CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017"

Transcription

1 Plan du chapitre : 1. Périmètres et aires 2. Le triangle 3. Le parallélogramme 4. Le trapèze 5. Le losange et le cercle 6. Les volumes Complète les phrases suivantes à l aide des mots périmètre, aire ou volume. a) Tes parents qui souhaitent peindre les murs de ta chambre devront calculer pour acheter la peinture. b) Si vous clôturez un terrain pour garder des animaux, il faut mesurer le du terrain. c) Quand un agriculteur veut étendre de l engrais sur son champ, il doit calculer de son champ. d) Le chauffagiste qui installe le système de chauffage de ta maison, doit calculer des pièces à chauffer pour choisir la chaudière la plus adaptée. 1ère année 1

2 Partie 1 : Découverte 1. Périmètres, aires et volumes Activité 1 : Détermine l aire et le périmètre des figures suivantes (unité de longueur : 1 côté d un petit carré ; unité d aire : aire d un petit carré) Figure périmètre aire Le périmètre d une figure est la mesure et l aire d une figure est la mesure de Activité 2 : Unités d aire a) Quel terrain de sport a la plus grande aire : le terrain de volley de 162m²ou le terrain de badminton de 8174dm²? Ecris les aires des deux terrains dans le tableau suivant et réponds à la question posée. km² hm² dam² m² dm² cm² mm² ha are ca b) Quel empilement de blocs a le plus grand volume? Ecris les deux volumes dans le tableau et réponds à la question posée. m³ dm³ cm³ mm³ 1ère année 2

3 c) Quelle bouteille a la plus grande capacité? hl dal l dl cl ml d) Lien entre les mesures de capacité et de volume. Quel est le volume d un cube pouvant contenir exactement un litre d eau? Complète l abaque avec les mesures de capacité hm³ dam³ m³ dm³ cm³ mm³ Activité 3 : Convertis dans l unité demandée a) 2,7 m² = cm² b) 157,63 mm² = cm² c) 95,23 dm² = m² d) 6 dm³= mm³ e) 64 cm³= dm³ f) 6 m³= dm³ g) 39 l = cl h) 365 dm³ = dl i) 65 ml = dm³ j) 17 m² = ha 1ère année 3

4 Range par ordre croissant : 0,93 m² ; 0,06 dm² ; 358 cm² ; 2 147cm² Range par ordre croissant : 2 cm³ ; 546 dm³ ; 2,8m³ ; 3654 mm³ Range par ordre décroissant : 0,25 l ; 325 ml ; 600 cl ; 15,7 dl Range par ordre décroissant : 251 l ; 229 dm³ ; ml ; 0,056m³ Brouillon : Petits défis : écris tous tes calculs a) Combien de verres de 150ml peux-tu remplir avec une bouteille de jus de 75 cl? b) Combien de carrelages de 10 dm² as-tu besoin pour carreler un salon de 25m²? 1ère année 4

5 2. Carrés et rectangles CHAP 9 : PERIMETRES, AIRES ET VOLUMES 2016/2017 Activité 4 : Je viens de m acheter une nouvelle paire de chaussures qui sont rangées dans une boite qui mesure 31,5cm de longueur, 19,5 cm de largeur et 8cm de hauteur. a) Calcule l aire de la base : b) Calcule l aire latérale droite : c) Calcule l aire de la face avant : d) Calcule l aire totale des faces de ce parallélépipède rectangle : e) Calcule le périmètre de la base : f) Calcule le périmètre de la face de droite : g) Calcule la longueur totale des arêtes de ce parallélépipède rectangle : h) Calcule le volume de ce parallélépipède rectangle. 1ère année 5

6 Activité 5 : Complète les données manquantes des rectangles dont on donne : Longueur Largeur Périmètre Aire 6 m 4 dm 20 cm 70 cm 6 dm 48 dm² Calcule le volume du parallélépipède rectangle dont la longueur mesure 6 dm, la largeur 0,4 m et la hauteur 15 cm. Activité 6 : livre page 156, n 1 : Périmètre d un rectangle Activité 7 : livre page 156, n 2 : Aire d un rectangle 1ère année 6

7 Activité 8 : Livre page 156, n 4 : Rectangles de même aire (uniquement a et b) a. b. Brouillon : Activité 9 : Livre page 156, n 5 : En fonction de x c. d. e. 3. Le triangle Activité 10 : Complète les phrases suivantes en t aidant du dessin Dans le triangle PKR (trace-le en rouge) : a) La hauteur issue de P est b) N est le pied de la hauteur issue de c) Le côté [PK] a pour hauteur relative Nous nous rappellons que la hauteur d un triangle est 1ère année 7

8 Activité 11 : livre page 157, n 6 : Déduire l aire du triangle de celle du rectangle. 4. Le parallélogramme Définition : Un parallélogramme est un quadrilatère dont les côtés Propriétés : Ses côtés opposés Ses angles opposés Ses diagonales Activité 12 : Observe le parallélogramme ABCD puis complète les phrases. Une hauteur relative à la base [DC] est La droite BP est une hauteur relative à 1ère année 8

9 Activité 13 : livre page 157, n 7 : Aire du parallélogramme 5. Le trapèze Définition : Un trapèze est un quadrilatère qui Les trapèzes particuliers sont Trace un schéma codé de ces trapèzes particuliers. 6. Le losange Définition : Un losange est un quadrilatère Le losange possède deux diagonales qui sont 1ère année 9

10 Activité 14 : Livre page 158, n 9 : Aire du losange (utiliser un carré comme s il mesurait 1cm). Activité 15 : Calcule l aire de chaque partie présente sur la figure. Note les formules utilisées et écris tous tes calculs. Aire 1 Aire 2 Aire 3 Aire 4 Aire 5 1ère année 10

11 7. Cercle Définition : Un cercle est l ensemble de points qui sont tous situés à la même distance d un point, appelé Cette distance est appelée du cercle. Un cercle se trace avec un Le cercle : trace un cercle de 2cm de rayon et trace ensuite un diamètre en rouge, un rayon en vert et une corde en bleu. Activité 16 : Dans une pièce en bois rectangulaire de 15cm de long et de 8cm de large, Mohamed découpe un losange dont les sommets se trouvent au milieu de chaque côté du rectangle. Ensuite, avec sa scille sauteuse, il découpe au centre de ce losange un trou circulaire de 3cm de rayon. Calcule l aire de cette pièce de bois (arrondir au dixième). 1ère année 11

12 8. Synthèse PERIMETRE ET AIRE DES FIGURES PLANES Nom Représentation Périmètre Aire 2 Carré P 4 c A c Losange P 4 c A D d 2 Rectangle L l 2 L l P P 2 2 A L l Parallélogramme P somme des longueurs des côtés A b h Trapèze P somme des longueurs des côtés A B b h 2 Triangle P somme des longueurs b h A des côtés 2 Polygone régulier P c nombre de côtés a A périmètre 2 ou c a A nombre de côtés 2 2 Disque P 2 r d A r 1ère année 12

13 VOLUMES DES SOLIDES Nom Représentation Volume 3 Cube V c c c c Parallélépipède rectangle l V L h Prisme droit V aire base h V aire de la base hauteur 2 Cylindre V r h Pyramide V aire base 3 h V aire de la base hauteur 3 Cône 2 r V 3 h Sphère 4 r V 3 3 1ère année 13

14 Abaques pour périmètres, aires et volumes Unités pour les longueurs (pour les périmètres) : km hm dam m dm cm mm Unités pour les surfaces (pour les aires) : Km² hm² dam² m² dm² cm² mm² ha are ca Unités pour les volumes (+ capacités) : Km³ hm³ dam³ m³ dm³ cm³ mm³ hl dal L dl cl ml 1ère année 14

15 9. Exercices Exercice 1 : Calcule le volume des solides suivants a) b) c) Livre page 166, n 15 : Pile rechargeable 1ère année 15

16 Exercice 2 : livre page 161, n 2 : Sur une trame triangulaire a) Parmi les six polygones, y en a-t-il qui ont : - même aire? - même périmètre? - même aire mais pas même périmètre? - même périmètre mais pas même aire? Fig même périmètre et même aire? Exercice 3 : Pour chaque figure, quelle fraction de la surface totale est coloriée? Ecris la fraction de l aire du carré que représente chaque morceau. Exercice 4 : La surface coloriée représente-t-elle le tiers de la surface totale? a) b) c) 1ère année 16

17 Pour chacun des cercles, écris la fraction représentée par la surface colorée. Exercice 5 : Livre page 162, n 4 : Calcul littéral et calcul numérique Exercice 6 : livre page 163, n 5 : Comparer les trajets 1ère année 17

18 Je me dépasse! Exercice 7 : livre page 164, n 8 : Penser à la boîte extérieure 1ère année 18

19 Exercice 8 : Exercices de conversions Exercice 9 : Livre page 167, n 18 : Aire et volume d un prisme droit 1ère année 19

20 Exercice 10 : Livre page 168, n 20 : Tuyau de canalisation Exercice 11 : Livre page 165, n 12 : Un losange 1ère année 20

21 Je dois connaître dans ce chapitre Au terme de ce chapitre, tu dois être capable d expliciter les savoirs et les procédures suivantes : - La différence entre aire, périmètre et volume - Les formules pour pouvoir calculer les périmètres et les aires des figures de base. - Les formules pour pouvoir calculer les volumes des solides de base - Connaître les unités de longueur, d aire, de volume Au terme de ce chapitre, tu dois être capable d appliquer les procédures ou résoudre des problèmes concernant : - Pourvoir calculer les périmètres, les aires et les volumes des figures et solides proposés (avec des nombres ou des lettres). - Pouvoir convertir les unités de longueur, d aire, de volume. Vocabulaire : aire, périmètre, volume, carré, rectangle, etc toutes les figures de base et tous les solides de base. 1ère année 21

22 Je révise seul!! 1. Voici un plan muni d un repère cartésien et un rectangle RSTU. a) Si tu connais les coordonnées suivantes U(1,3 ; 0,8) et S(7,4 ; 4,5), détermine les coordonnées des points R et T. b) Calcule l aire et le périmètre du rectangle RSTU. 2. Voici un quadrillage où chaque carré mesure 1cm de côté. a) Trace sur le dessin un autre parallélogramme de même aire + calcule son aire b) race sur le dessin un autre triangle de même aire + calcule son aire a) b) 3. Voici un quadrillage où chaque carré mesure 1cm de côté. J y trace un trapèze dans lequel je découpe le losange. Calcule l aire de la surface claire (+ note les formules utilisées). 1ère année 22

23 4. Voici un quadrillage où chaque carré mesure 1cm de côté. Calcule l aire grisée + note les formules utilisées. 5. Voici un quadrillage où chaque carré mesure 1cm de côté. Calcule l aire de la figure grisée. 6. Ecris et calcule l aire et le périmètre d un rectangle en fonction de x sachant que la longueur est x+3 et la largeur est 3x Voici une piscine rectangulaire dont la longueur mesure a et la largeur mesure b. Tout autour, on construit une bordure en carrelage dont les mesures sont indiquées sur le dessin (en cm mais tu n en tiens pas compte dans ton calcul). a) Calcule l aire de cette piscine. b) Que mesure la longueur de ma bordure en carrelage? c) Que mesure la largeur de ma bordure en carrelage? d) Quelle superficie de carrelage dois-je placer? e) Calcule le périmètre de ma bordure en carrelage. 1ère année 23

Les bases des mathématiques : Maîtrise de l'ordre des opérations. Maîtrise des opérations dans Z (nombres relatifs)

Les bases des mathématiques : Maîtrise de l'ordre des opérations. Maîtrise des opérations dans Z (nombres relatifs) Les bases des mathématiques : Calcul numérique : Maîtrise de l'ordre des opérations Maîtrise des opérations dans Z (nombres relatifs) Maîtrise des opérations dans Q ((nombres fractionnaires) Maîtrise des

Plus en détail

Chapitre 07 : Les solides

Chapitre 07 : Les solides Chapitre 7 : Les solides Le «volume d'un solide» est le nombre de cubes (dont les arrêtes mesurent unité de longueur) nécessaires pour le remplir complètement. Unités de volume Le mètre cube (m) est l'unité

Plus en détail

7. Grandeurs et mesures

7. Grandeurs et mesures - 1 - Grandeurs et mesures 7. Grandeurs et mesures 7.1 Longueurs et périmètres Unités de longueur : km hm dam m dm cm mm Figure : Nom de la figure : Périmètre : Carré P= 4 a Rectangle P = a+ b= ( a+ b)

Plus en détail

Recueil d Exercices Périmètres, aires et volumes en classe de 7-ième

Recueil d Exercices Périmètres, aires et volumes en classe de 7-ième Recueil d Exercices Périmètres, aires et volumes en classe de 7-ième Projet d Établissement du Lycée Robert Schuman Norbert Kremer, Lieve Stockman, Paul Weber Recueil d exercices 1. Unités de longueur

Plus en détail

CH V) Surface - Volume :

CH V) Surface - Volume : CH V) Surface - Volume : I) Surfaces et aires : Activité N 1 : Les deux figures ont des formes différentes mais leurs aires sont identiques. Prouvez le! J Les surfaces sont différentes, les mesures de

Plus en détail

Chapitre 7 : Géométrie dans l espace.

Chapitre 7 : Géométrie dans l espace. Chapitre 7 : Géométrie dans l espace. I Rappels. 1 Parallélépipède rectangle et cube. Un parallélépipède rectangle, ou pavé droit, est un solide ayant 6 faces rectangulaires. Un cube est un parallélépipède

Plus en détail

Ch.G5 : Pyramides et cônes

Ch.G5 : Pyramides et cônes 4 e A - programme 2011 mathématiques ch.g5 cahier élève Page 1 sur 8 Ch.G5 : Pyramides et cônes Activité n 1 page 20 De l'ancien vers le nouveau On a représenté, ci-dessous, des solides en perspective

Plus en détail

COURS. Objet Dessin et caractéristiques Mesure du périmètre P. Carré - Losange P = Cercle P =

COURS. Objet Dessin et caractéristiques Mesure du périmètre P. Carré - Losange P = Cercle P = EC 4A : ELEMENTS DE MATHEMATIQUES DES GRANDEURS AUX MESURES COURS Objectifs du chapitre : Calculer le périmètre et l aire de surfaces Calculer le volume de solides 1. Périmètres de surfaces Le périmètre

Plus en détail

QUE RETENIR DE L ANNEE DE CINQUIEME?

QUE RETENIR DE L ANNEE DE CINQUIEME? Organisation d un calcul Méthodes Dans un calcul sans parenthèses : on effectue les multiplications et les divisions en premier, puis les additions et les soustractions (de la gauche vers la droite). Dans

Plus en détail

1 : AIRES LATÉRALES M L. Solide 1 Solide 2 Solide 3 Solide 4 Cylindre de révolution

1 : AIRES LATÉRALES M L. Solide 1 Solide 2 Solide 3 Solide 4 Cylindre de révolution 1 : AIRES LATÉRALES 1 Pour chaque solide, complète le tableau ci-dessous. 8, P ' N 7 K Solide 1 Solide L 4 M L Q 9 P R W V S U A T H D B C G M N E, F Solide Solide 4 Nature du solide Solide 1 Solide Solide

Plus en détail

Vocabulaire de base de la géométrie

Vocabulaire de base de la géométrie Géom 1 Vocabulaire de base de la géométrie Un point En géométrie, un point est représenté par une petite croix. On lui donne le nom d une lettre en majuscule, qu on écrit juste à côté. X A Un segment C

Plus en détail

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres

Nom : Groupe : Enseignant(e) : Des polygones aux polyèdres e Nom : Groupe : Enseignant(e) : 12 2013-2014 Des polygones aux polyèdres Les polygones réguliers et les différents solides fascinent les mathématiciens et les mathématiciennes depuis plus de 2000 ans.

Plus en détail

ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES. Grandeurs Solides et figures P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ

ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES. Grandeurs Solides et figures P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ S2 P É R I M È T R E PERPENDICULAIRE POLYGONE PROPRIÉTÉ ÉVALUATION EXTERNE NON CERTIFICATIVE 2011 MATHÉMATIQUES Grandeurs Solides et figures 2 e ANNÉE DE L ENSEIGNEMENT SECONDAIRE DIFFÉRENCIÉE NOM BRE

Plus en détail

M1 Droites et segments

M1 Droites et segments M1 Droites et segments Le segment [AB] comprend: -Le point A. -Le point B. -Tous les points alignés avec A et B et situés entre A et B. La droite (CD) comprend: -Le point C. -Le point D. -Tous les points

Plus en détail

Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F

Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F Ch 10 Solides de l'espace : Prisme et cylindres 5 ème F Table des matières I. Prismes droits...2 A. Description...2 B. Patron d'un prisme droit...2 II. Cylindres de révolution...2 A. Description...2 B.

Plus en détail

1 Les solides de 6e et de 5e.

1 Les solides de 6e et de 5e. 1 Les solides de 6e et de 5e. 1.1 Le pavé droit et le cube Le pavé droit a six faces rectangulaires, 8 sommets et 12 arêtes (3 dimensions d arêtes). Vue en perspective cavalière : Patron : Aire : l aire

Plus en détail

1 : AIRES LATÉRALES M L. Solide 1 Solide 2 Solide 3 Solide 4 Cylindre de révolution

1 : AIRES LATÉRALES M L. Solide 1 Solide 2 Solide 3 Solide 4 Cylindre de révolution SÉRIE 1 : AIRES LATÉRALES 1 Pour chaque solide, complète le tableau ci-dessous. 8, P ' N 7 K Solide 1 Solide L 4 M L Q 9 P R W V S U A T H D 5 B C G M N E,5 F Solide Solide 4 Nature du solide Solide 1

Plus en détail

Les formules de la géométrie spaciale

Les formules de la géométrie spaciale Troisième, chapitre n o 1 Les formules de la géométrie spaciale L'ensemble des formules permettent de déterminer les volumes et les surfaces des solides usuels. L'étude s'enrichit du cas de la sphère.

Plus en détail

1 : AIRES LATÉRALES M L. Solide 1 Solide 2 Solide 3 Solide 4. a. 15 cm 2,3 cm. b. 6,9 cm 18,63 cm 2. c. 0,225 dm 8,55 cm 2.

1 : AIRES LATÉRALES M L. Solide 1 Solide 2 Solide 3 Solide 4. a. 15 cm 2,3 cm. b. 6,9 cm 18,63 cm 2. c. 0,225 dm 8,55 cm 2. 1 : AIRES LATÉRALES 1 Pour chaque solide, complète le tableau ci-dessous. 8,6 P ' N 7 K Solide 1 Solide 2 L 4 M L Q 9 P R W V S U A T 6 H D 5 B C G 2 M N E 2,5 F Solide Solide 4 Solide 1 Solide 2 Solide

Plus en détail

2 Construire et représenter un cylindre de révolution

2 Construire et représenter un cylindre de révolution 1 Construire et représenter un prisme droit OJECTIF 1 Description DÉFINITION Un prisme droit est un solide qui a : deux faces parallèles et superposables qui sont des polygones, appelées bases ; des faces

Plus en détail

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure

CORRIGÉ. b) L hypoténuse mesure 76,32 cm et une cathète mesure 58,42 cm ; l autre cathète mesure EXERCICES DE RÉVISION PYTHAGORE ET LES SOLIDES La relation de Pythagore et sa réciproque 1. Comment se nomme : a) le côté opposé à l angle droit d un triangle rectangle? Hypoténuse. b) chacun des côtés

Plus en détail

Les Mathématiques En Vacances

Les Mathématiques En Vacances Les Mathématiques En Vacances CM2 Exercice 1 : Calculer. a) 7,42 10 = b) 89,905 100 = c) 0,04 d) 45,9 0,1 = e) 202,5 0,01 = f) 987 0,001 = g) 210 100 = h) 314 i) 2,4 10 = j) 43,2 0,001 = k) 4042,7 0,01

Plus en détail

Espace 2 Solides 7 Figures planes 14 Frises et dallages 22

Espace 2 Solides 7 Figures planes 14 Frises et dallages 22 Espace 2 Solides 7 Figures planes 14 Frises et dallages 22 1 Espace Vocabulaire et symboles * Système de repérage C est le système qu on utilise pour définir la position d un point à l aide des coordonnées.

Plus en détail

Exercices supplémentaires

Exercices supplémentaires Unités 10.1 à 10,4 Périmètre et l aire des figures planes Conversion des unités de longueur et d aire Les expressions algébriques et la résolution d équations Exercices supplémentaires Mathématiques 2

Plus en détail

CHAPITRE VII AIRES ET VOLUMES

CHAPITRE VII AIRES ET VOLUMES CHAPITRE VII AIRES ET VOLUMES 6 e chapitre VII Aires et Volumes 1) Complétez : a) 3 3 3 1 m + 4004,3 cm 2 dm = l b) 3 3 8931 cm = m c) 3 3 3 177,35 m 421, 2 dm 230324, 04 mm = l d) 53,7 l= ml= 0,537 e)

Plus en détail

PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base)

PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base) PARCOURS : PFM500_GEO-Meilleur en Mathématiques Géométrie plane (tracés de base) GEO_GP501 Unité d'apprentissage :Éléments de géométrie (situer un point) série N 1 : Situer précisément un point. Choisir

Plus en détail

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire.

CST. Mathématiques CST - Figures planes équivalentes - Figures planes équivalentes. Deux figures planes sont équivalentes si elles ont la même aire. - Figures planes équivalentes - Figures planes équivalentes Deux figures planes sont équivalentes si elles ont la même aire. Ex. : A A D 4 cm 2 cm B 3 cm C B 3 cm C A = A = A = b x h 2 3 x 4 2 2 A = b

Plus en détail

Récupération 3 e secondaire Vision 5 : Solides semblables

Récupération 3 e secondaire Vision 5 : Solides semblables Récupération 3 e secondaire Vision 5 : Solides semblables 1. Dans chaque cas, détermine si les deux polygones illustrés sont semblables. S ils le sont, détermine le rapport de similitude (k). S ils ne

Plus en détail

A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre.

A] Propriétés et classement des solides. Exercice supplémentaire 1 Théorie. a) Donne la définition précise d un polyèdre. A] Propriétés et classement des solides Exercice supplémentaire 1 Théorie a) Donne la définition précise d un polyèdre. b) Remplis le tableau suivant (coche sous la bonne colonne) Nom Polyèdre Prisme droit

Plus en détail

EXERCICES. EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande :

EXERCICES. EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande : EC 9A : ELEMENTS DE MATHEMATIQUES DES GRANDEURS AUX MESURES EXERCICES EXERCICE N 1 : Voici 7 surfaces, il s agit de les classer de la plus petite à la plus grande : EXERCICE N 2 : Voici un énoncé : «Si

Plus en détail

CHAPITRE 8 LES SOLIDES, LA SPHERE

CHAPITRE 8 LES SOLIDES, LA SPHERE CHAPITRE 8 LES SLIDES, LA SPHERE Les solides 134 Solides : La sphère 136 Exercices 141 Solides; la sphère Page 133 Fiche d'activité LES SLIDES Exercice 1 En découpant un coin d'un cube en bois, on a obtenu

Plus en détail

Mathématique 306 DES SOLIDES

Mathématique 306 DES SOLIDES Mathématique 306 Chapitre 5 Cahier des tâches L AIRE ET LE VOLUME DES SOLIDES Section 5.1 La relation de Pythagore Section 5.2 L aire latérale et l aire totale des solides Section 5.3 Le volume des solides

Plus en détail

Pyramides et cônes. A) Pyramides. 1. Premières définitions.

Pyramides et cônes. A) Pyramides. 1. Premières définitions. Pyramides et cônes A) Pyramides.. Premières définitions. Une pyramide est un solide dont : une face est un polygone (c est la base de la pyramide), les autres faces sont des triangles qui ont un sommet

Plus en détail

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères

GEOMETRIE. Tableaux et quadrillages. Reproduire une figure. Droites perpendiculaires. Droites parallèles. Les quadrilatères GEOMETRIE GEOM. 1 Le vocabulaire GEOM. 2 Des instruments pour tracer, mesurer, vérifier GEOM. 3 Tableaux et quadrillages GEOM. 4 Reproduire une figure GEOM. 5 Les angles GEOM. 6 Droites perpendiculaires

Plus en détail

Révisions mathématique- 1 ère année

Révisions mathématique- 1 ère année Révisions mathématique- 1 ère année Chapitre 4 : Solides et objets dans l espace 1. Voici une série de solides. Objet 1 Objet 2 Objet 3 Objet 4 Nom des solides Est-ce un polyèdre? Est-ce un prisme droit?

Plus en détail

Mathématiques niveau CFG

Mathématiques niveau CFG Mathématiques niveau CFG Chapitre 4 : Géométrie COURS 5 : PERIMETRE ET AIRES CALCUL DU PERIMETRE DU RECTANGLE Exercice 1. Voici un rectangle. Mesurer sa longueur : L = Mesurer sa largeur : l =. L l Le

Plus en détail

Les projections parallèles et centrales

Les projections parallèles et centrales Mathématiques 3 e sec : Chapitre 5 Du sens spatial vers l aire et le volume des solides Nom : Groupe : Les projections parallèles et centrales Une projection est une transformation de l espace. Elle permet

Plus en détail

Rapport de similitude k =

Rapport de similitude k = SAVOIRS Les solides semblables Deux solides sont semblables si l un est un agrandissement, une réduction ou la reproduction exacte de l autre. Par exemple, les homothéties et les reproductions à l échelle

Plus en détail

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème.

Mathématiques. Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Mathématiques Ce classeur de mathématiques a été prévu pour y mettre des résumés du programme de la 6ème à la 3ème. Il pourra aussi servir plus tard au lycée pour des révisions.. A1 p1 Les nombres A2 p2

Plus en détail

DES AIRES. a)... a)... a)... b)... b)... b)... c)... c)... c)... d)... d)... d)... Remarque :... - Aires de surfaces simples

DES AIRES. a)... a)... a)... b)... b)... b)... c)... c)... c)... d)... d)... d)... Remarque :... - Aires de surfaces simples DES IRES - Encadrements de l aire d une surface quelconque Définis, dans chaque cas, un encadrement de l aire de la surface représentée ci-dessous : a) Donne l aire d un carré du quadrillage ) olorie les

Plus en détail

Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES. Programme Local

Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES. Programme Local Chapitre 2 Géométrie NOTES DE COURS ET EXERCICES Programme Local Mathématique 5 e secondaire CST Collège Regina Assumpta 2016 2017 Nom : Groupe : NOTES DE COURS 2 1. RAPPEL A) Nom des polygones réguliers

Plus en détail

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d C3 Géométrie : droite, segment, milieu Leçon Géom1 CM1/2 La droite Une droite est un trait droit qui n a ni début, ni fin. On écrit une droite avec une lettre et 2 parenthèses : la droite (d) Droite d

Plus en détail

Bloc 11 : La géométrie

Bloc 11 : La géométrie Bloc 11 : La géométrie Les quadrilatères Carré rectangle parallélogramme 4 côtés égaux 2 hauteurs égales 2 côtés égaux hauteur = côté 2 longueurs égales 2 longueurs égales 2 diagonales égales hauteur =

Plus en détail

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin.

2 Pour identifier que 2 droites sont perpendiculaires, j utilise le signe sur le dessin. Les droites perpendiculaires éfinition (e) eux droites sont perpendiculaires si elles se coupent en formant un angle droit. (f) Pour identifier que droites sont perpendiculaires, j utilise le signe sur

Plus en détail

À la première étape, on considère un grand cube d'arête 9 cm formé de petits cubes de volume 1 cm 3.

À la première étape, on considère un grand cube d'arête 9 cm formé de petits cubes de volume 1 cm 3. À la première étape, on considère un grand cube d'arête 9 cm formé de petits cubes de volume 1 cm 3. À la deuxième étape, on enlève tous les cubes moyens situés au centre des faces et à l'intérieur comme

Plus en détail

CHAPITRE 6 : L aire et le volume des solides 6.1 Le vocabulaire

CHAPITRE 6 : L aire et le volume des solides 6.1 Le vocabulaire CHAPITRE 6 : L aire et le volume des solides 6.1 Le vocabulaire Volume : l espace (en 3-D) occupé par un objet. L'unité de mesure est le cube (m 3, cm 3, mm 3 ). Aire : l'aire mesure la surface. L'unité

Plus en détail

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre

C h`a p i tˇr`e 16 : Eṡfi p`a`c e. Compétences évaluées dans ce chapitre C h`a p i tˇr`e 16 : Eṡfi p`a`c e Compétences évaluées dans ce chapitre Intitulé des compétences G60 G61 M13 Reconnaître et construire des solides. Utiliser et construire des représentations de solides.

Plus en détail

A B

A B NOMBRES ET CALCUL Les nombres jusqu'au milliard - Connaître, savoir écrire et nommer les nombres entiers jusqu au milliard. Écris les nombres que je vais te dicter Écris en lettres les nombres suivants

Plus en détail

GEOMETRIE. Point, droite, segment

GEOMETRIE. Point, droite, segment GEOMETRIE Gé 1 Point, droite, segment Le point : - Il désigne un endroit bien précis. - Il est représenté par une croix. - On le nomme avec une lettre majuscule. La droite : A X Le point B est situé exactement

Plus en détail

# 1. Divisibilité d un nombre

# 1. Divisibilité d un nombre Nom: C est presque fini!!!!!!! Nom : Date : Image tirée du : Festival Juste pour rire Révision de l année en mathématique # 1. Divisibilité d un nombre Classe les nombres suivants dans le tableau. 138

Plus en détail

I La perspective cavalière :

I La perspective cavalière : Mathématiques Année 2012 201 Module n 4 : Géométrie dans l espace 1 ( solides usuels ) 2 nde I La perspective cavalière : Pour représenter un objet en trois dimensions par une figure plane ( feuille de

Plus en détail

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un.

Evaluation n 1 : Les polygones. Evaluation n 1 : Les polygones. ! J ai quatre égaux, mes côtés sont parallèles, je n ai pas d angle droit, je suis un. Date : Evaluation n 1 : Les polygones Consigne 1 : Complète (orthographe importante). Comment appelle-t-on : L ensemble des polygones à 3 côtés? Les... Prénom et Nom : Date : Evaluation n 1 : Les polygones

Plus en détail

Exercices sur le volume

Exercices sur le volume Exercices sur le volume Question 1 Aire de polygones Compare l aire des polygones suivants (plus petit au plus grand) Justifie ta réponse. Réponse : Les trois polygones ont la même aire. Pour arriver à

Plus en détail

13. Géométrie de l'espace

13. Géométrie de l'espace 1. Périmètre et aire d'une figure 13. Géométrie de l'espace Définition : Le périmètre d'une figure est la mesure de la longueur de son contour, exprimée dans une unité de longueur donnée. Définition :

Plus en détail

Mathématiques SOLIDES

Mathématiques SOLIDES SOLIDES I. Prismes 1. Définitions Prisme Un prisme est un polyèdre délimité par : - deux faces polygonales isométriques situées dans des plans parallèles. Ce sont les bases du prisme. - des parallélogrammes.

Plus en détail

Solides de l espace. A) Parallélépipède rectangle (ou pavé droit). B) Cylindre de révolution. 1. Définition.

Solides de l espace. A) Parallélépipède rectangle (ou pavé droit). B) Cylindre de révolution. 1. Définition. Solides de l espace A) Parallélépipède rectangle (ou pavé droit). 1. Définition. Définition : Un parallélépipède rectangle (ou pavé droit) est un solide formé de six faces rectangulaires. Le cube est un

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE. Points, lignes, droites et segments Tableaux et quadrillages SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GÉOM 0 GÉOM 1 GÉOM 2 GÉOM 3 GÉOM 4 GÉOM 5 GÉOM 6 GÉOM 7 GÉOM 8 GÉOM 9 GÉOM 10 GÉOM 11 GÉOM 12 GÉOM 13 Points, lignes, droites

Plus en détail

Prénom :. Ecole du Verderet Année scolaire Livret de leçons de mathématiques CE2 M. HANNESSE Page 1

Prénom :. Ecole du Verderet Année scolaire Livret de leçons de mathématiques CE2 M. HANNESSE Page 1 Nom : Prénom :. Ecole du Verderet Année scolaire 2016 2017 Livret de leçons de mathématiques 2016-2017 CE2 M. HANNESSE Page 1 SOMMAIRE 1. Les nombres : N1 : l écriture des nombres N2 : dénombrer et constituer

Plus en détail

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1

5 ème AIRE ET VOLUME (PREPARATION) AIRE D UN PARALLELLOGRAMME. Exercice 1 AIRE D UN PARALLELLOGRAMME Si le parallélogramme au chocolat pèse 40 grammes, alors le rectangle au chocolat pèse. On peut découper le parallélogramme pour obtenir le rectangle. Comparer les aires du parallélogramme

Plus en détail

Cahier de devoir Panorama 12. Nom: Enseignant :

Cahier de devoir Panorama 12. Nom: Enseignant : Cahier de devoir Panorama 12 Nom: Enseignant : Enseignants de l école Félix-Leclerc 2014 1 DEVOIR 1 : Aire des polygones 1. Complète les égalités suivantes. a) 423 cm 2 = mm 2 b) 32,5 dm 2 = m 2 c) 65,3

Plus en détail

SOLIDES. 1) Le parallélépipède rectangle (ou pavé droit) Le mot vient du grec Parallelos = parallèle et epipedon = surface plane

SOLIDES. 1) Le parallélépipède rectangle (ou pavé droit) Le mot vient du grec Parallelos = parallèle et epipedon = surface plane SOLIDES 1 I. Rappels 1) Le parallélépipède rectangle (ou pavé droit) Le mot vient du grec Parallelos = parallèle et epipedon = surface plane h L Volume du parallélépipède = L x l x h l Exemple : Calculer

Plus en détail

Une unité de volume. Parallélépipède rectangle ou pavé droit. On remplit la boite parallélépipédique cicontre avec des cubes de 1 cm d arête.

Une unité de volume. Parallélépipède rectangle ou pavé droit. On remplit la boite parallélépipédique cicontre avec des cubes de 1 cm d arête. Une unité de volume Un centimètre cube est un cube dont chaque arête mesure un centimètre. Pour chaque solide proposé ci-dessous déterminer son volume exprimé en cm 3. 1 cm 3 Parallélépipède rectangle

Plus en détail

1 m = 10 = 100 = 1000

1 m = 10 = 100 = 1000 Pythagore était un philosophe et mathématicien grec qui a vécu au VIè siècle avant Jésus Christ. C est le créateur des sciences mathématiques. Attention! N écris qu un chiffre par colonne! X L unité utilisée

Plus en détail

Bloc 11 : La géométrie

Bloc 11 : La géométrie Bloc 11 : La géométrie Trouvez le périmètre : 1. D un carré de 4 cm de côté : 4 x 4 cm = 16 cm. d un losange de 10 cm de côté :4 x 10 cm = 40 cm 3. d un rectangle de 4 cm par 6 cm : ( x 4) + ( x 6) = 0

Plus en détail

A MATHEMATIQUE 70 Addition Voir aussi valeur de position d un chiffre dans un nombre. Effectue les additions. 57 4 addition + 6 + 8 + 44 9 70 0 59 88 + 4 + 76 + 85 4 0 44 59 56 74 5 + 5 + 78 + 45 59 99

Plus en détail

Ex 1 : Indique si les angles représentés sont aigus, obtus ou droit. IDENTIFIER ET REPRODUIRE DES ANGLES Mes 1

Ex 1 : Indique si les angles représentés sont aigus, obtus ou droit. IDENTIFIER ET REPRODUIRE DES ANGLES Mes 1 IDENTIFIER ET REPRODUIRE DES ANGLES Mes 1 Ex 1 : Indique si les angles représentés sont aigus, obtus ou droit Un angle est une partie du plan comprise entre deux demi-droites. Le point d intersection des

Plus en détail

TEST DE RENDEMENT MAT-3002 G É O M É T R I E

TEST DE RENDEMENT MAT-3002 G É O M É T R I E TST RNMNT MT-3002 G É O M É T R I II.F.G.. L JONQUIÈR FÉVRIR 2001 IMNSION 1 1- Un architecte imagine la face d une pyramide ayant la forme d un triangle isocèle. Tracer le plan de cette face si l angle

Plus en détail

Ex 3 : Trace ci-dessous un angle droit en noir, un angle obtus en bleu et un angle aigu en vert. Angle droit Angle aigu Angle obtus

Ex 3 : Trace ci-dessous un angle droit en noir, un angle obtus en bleu et un angle aigu en vert. Angle droit Angle aigu Angle obtus Ex 1 : Indique si les angles représentés sont aigus, obtus ou droit Un angle est une partie du plan comprise entre deux demi-droites. Le point d intersection des deux demi-droites est le somt de l angle.

Plus en détail

TABLEAU DE COMPETENCES

TABLEAU DE COMPETENCES EVALUATIONS DIAGNOSTIQUES DEBUT CM2 TABLEAU DE COMPETENCES Programmes 2008 Compétence en fin de CM1 - Connaître, savoir écrire et nommer les nombres entiers jusqu au milliard. - Comparer, ranger, encadrer

Plus en détail

Corrigés de mon cahier de calcul Gagné CM2

Corrigés de mon cahier de calcul Gagné CM2 Corrigés de mon cahier de calcul Gagné CM2 1. Les nombres jusqu à 999 999 (page 3) 1. (6 x 100 000) + (5 x 10 000) + (7 x 100) = 650 700 (9 x 100 000) + (8 x 1 000) + (9 x 100) + 6 = 908 906 (4 x 100 000)

Plus en détail

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite.

Droite et segment B B A A. une droite. un segment. C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. Droite et segment une droite un segment B B A A C est un trait qui passe par deux points et qui va à l infini. On ne peut pas mesurer une droite. C est la partie de la droite qui est délimitée par deux

Plus en détail

Propositions d harmonisation en mathématiques sur les trois années de cycle 3

Propositions d harmonisation en mathématiques sur les trois années de cycle 3 Propositions d harmonisation en mathématiques sur les trois années de cycle 3 1 Nombres et calculs Jusqu'au million - Comprendre et appliquer les règles de la numération aux grands nombres. Jusqu'au -

Plus en détail

COMPETENCE (Pilier du socle commun) : MATHEMATIQUES

COMPETENCE (Pilier du socle commun) : MATHEMATIQUES DOMAINE : Mesures et grandeurs COMPETENCE (Pilier du socle commun) : MATHEMATIQUES ATTITUDES A travers l étude de problèmes de la vie courante, développer : le sens de l observation la rigueur et la précision

Plus en détail

Chapitre 11 : Parallélépipède rectangle

Chapitre 11 : Parallélépipède rectangle Chapitre 11 : Parallélépipède rectangle 1) Vocabulaire et représentation : Un parallélépipède rectangle est un solide qui a six faces rectangulaires ou carrées. On l appelle aussi pavé droit. Si toutes

Plus en détail

PAVE DROIT VOLUMES. Toutes les faces du solide ne sont pas représentées. On convient de dessiner en pointillés les arêtes que l'on ne voit pas :

PAVE DROIT VOLUMES. Toutes les faces du solide ne sont pas représentées. On convient de dessiner en pointillés les arêtes que l'on ne voit pas : PV ROIT VOLUMS 1) Vocabulaire onsidérons le solide suivant : I,,, sont des faces du solide.,,,, sont des sommets du solide. [], [], [], sont des arêtes du solide. Toutes les faces du solide ne sont pas

Plus en détail

Je révise mes mathématiques LANGAGE MATHÉMATIQUE

Je révise mes mathématiques LANGAGE MATHÉMATIQUE Je révise mes mathématiques Les multiples : sont le résultats d une multiplication. On pourrait aussi dire que ce sont des bonds. Diviseurs : ce sont les nombres qui divisent un nombre donné. LANGAGE MATHÉMATIQUE

Plus en détail

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme

PRISME DROIT. II- Vue en perspective et vocabulaire: Les triangles ABC et A'B'C' sont les bases du prisme PRISME DROIT I- Patron: En traçant deux triangles et trois rectangles disposés de la manière ci-contre et en pliant, on obtient un prisme droit à base triangulaire II- Vue en perspective et vocabulaire:

Plus en détail

Le vocabulaire de géométrie

Le vocabulaire de géométrie Géom1 Le vocabulaire de géométrie En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire : Un point A A X Un segment [AB] (d) Une droite (d)

Plus en détail

Connaissances et compétences visées. Vocabulaire. Activités suggérées

Connaissances et compétences visées. Vocabulaire. Activités suggérées L'élève doit savoir : Connaissances et compétences visées Savoir caractériser un solide. Appliquer les formules de volume pour des formes simples. Connaître les différentes unités et les convertir entre

Plus en détail

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite

1) Une demi-droite est une partie d une droite délimitée par un point appelé origine de cette demidroite 6 ème - 5 ème Géométrie de base Notation : On note un point à l aide d une croix pour indiquer le lieu et d une lettre MAJUSCULE à côté pour indiquer son nom Attention : Une MÊME lettre ne peut désigner

Plus en détail

FICHES OUTILS GEOMETRIE CM2

FICHES OUTILS GEOMETRIE CM2 FICHES OUTILS GEOMETRIE Constructions pour le plaisir avec des cercles: page 25: la cible page 26: la rosace page 27: la rosace double page 28: la rose page 29: le mandala Pages 2 à 9: 1 Les instruments

Plus en détail

Parallélépipède rectangle

Parallélépipède rectangle Parallélépipède rectangle 1. Présentation d'un parallélépipède rectangle... p2 3. Patron... p4 2. Perspective cavalière... p3 4. Volume... p6 Copyright meilleurenmaths.com. Tous droits réservés 1. Présentation

Plus en détail

Vocabulaire en géométrie

Vocabulaire en géométrie G1 Vocabulaire en géométrie : on trace une petite croix. On utilise des lettres pour désigner les points. x A : c est un trait qui passe par 2 points. On l écrit avec des parenthèses. Une droite est infinie

Plus en détail

PARALLÉLÉPIPÈDE RECTANGLE

PARALLÉLÉPIPÈDE RECTANGLE PARALLÉLÉPIPÈDE RECTANGLE Objectifs : Fabriquer un parallélépipède rectangle de dimensions données, à partir de la donnée du dessin de l un de ses patrons. Reconnaître un parallélépipède rectangle de dimensions

Plus en détail

km hm dam m dm cm mm

km hm dam m dm cm mm GÉOMÉTRIE UNITÉ 8 : DES LIEUX GÉOMÉTRIQUES. DES FIGURES PLANES POUR DÉBUTER Il faut rappeler - Les unités de mesure : 1. UNITÉS DE LONGUEUR MULTIPLES UNITÉ SOUS-MULTIPLES km hm dam m dm cm mm kilomètre

Plus en détail

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique

GEOMETRIE. Points, lignes, droites et segments Tableaux et quadrillages Reproduire une figure Cercle et compas Construire une figure géométrique SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GEOMETRIE GEOM 0 GEOM 1 GEOM 2 GEOM 3 GEOM 4 GEOM 5 GEOM 6 GEOM 7 GEOM 8 GEOM 9 GEOM 10 GEOM 11 GEOM 12 GEOM 13 Points, lignes, droites

Plus en détail

TABLEAU DE COMPETENCES

TABLEAU DE COMPETENCES EVALUATIONS DIAGNOSTIQUES DEBUT CM1 TABLEAU DE COMPETENCES Programmes 2008 Tableau récapitulatif Evaluations début CM1 groupe départemental 44 mathématiques 1 Connaissances et capacités attendues en fin

Plus en détail

VOLUMES. 3) Tableau des unités et exemples de conversions: km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3

VOLUMES. 3) Tableau des unités et exemples de conversions: km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 VOLUMES I - Notion de volume: Supposons que le pavé noir ait: - sa longueur égale à 5 fois l'arête du cube rouge - sa largeur égale à 3 fois l'arête du cube rouge - sa hauteur égale à 2 fois l'arête du

Plus en détail

Universités de Rennes 1 / Rennes Licence 2 - UED : Mathématiques

Universités de Rennes 1 / Rennes Licence 2 - UED : Mathématiques Universités de Rennes 1 / Rennes 2 2006-2007 Licence 2 - UED : Mathématiques Géométrie 2 Quadrilatères Exercice n 1 Construire à la règle et au compas un parallélogramme BCD sachant que : B = 7 cm, D=

Plus en détail

CHAPITRE VI AIRES ET PERIMETRES

CHAPITRE VI AIRES ET PERIMETRES CHAPITRE VI AIRES ET PERIMETRES 1) Recopiez et complétez : a).. 0,019 dm = 0,000 0019... i) 789 ha = 7,89... b). 1 530 mm =... dm j) 5,7 dam =... dm =... ha c) 53,7 a... dm 0,537... k) 5670 m =... a =...

Plus en détail

Faire apparaître en bleu le «contour» de la figure. Faire apparaitre en rouge la «surface» de la figure. * Etape 1 Etape 2 Etape 3

Faire apparaître en bleu le «contour» de la figure. Faire apparaitre en rouge la «surface» de la figure. * Etape 1 Etape 2 Etape 3 Le flocon de Von Koch Le flocon de Von Koch est un objet géométrique fractal, constitué à partir d un triangle équilatéral sur les côtés duquel on construit d autres triangles équilatéraux toujours plus

Plus en détail

Enseigner les mathématiques aux élèves de SEGPA

Enseigner les mathématiques aux élèves de SEGPA Enseigner les mathématiques aux élèves de SEGPA E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH L enseignement des mathématiques en SEGPA a une triple visée : - consolider, enrichir et structurer les acquis de

Plus en détail

Voici le visuel du manuel utilisé cette année dans notre collège pour les 5 e, 4 e et 3 e.

Voici le visuel du manuel utilisé cette année dans notre collège pour les 5 e, 4 e et 3 e. Voici le visuel du manuel utilisé cette année dans notre collège pour les 5 e, 4 e et 3 e. 5 e Utiliser les nombres décimaux Définitions. Fraction décimale, nombre décimal, nombre entier. Propriété. Différentes

Plus en détail

Géom 1 Connaître le vocabulaire et le codage géométrique

Géom 1 Connaître le vocabulaire et le codage géométrique Géom 1 Connaître le vocabulaire et le codage géométrique En géométrie, il faut être attentif lors de la lecture des consignes et très précis quand on utilise le vocabulaire. La règle sert à mesurer, tracer

Plus en détail

6 ème - mars-14 Chap.n 31 : Parallélépipède rect. : Volume - Page 1 / 12

6 ème - mars-14 Chap.n 31 : Parallélépipède rect. : Volume - Page 1 / 12 6 ème - mars-14 Chap.n 31 : Parallélépipède rect. : Volume - Page 1 / 12 Chapitre n 31 : Parallélépipède rectangle : calcul du volume Liste des objectifs : a. 6ème : déterminer le volume d un parallélépipède

Plus en détail

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE

SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... GÉOMÉTRIE SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... SOMMIRE... GÉOMÉTRIE GEOM 0 Points, lignes, droites et segments GEOM 1 Tableaux et quadrillages GEOM 2 Reproduire une figure GEOM 3 ercle et compas

Plus en détail

Mathématiques en SEGPA : pour aller vers le CAP

Mathématiques en SEGPA : pour aller vers le CAP Mathématiques en SEGPA : pour aller vers le CAP E. HERNANDEZ IEN ASH G. DERMIGNY CPC ASH Si l une des finalités des enseignements adaptés du second degré est d obtenir le CFG, l autre est de parvenir à

Plus en détail

Rappel : Les unités de mesure de longueur et les figures semblables

Rappel : Les unités de mesure de longueur et les figures semblables SAVOIRS Rappel : Les unités de mesure de longueur et les figures semblables Les unités de mesure de longueur Il existe diverses unités de mesure de longueur. Le tableau ci-dessous présente les unités de

Plus en détail

Symétrie centrale: AB = A'B' Figures symétriques

Symétrie centrale: AB = A'B' Figures symétriques Symétrie centrale: Figures symétriques ide mémoire Géométrie 5 ème Le symétrique d'un segment par rapport à un point est un segment de même longueur. La symétrie centrale conserve les longueurs. ' = ''

Plus en détail

Progression des activités géométriques au cycle 3 (programmes 2002)

Progression des activités géométriques au cycle 3 (programmes 2002) Progression des activités géométriques au cycle 3 (programmes 2002) Vocabulaire spécifique CE2 CM Repérage, utilisation de plans, de cartes Repérer une case ou un point sur un quadrillage Ecrire les coordonnées

Plus en détail