordre

QUELQUES RAPPELS ET COMPLÉMENTS. 1. Relation d équivalence, relation d ordre QUELQUES RAPPELS ET COMPLÉMENTS 1.1. Définitions. 1. Relation d équivalence, relation d ordre Définition 1.1. Soit E un ensemble et E E le produit cartésien. Une relation binaire (ou correspondance binaire)

Plus en détail

Seulement les équivalences logiques simples sont utilisées dans les preuves mathématiques. Il faut les reconnaître. Par exemple :

Seulement les équivalences logiques simples sont utilisées dans les preuves mathématiques. Il faut les reconnaître. Par exemple : Seulement les équivalences logiques simples sont utilisées dans les preuves mathématiques. Il faut les reconnaître. Par exemple : (P Q) ((P Q) (Q P)) ; (Sont déjà montrés.) (P Q) ( Q P) ( P Q). MAT1500

Plus en détail

Fondement des mathématiques

Fondement des mathématiques Fondement des mathématiques Cédric Milliet Version préliminaire Cours de première année de licence Université Galatasaray Année 2011-2012 Ces notes de cours doivent beaucoup au cours du même nom de Marie-Christime

Plus en détail

DENOMBRABILITE. P. Pansu 14 mai 2005

DENOMBRABILITE. P. Pansu 14 mai 2005 DENOMBRABILITE P. Pansu 14 mai 2005 1 Motivation Il y a t il plus de réels dans ]1, + [ ou dans l intervalle ]0, 1[? Oui, bien sûr. Des droites passant par l origine dans le plan, il y en a-t-il autant

Plus en détail

Bases du raisonnement

Bases du raisonnement 02 Cours - Bases du raisonnement.nb 1/13 Bases du raisonnement I) Préambule 1) De l obscurité à la lumière, ou encore les quatre paliers de la compréhension 2) La langue mathématique: une vraie langue

Plus en détail

Logique 2 : la déduction

Logique 2 : la déduction Logique 2 : la déduction La mathématique est la science de la déduction. Ce qui signifie qu un mathématicien prend des informations de départ et cherche tout ce qu on peut en déduire. La question de savoir

Plus en détail

MATHEMATIQUES DE BASE. Cours MIS Semestre d Automne

MATHEMATIQUES DE BASE. Cours MIS Semestre d Automne MATHEMATIQUES DE BASE Cours MIS0 2006 2007 Semestre d Automne LES REFERENCES DU COURS Notes de cours 2006 2007 disponibles (au fil des semaines) sur le site : http://www.math.u bordeaux.fr/~yger/coursmismi.pdf

Plus en détail

Informatique théorique Bases du raisonnement logique (brouillon)

Informatique théorique Bases du raisonnement logique (brouillon) Informatique théorique Bases du raisonnement logique (brouillon) 1 Introduction Nous présentons quelques règles permettant de faciliter la preuve de jugements de la forme Γ A. Il est important de les comprendre,

Plus en détail

RUDIMENTS DE LOGIQUE - RAISONNEMENTS

RUDIMENTS DE LOGIQUE - RAISONNEMENTS RUDIMENTS DE LOGIQUE - RAISONNEMENTS Introduction La théorie Mathématique est basée : sur des propositions initiales posées a priori comme vraies (axiomes, postulats). sur des règles permettant de déduire

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices

Congruences. DOMAINE : Arithmétique. NIVEAU : Débutants STAGE : Montpellier 2014 CONTENU : Cours et exercices DOMAINE : Arithmétique AUTEUR : Nicolas SÉGARRA NIVEAU : Débutants STAGE : Montpellier 014 CONTENU : Cours et exercices Congruences Commençons par trois exercices permettant de rappeler ce qui a été vu

Plus en détail