MAT : Exercices COURS Série 1 1 Réponses et\ou solutions.
|
|
|
- Jonathan Lefebvre
- il y a 9 ans
- Total affichages :
Transcription
1 MAT : Exercices COURS Série 1 1 Réponses et\ou solutions. Exercice 0 revision : Dans les notes de cours, faites : a Section 1.3 : Exercice : 1.12 ; b Section 1.5 : Exercices : 2 et 3 ; c Section 2.5 : Exercices : 1, 2 et 3 ; d Section 3.7 : Exercices : 1, 4, 11 et 12. Solutions disponibles au Chapitre 14 des notes de Jules Desharnais. Exercice 1 : LIRE les sections 11.1, 11.2 et Exercice 2 : Définissez les ensembles suivants par compréhension : a l ensemble des entiers non-négatifs plus petits que 4 ; Réponse : {n : N : n < 4 : n} ou {n : Z : 0 n < 4 : n} Ceci n est pas en compréhension : {0, 1, 2, 3}. b l ensemble des entiers positifs divisibles par 3 et plus petits que 4 ; Réponse : {i : N 0 < 3i < 4 : 3i} Ceci n est pas en compréhension : {3}. c l ensemble des nombres impairs ; Réponse : {i : Z : 2i + 1} ou {n : Z i : Z : n = 2i + 1 : n} Ceci n est pas en compréhension : {..., 7, 5, 3, 1, 0, 1, 3, 5, 7,...}. d l ensemble des carrés dont la racine est située entre 10 et 22 ; Réponse : {i : N 10 i 22 : i 2 } ou {n : N 10 n 22 : n} Ceci n est pas en compréhension : {10 2, 11 2, 12 2, 13 2,..., 22 2 }. e l ensemble des puissances de 2. Réponse : {i : N : 2 i } ou {n : N i : N : n = 2 i : n} Ceci n est pas en compréhension : {1, 2, 4, 8, 16, 32, 64, 128,...}. Exercice 3 : Donnez une description en langue française des ensembles suivants : a {x : Z 0 < x paire.x : x} ; Réponse : L ensemble des entiers positifs pairs.
2 b {x : Z 0 < x : 2 x} ; Réponse : Même réponse qu en a. c {x : Z 0 < x y : Z 2 y = x : x} ; Réponse : Même réponse qu en a. d {z : Z x, y : Z 1 < x 1 < y < 4 : z = x y : z} ; Réponse : L ensemble des entiers non-négatifs qui sont divisibles par 2 ou par 3. e {x, y : Z 1 < x 1 < y < 4 : x y}. Réponse : Même réponse qu en d. Exercice 4 : Notes de cours Section 11.5 : Exercices : 1 et 2. Solutions disponibles au Chapitre 14 des notes de Jules Desharnais. Exercice 5 : Notes de cours Section 11.5 : Exercices : 3 à 8. Solutions disponibles au Chapitre 14 des notes de Jules Desharnais. Pour l exercice 6, vous pourriez avoir besoin de : 7.23 Metathéorème 7.3, 7.24 ou 7.25 Transfert et loi de De Morgan pour et 3.73, 3.76, 3.97, 3.98 ou 3.99 Implication 6.23 Distributivité de la quantification N.B. : et représentent le même quantificateur. Voir page , 3.14 ou 3.17 Théorèmes reliant, et *** Axiome de définition de : x S x S **** Axiome de définition de : x S x = S Exercice 6 : Démontrez : 11.50b De Morganb : S T = S T ; Solution 1 : S T = avec [S := S T ] S T = 11.50a De Morgan, avec [S := S] et [T := T ] S T = S T = avec [S := T ] S T
3 Solution 2 : Nous utiliserons la méthode de démonstration 8.18b qui ramène ce problème à la démonstration de v S T v S T où v U. v S T = avec [S := S T ] car v U v S T = *** Axiome de définition de, avec [S := S T ] v S T = Axiome de l intersection v S v T = 3.48a De Morgan, avec [p := v S] et [q := v T ] v S v T = *** Axiome de définition de v S v T = *** Axiome de définition de, avec [S := S T ] v S v T = avec [S := T ] car v U v S v T = car v U v S v T = Axiome de l union, avec[s := S] et [T := T ] v S T S T S T = S ; Solution : S T = Axiome du sous-ensemble x x S : x T = 7.3 Axiome de transfert, avec [R := x S] et [P := x T ] x : x S x T = 3.76 Définition alternative de, avec [p := x S] et [q := x T ] x : x S x T x S = Axiome d intersection, avec [v := x] x : x S T x S = 11.8 Axiome d extensionalité, avec [S := S T ] et [T := S] S T = S Antisymétrie de : S T T S S = T ; Solution : S T T S = Axiome du sous-ensemble x x S : x T T S = Axiome du sous-ensemble, avec [S := T ] et [T := S] x x S : x T x x T : x S = 7.3 Transfert, avec [R := x S] et [P := x T ]
4 x : x S x T x x T : x S = 7.3 Transfert, avec [R := x T ] et [P := x S] x : x S x T x : x T x S = 7.3 Axiome de distributivité, avec [ := ], [P := x S x T ] et [Q := x T x S] Rappelons que les quantificateurs et sont une et même chose. x : x S x T x T x S = 3.97 Implication mutuelle, avec [p := x S] et [q := x T ] x : x S x T = 11.8 Axiome d extensionalité S = T Attention, ce qui suit n est pas une solution complète : S T T S = Propriété de S T = S T S = Propriété de, avec [S := T ] et [T := S] S T = S T S = T = Commutativité de T S = S T S = T = 1.11 Transitivité de = S = T S T S = T 1.11 transitivité de =, avec [X := S], [Y := T S] et [Z := T ] S = T x x S : x T S T ; Solution 1 : 1ère étape : Démontrons que x x S : x T S T S = T S T. x x S : x T S T = 3.80 Contrapositivité, avec [p := x x S : x T ] et [q := S T ] S T x x S : x T = Axiome de définition de, avec [S := T ] S T x x S : x T = 7.25a De Morgan, avec [R := x S] et [q := x T ] S T x x S : x T = Axiome de définition de S = T x x S : x T = 3.15 Double négation, avec [p := S = T ] S = T x x S : x T = Axiome sous-ensemble S = T S T 2e étape : Démontrons S = T S T. S = T = 11.8 Axiome d extensionnalité x : x S x T
5 = 3.98 Antisymétrie de, avec [p := x S] et [q := x T ] x : x S x T x T x S 7.17 Affaiblissement du corps, avec [P := x S x T ] et [Q := x T x S] x : x S x T = 7.3 Transfert, avec [R := x S] et [P := x T ] x x S : x T = Axiome, sous-ensemble S T Solution 2 : x x S : x T = 7.26 Transfert, avec [R := x S] et [P := x T ] x : x S x T = Axiome de définition de, avec [S := T ] x : x S x T = 3.62 Théorème reliant et, avec [p := x S] et [q := x T ] x : x S x T x S = 7.24 Axiome, De Morgan, avec [P := x S x T x S] x : x S x T x S = 3.12 Axiome de distributivité de sur, avec [p := x S x T ] et [q := x S] x : x S x T x S = 3.14 et 3.2 p q p q, avec [p := x S x T ] et [q := x S] x : x S x T x S = 3.15 Double négation, avec [p := x S] x : x S x T x S = Axiome d intersection, avec [v := x] x : x S T x S = 11.8 Axiome d extensionnalité, avec [S := S T ] et [T := S] S T = S = Propriété de S T = Propriété de S T S = T = 11.58b De Morgan, avec [p := S T ] et [q := S = T ] S T S = T = 11.58b Commutativité de, avec [p := S T ] et [q := S = T ] S = T S T 3.92b Affaiblissement sur, avec [p := S = T ] et [q := S T ] S = T = Axiome de définition de S T
6 11.67 transitivité S T T U S U ; Solution S T t U = ax.sous-ensemble 2 fois { 1ère fois avec [S := S] et [T := T ] 2e fois avec [S := T ] et [T := U] x x S: x T x x T : x U { 1ère fois avec [x := x], [R := x S] et [P := x T ] = 7.3 ax.transfert 2 fois 2e fois avec [x := x], [R := x T ] et [P := x U] x : x S x T x : x T x U 6.23 ax.distributivité, avec [ := ], [R := V RAI], [P := x S x T ] = et [Q := x T x U] NB : Le est un et cette quantification est toujours définie. x : x S x T x T x U Lemme, ci-bas, avec [x := x], [p := x S x T ], [q := x T x U] et [r := x S x U] x : x S x U = 7.3 ax.transfert avec [x := x], [R := x S] et [P := x U] x x S: x U = ax.sous-ensemble, avec [x := x], [S := S] et [T := U] S U Il ne reste donc que le lemme à démontrer. Lemme : x : p q q r x : p r Démonstration du lemme : Étape 1 : Montrons que x : p q q r p r. Ce qui, par le Métathéorème 7.23, est équivalent à montrer : p q q r p r. Or cet énoncé a déjà été montré, il s agit de 3.99a Transitivité. Étape 2 : Montrons que x : p q q r p r x : p q q r : p r x : p q q r p r 7.18 Monotonie de, avec [x:= x], [R:= V RAI], [Q:= p q q r] et [P := p r] x : p q q r : p r
7 Étape 3 : Nous avons donc montré que : x : p q q r p r et x : p q q r p r x : p q q r : p r Par le Modus Ponens 3.93, le Lemme est donc démontré. C.Q.F.D.
Logique. Plan du chapitre
Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
La mesure de Lebesgue sur la droite réelle
Chapitre 1 La mesure de Lebesgue sur la droite réelle 1.1 Ensemble mesurable au sens de Lebesgue 1.1.1 Mesure extérieure Définition 1.1.1. Un intervalle est une partie convexe de R. L ensemble vide et
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Problèmes de Mathématiques Filtres et ultrafiltres
Énoncé Soit E un ensemble non vide. On dit qu un sous-ensemble F de P(E) est un filtre sur E si (P 0 ) F. (P 1 ) (X, Y ) F 2, X Y F. (P 2 ) X F, Y P(E) : X Y Y F. (P 3 ) / F. Première Partie 1. Que dire
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
III- Raisonnement par récurrence
III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,
FONDEMENTS DES MATHÉMATIQUES
FONDEMENTS DES MATHÉMATIQUES AYBERK ZEYTİN 1. DIVISIBILITÉ Comment on peut écrire un entier naturel comme un produit des petits entiers? Cette question a une infinitude d interconnexions entre les nombres
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Eteindre. les. lumières MATH EN JEAN 2013-2014. Mme BACHOC. Elèves de seconde, première et terminale scientifiques :
MTH EN JEN 2013-2014 Elèves de seconde, première et terminale scientifiques : Lycée Michel Montaigne : HERITEL ôme T S POLLOZE Hélène 1 S SOK Sophie 1 S Eteindre Lycée Sud Médoc : ROSIO Gauthier 2 nd PELGE
Taux d évolution moyen.
Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.
Triangle de Pascal dans Z/pZ avec p premier
Triangle de Pascal dans Z/pZ avec p premier Vincent Lefèvre (Lycée P. de Fermat, Toulouse) 1990, 1991 1 Introduction Nous allons étudier des propriétés du triangle de Pascal dans Z/pZ, p étant un nombre
6. Les différents types de démonstrations
LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Utilisation des tableaux sémantiques dans les logiques de description
Utilisation des tableaux sémantiques dans les logiques de description IFT6281 Web Sémantique Jacques Bergeron Département d informatique et de recherche opérationnelle Université de Montréal [email protected]
Manuel d utilisation. éstréso Syndicat S C P V C. Saisir les écritures. Version 5.1.14
éstréso Syndicat Manuel d utilisation Version 5.1.14 S C P V C Saisir les écritures Version 5.1.14 1 Préambule Dans Tréso Syndicat il existe quatre possibilités pour saisir des écritures. - L écriture
Groupe symétrique. Chapitre II. 1 Définitions et généralités
Chapitre II Groupe symétrique 1 Définitions et généralités Définition. Soient n et X l ensemble 1,..., n. On appelle permutation de X toute application bijective f : X X. On note S n l ensemble des permutations
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
PLAN NOTATIONS UTILISÉES
PLAN COURS 3 AGRÉGATION ORDINALE Master IAD DMDC PATRICE PERNY LIP6 Université Paris 6 1 2 2/29 NOTATIONS UTILISÉES I) O A : ordres complets sur A P A : Préordres sur A (complets ou partiels) PC A : Préordres
éq studio srl Gestion des informations pour un choix- consommation raisonnée - GUIDE EXPLICATIVE
Résumé PREFACE 2 INTRODUCTION 2 1. BUT ET CHAMP D APPLICATION 2 2. REFERENCES DOCUMENTAIRES ET NORMES 3 3. TERMES ET DEFINITIONS 3 4. POLITIQUE POUR UNE CONSOMMATION RAISONNEE (PCC) 3 5. RESPONSABILITE
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Cours de Probabilités et de Statistique
Cours de Probabilités et de Statistique Licence 1ère année 2007/2008 Nicolas Prioux Université Paris-Est Cours de Proba-Stat 2 L1.2 Science-Éco Chapitre Notions de théorie des ensembles 1 1.1 Ensembles
Fibonacci et les paquerettes
Fibonacci et les paquerettes JOLY Romain & RIVOAL Tanguy Introduction Quand on entend dire que l on peut trouver le nombre d or et la suite de Fibonacci dans les fleurs et les pommes de pin, on est au
Chap 4: Analyse syntaxique. Prof. M.D. RAHMANI Compilation SMI- S5 2013/14 1
Chap 4: Analyse syntaxique 1 III- L'analyse syntaxique: 1- Le rôle d'un analyseur syntaxique 2- Grammaires non contextuelles 3- Ecriture d'une grammaire 4- Les méthodes d'analyse 5- L'analyse LL(1) 6-
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Corps des nombres complexes, J Paul Tsasa
Corps des nombres complexes, J Paul Tsasa One Pager Février 2013 Vol. 5 Num. 011 Copyright Laréq 2013 http://www.lareq.com Corps des Nombres Complexes Définitions, Règles de Calcul et Théorèmes «Les idiots
LES REGLEMENTS AVEC SOCIEL.NET DERNIERE MISE A JOUR : le 14 juin 2010
LES REGLEMENTS AVEC SOCIEL.NET DERNIERE MISE A JOUR : le 14 juin 2010 Guillaume Informatique 10 rue Jean-Pierre Blachier 42150 La Ricamarie Tél. : 04 77 36 20 60 - Fax : 04 77 36 20 69 - Email : [email protected]
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
D'UN THÉORÈME NOUVEAU
DÉMONSTRATION D'UN THÉORÈME NOUVEAU CONCERNANT LES NOMBRES PREMIERS 1. (Nouveaux Mémoires de l'académie royale des Sciences et Belles-Lettres de Berlin, année 1771.) 1. Je viens de trouver, dans un excellent
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications
Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
C f tracée ci- contre est la représentation graphique d une
TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe
Chapitre 7. Récurrences
Chapitre 7 Récurrences 333 Plan 1. Introduction 2. Applications 3. Classification des récurrences 4. Résolution de récurrences 5. Résumé et comparaisons Lectures conseillées : I MCS, chapitre 20. I Rosen,
Théorie de la mesure. S. Nicolay
Théorie de la mesure S. Nicolay Année académique 2011 2012 ii Table des matières Introduction v 1 Mesures 1 1.1 Sigma-algèbres................................. 1 1.2 Mesures.....................................
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
Chapitre 2. Eléments pour comprendre un énoncé
Chapitre 2 Eléments pour comprendre un énoncé Ce chapitre est consacré à la compréhension d un énoncé. Pour démontrer un énoncé donné, il faut se reporter au chapitre suivant. Les tables de vérité données
Calculs de probabilités
Calculs de probabilités Mathématiques Générales B Université de Genève Sylvain Sardy 13 mars 2008 1. Définitions et notations 1 L origine des probabilités est l analyse de jeux de hasard, tels que pile
Première partie. Préliminaires : noyaux itérés. MPSI B 6 juin 2015
Énoncé Soit V un espace vectoriel réel. L espace vectoriel des endomorphismes de V est désigné par L(V ). Lorsque f L(V ) et k N, on désigne par f 0 = Id V, f k = f k f la composée de f avec lui même k
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
IUT de Laval Année Universitaire 2008/2009. Fiche 1. - Logique -
IUT de Laval Année Universitaire 2008/2009 Département Informatique, 1ère année Mathématiques Discrètes Fiche 1 - Logique - 1 Logique Propositionnelle 1.1 Introduction Exercice 1 : Le professeur Leblond
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Introduction a l'algorithmique des objets partages. Robert Cori. Antoine Petit. Lifac, ENS Cachan, 94235 Cachan Cedex. Resume
Introduction a l'algorithmique des objets partages Bernadette Charron{Bost Robert Cori Lix, Ecole Polytechnique, 91128 Palaiseau Cedex, France, [email protected] [email protected] Antoine
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Rédiger et administrer un questionnaire
Rédiger et administrer un questionnaire Ce document constitue une adaptation, en traduction libre, de deux brochures distinctes : l une produite par l American Statistical Association (Designing a Questionnaire),
Réaliser la fiche de lecture du document distribué en suivant les différentes étapes de la méthodologie (consulter le support du TD!
Réaliser la fiche de lecture du document distribué en suivant les différentes étapes de la méthodologie (consulter le support du TD!) 1. Réaliser la note sur l auteur (bien lire le document, utiliser Internet)
Peut-on imiter le hasard?
168 Nicole Vogel Depuis que statistiques et probabilités ont pris une large place dans les programmes de mathématiques, on nous propose souvent de petites expériences pour tester notre perception du hasard
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES. Ce qui est demandé. Les étapes du travail
La maison Ecole d ' Amortissement d un emprunt Classe de terminale ES Suites géométriques, fonction exponentielle Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence L objectif de cet exercice
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
L exclusion mutuelle distribuée
L exclusion mutuelle distribuée L algorithme de L Amport L algorithme est basé sur 2 concepts : L estampillage des messages La distribution d une file d attente sur l ensemble des sites du système distribué
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Date : 18.11.2013 Tangram en carré page
Date : 18.11.2013 Tangram en carré page Titre : Tangram en carré Numéro de la dernière page : 14 Degrés : 1 e 4 e du Collège Durée : 90 minutes Résumé : Le jeu de Tangram (appelé en chinois les sept planches
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )
DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité
Pour l épreuve d algèbre, les calculatrices sont interdites.
Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.
Licence MASS 2000-2001. (Re-)Mise à niveau en Probabilités. Feuilles de 1 à 7
Feuilles de 1 à 7 Ces feuilles avec 25 exercices et quelques rappels historiques furent distribuées à des étudiants de troisième année, dans le cadre d un cours intensif sur deux semaines, en début d année,
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Bases de données documentaires et distribuées Cours NFE04
Bases de données documentaires et distribuées Cours NFE04 Scalabilité Auteurs : Raphaël Fournier-S niehotta, Philippe Rigaux, Nicolas Travers pré[email protected] Département d informatique Conservatoire
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES
Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable
Série TD 3. Exercice 4.1. Exercice 4.2 Cet algorithme est destiné à prédire l'avenir, et il doit être infaillible! Exercice 4.3. Exercice 4.
Série TD 3 Exercice 4.1 Formulez un algorithme équivalent à l algorithme suivant : Si Tutu > Toto + 4 OU Tata = OK Alors Tutu Tutu + 1 Tutu Tutu 1 ; Exercice 4.2 Cet algorithme est destiné à prédire l'avenir,
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.
Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la
ASSOCIATION NATIONALE D'ASSISTANCE ADMINISTRATIVE ET FISCALE DES AVOCATS
Modèles de factures Module : Gestion Version : 3.03a Date : 14 juin 2006 Mise à jour : 01 décembre 2009 Objectif Afin de vous permettre de gagner du temps lors de la création de vos factures, Aidavocat
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
Méthode : On raisonnera tjs graphiquement avec 2 biens.
Chapiittrre 1 : L uttiilliitté ((lles ménages)) Définitions > Utilité : Mesure le plaisir / la satisfaction d un individu compte tenu de ses goûts. (On s intéresse uniquement à un consommateur rationnel
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Théorie des Jeux Et ses Applications
Théorie des Jeux Et ses Applications De la Guerre Froide au Poker Clément Sire Laboratoire de Physique Théorique CNRS & Université Paul Sabatier www.lpt.ups-tlse.fr Quelques Définitions de la Théorie des
La rémunération de l apprenti :
F I C H E P R A T I Q U E N 2 R E M U N E R A T I O N E T A I D E S L I E E S A U C O N T R A T D A P P R E N T I S S A G E L apprenti est titulaire d un contrat de travail de type particulier : il est
Marc HINDRY. Introduction et présentation. page 2. 1 Le langage mathématique page 4. 2 Ensembles et applications page 8
COURS DE MATHÉMATIQUES PREMIÈRE ANNÉE (L1) UNIVERSITÉ DENIS DIDEROT PARIS 7 Marc HINDRY Introduction et présentation. page 2 1 Le langage mathématique page 4 2 Ensembles et applications page 8 3 Groupes,
Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels.
Cette partie est consacrée aux nombres. Vous revisiterez tous les nombres rencontrés au collège, en commençant par les nombres entiers pour finir par les nombres réels. L aperçu historique vous permettra
Cours d arithmétique Première partie
Cours d arithmétique Première partie Pierre Bornsztein Xavier Caruso Pierre Nolin Mehdi Tibouchi Décembre 2004 Ce document est la première partie d un cours d arithmétique écrit pour les élèves préparant
Les indices à surplus constant
Les indices à surplus constant Une tentative de généralisation des indices à utilité constante On cherche ici en s inspirant des indices à utilité constante à définir un indice de prix de référence adapté
Cours 02 : Problème général de la programmation linéaire
Cours 02 : Problème général de la programmation linéaire Cours 02 : Problème général de la Programmation Linéaire. 5 . Introduction Un programme linéaire s'écrit sous la forme suivante. MinZ(ou maxw) =
Probabilités. I - Expérience aléatoire. II - Evénements
Probabilités Voici le premier cours de probabilités de votre vie. N avez-vous jamais eut envie de comprendre les règles des grands joueurs de poker et de les battre en calculant les probabilités d avoir
Construction d un cercle tangent à deux cercles donnés.
Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R
BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES. EXEMPLE DE SUJET n 2
Exemple de sujet n 2 Page 1/7 BACCALAURÉAT PROFESSIONNEL ÉPREUVE DE MATHEMATIQUES EXEMPLE DE SUJET n 2 Ce document comprend : Pour l examinateur : - une fiche descriptive du sujet page 2/7 - une fiche
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Réalisabilité et extraction de programmes
Mercredi 9 mars 2005 Extraction de programme: qu'est-ce que c'est? Extraire à partir d'une preuve un entier x N tel que A(x). π x N A(x) (un témoin) (En fait, on n'extrait pas un entier, mais un programme
I. Cas de l équiprobabilité
I. Cas de l équiprobabilité Enoncé : On lance deux dés. L un est noir et l autre est blanc. Calculer les probabilités suivantes : A «Obtenir exactement un as» «Obtenir au moins un as» C «Obtenir au plus
Eléments de Théorie des Graphes et Programmation Linéaire
INSTITUT NATIONAL POLYTECHNIQUE DE LORRAINE Ecole Nationale Supérieure d Electricité et de Mécanique Eléments de Théorie des Graphes et Programmation Linéaire Didier Maquin Professeur à l INPL Version
Développement décimal d un réel
4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce
RÉPUBLIQUE ET CANTON DE GENÈVE Echelle des traitements 2015 Valable dès le 01.01.2015 Office du personnel de l'etat Indexation de 0.
04 00 52 378.00 4 029.10 0.00 25.20 23.25 1.95 207.50 44.35 1.70 36.30 3 739.25 01 52 960.00 4 073.85 582.00 25.50 23.55 1.95 209.85 44.85 1.70 36.70 3 780.75 02 53 542.00 4 118.65 582.00 25.75 23.80 1.95
Carl-Louis-Ferdinand von Lindemann (1852-1939)
Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 [email protected] Alors ça, c'est fort... Tranches de vie Autour de Carl-Louis-Ferdinand von Lindemann (1852-1939) est transcendant!!! Carl Louis
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Code du Travail, Art. L6222-23 à L6222-33
F I C H E P R A T I Q U E N 2 R E M U N E R A T I O N E T A I D E S L I E E S A U C O N T R A T D A P P R E N T I S S A G E L apprenti est titulaire d un contrat de travail de type particulier : il est
Atelier «Gestion des Changements»
Atelier «Gestion des Changements» Président de séance : Hervé Guérin Jeudi 22 Juin 2006 (ECN Nantes) Bienvenue... Le thème : La Gestion des Changements Le principe : Echanger et s enrichir mutuellement
Leçon 01 Exercices d'entraînement
Leçon 01 Exercices d'entraînement Exercice 1 Etudier la convergence des suites ci-dessous définies par leur terme général: 1)u n = 2n3-5n + 1 n 2 + 3 2)u n = 2n2-7n - 5 -n 5-1 4)u n = lnn2 n+1 5)u n =
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir?
exposé UE SCI, Valence Qu est-ce qu un ordinateur quantique et à quoi pourrait-il servir? Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés Université
