Analyse discriminante
|
|
|
- Benoît St-Pierre
- il y a 10 ans
- Total affichages :
Transcription
1 Analyse discriminante Christine Decaestecker & Marco Saerens ULB & UCL LINF2275 1
2 Analyse Discriminante Particularités: 2 formes/utilisations complémentaires: méthode factorielle: description "géométrique" de la séparation inter-classe (encore appelée analyse discriminante factorielle ou analyse discriminante linéaire de Fisher) interprétation bayesienne: classificateur bayesien (optimum au sens de la proba. de l'erreur) dans des conditions particulières pour les données! (encore appelée analyse discriminante décisionnelle, linéaire ou quadratique) Restrictions: Les variables descriptives X 1, X 2,... X p doivent être quantitatives! Analyse discriminante factorielle: principes de base: Objectif: mettre en évidence des différences entre les classes c-à-d entre les observations appartenant à des classes différentes => description des liaisons entre la variable "classe" et les variables quantitatives: les q classes diffèrent-elles sur l'ensemble des variables numériques? LINF2275 2
3 Méthode: déterminer un/des facteur(s), combinaison(s) linéaire(s) des variables descriptives, qui prenne(nt) des valeurs les + proches possible pour des éléments de la même classe, et les + éloignées possible entre éléments de classes différentes. (= facteurs discriminants) Exemple: Y o o o oo o o o o axe discriminant Formulation: 1) Décomposition de la matrice variance-covariance V Ensemble des n observations x i = un nuage de points, de centre de gravité g et de matrice variance-covariance V. Ce nuage est partagé en q sous-nuages par la variable "classe". Chaque sous-nuage (classe ω k ) d'effectif n k est caractérisé par son centre de gravité (ou centroïde) g k et sa matrice variance-covariance V k. X LINF2275 3
4 V peut être décomposée en une somme de 2 matrices: V = B + W avec B = matrice de variance inter-classe (B = "between") = matrice variance-covariance pondérée des k centroïdes g k : où g k = (g k1, g k2,..., g kj,..., g kp ) T et g kj = moyenne de X j dans ω k et q B p p = 1 n n k (g 1 k 4 4 g)(g 24 k 4 g) 3 T k =1 (k ) avec c jj' matrice C (k) ( p p) rend compte de la dispersion des centroïdes des classes autour du centre global g. W = matrice de variance intra-classe (W = "within") = moyenne des k matrices variance-covariance des classes: V k q W p p = 1 n k V k n k =1 Généralisation de la relation classique unidimensionnelle valable pour toute variable X dont les valeurs sont regroupées par classe: variance totale = moyenne des variances + variance des moyennes intra inter = (g kj m j )(g kj' m j' ) LINF2275 4
5 Décomposition variance intra/inter classe La variance empirique totale s écrit LINF2275 5
6 Décomposition variance Décomposition: intra/inter classe LINF2275 6
7 Décomposition variance intra/inter classe Et donc la variance totale s écrit LINF2275 7
8 Projection sur un axe Nous projetons les observations sur un axe L opérateur de projection s écrit LINF2275 8
9 Projection de la variance Pour la variance within: LINF2275 9
10 Projection de la variance (suite) LINF
11 Projection de la variance Pour la variance between: LINF
12 Projection de la variance Pour la variance totale: LINF
13 Décomposition de la variance projetée La variance empirique projetée se décompose également en within/between: Et donc LINF
14 Problème d optimisation Nous recherchons l axe correspondant à la séparation maximale entre les classes Et donc LINF
15 Problème d optimisation Nous avons donc D où Et nous posons LINF
16 Problème aux valeurs/vecteurs propres Nous obtenons donc le problème aux valeurs/vecteurs propres Il y a au plus (q 1) valeurs propres nonnulles LINF
17 2) Recherche des facteurs discriminants On travaille en variables centrées => g est ramené à l'origine! Le 1er facteur discriminant (F 1 ) est une nouvelle variable, combinaison linéaire des variables descriptives (centrées), dont la variance inter-classe est maximum (ou, de façon équivalente la variance intra-classe est minimum). Géométriquement: le 1er facteur détermine un axe dans le nuage de points (passant par l'origine) tel que les projections des points sur cet axe aient une variance inter-classe (variance des moyennes de classe) maximale. Le 2eme facteur (F 2 ) est non corrélé (perpendiculaire) au 1er et de variance inter-classe max. Etc pour le 3eme... F 1 o F o 2 + o o o o o o oo + o o o o + ++ o + x x x x xx x x x xx x x x x x LINF
18 Propriétés: les facteurs sont entièrement déterminés par la matrice définie par: V -1 B (vecteurs propres) le nbre maximum de facteurs discriminants = q 1 la part de variance inter-classe expliquée = variance inter / variance totale est décroissante entre les facteurs successifs. Toutes ces propriétés s'expliquent par le fait que: une analyse discriminante = ACP sur le nuage des q centroïdes, pondérés par l'effectif des classes n k, dans un espace R p avec V -1 comme métrique! Représentation graphique: Si 2 groupes => 1 seul facteur = axe de projection où la séparation inter-classe est la mieux exprimée => coordonnées sur cet axe = scores discriminants. Si + de 2 groupes => plan discriminant (F 1 et F 2 ) = plan de projection ou la variance inter-classe B (=> dispersion des centroïdes dans le plan) sera la mieux représentée!! LINF
19 Interprétation des facteurs: Comme en ACP: corrélations facteurs aux variables initiales + cercle des corrélations avec les 2 premiers facteurs (q > 2) Analyse discriminante décisionnelle => méthode de classification: 1) règle géométrique (règle de Fisher): Les facteurs discriminants donnent la meilleure représentation de la séparation des q centroïdes de classe (dans un espace orthonormé). => pour un individu x projeté dans l'espace des facteurs: attribuer la classe dont le centroïde est le plus proche (au sens de la distance euclidienne): => surfaces de séparation linéaires = hyperplans médians entre les centroïdes: R 1 R 3 R2 projection de g 2 détermination de 3 régions de décision (R 1, R 2, R 3 ) délimitant les points 'sensés' appartenir aux différentes classes LINF
20 Traduction dans l'espace de départ (variables descriptives): allocation au centroïde g k le plus proche au sens de la métrique W 1 (distance de Mahalanobis) d 2 M (x, g k ) = (x - g k ) T W 1 (x - g k ) Problèmes: La métrique W 1 est évaluée sur l'ensemble des données => problème si les classes ne sont pas de même "forme" (dispersion). une classe est représentée par son centroïde => problème si le centroïde n'est pas représentatif d'une classe (cas des classes non ellipsoïdales ou composées de sousnuages différents => séparation fortement non linéaire). ω 1 x g g 2 1 ω 2 ω 1 ω 2 g 1 g2 ω 2 ω 1 x sera jugé plus proche de ω 1 que de ω 2 LINF
21 Justification: lien avec la classification bayesienne On peut montrer que la règle de Fisher correspond à un classificateur bayesien (minimisation de la proba. de l'erreur) dans les conditions suivantes: chaque classe suit une distribution gaussienne (multivariée) de même matrice variance-covariance W (les nuages de points ont la même 'forme'), les classes sont équidistribuées: mêmes proba. a priori (très facilement généralisable si ce n'est pas le cas) En effet: Lorsque les distributions de classes sont gaussiennes de même matrice variance - covariance V, un classificateur bayesien définit les fonctions discriminantes y k (x) suivantes: (x alloué à ω k si y k (x) > y j (x) pour tout j k): y k (x) = (x - g k ) T W -1 (x - g k ) + 2 ln (P(ω k )) <=> x alloué à ω k si d 2 M (x, g k ) 2 ln (P(ω k )) est minimum!!! règle de Fisher généralisée (dépendant des proba. a priori): favorise les classes fortement représentées! LINF
22 Prise de décision Bayesienne dans le cas d un mélange Gaussien Supposons que les observations de chaque classe sont générées par une Gaussienne: Où z est le vecteur des caractéristiques projeté sur les axes discriminants retenus = modèle paramétrique Dans ce cas-ci, nous supposons qu il y a une matrice variance-covariance W égale pour toutes les classes LINF
23 Prise de décision Bayesienne dans le cas d un mélange Gaussien Nous devons calculer les probabilités à postériori Nous placons dès lors l observation z dans la classe k telle que LINF
24 Prise de décision Bayesienne dans le cas d un mélange Gaussien Ce qui est équivalent à Ou encore Et donc comme la matrice W est commune, LINF
25 Généralisation au cas où les matrices variance-covariance W k des classes ne sont pas égales: les fcts discriminantes du classif. bayesien deviennent: y k (x) = ln W k (x g k ) T W k 1 (x g k ) + 2 ln (P(ω k )) déterminant de la matrice Dans ce cas, les surfaces de séparation entre 2 classes (définies par y k (x) = y j (x)) ne sont plus linéaires => analyse discriminante quadratique En pratique: La matrice W, ou les matrices W k doi(ven)t être estimée(s) à partir des exemples disponibles pour chaque classe, ainsi que les P(ω k ). Lorsqu'on fait l'hypothèse d'égalité des matrices W k, la matrice W est obtenue par estimation 'poolée': W pool = (n 1 W 1 + n 2 W n q W q )/n (n = effectif total) L'usage et l'estimation de matrice particulière W k demande que les effectifs de classe soient suffisamment importants! Pour des faibles effectifs l'existence de W k 1 n'est pas tjrs assurée, de même W k peut être nul! LINF
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ
L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et
1 Complément sur la projection du nuage des individus
TP 0 : Analyse en composantes principales (II) Le but de ce TP est d approfondir nos connaissances concernant l analyse en composantes principales (ACP). Pour cela, on reprend les notations du précédent
La classification automatique de données quantitatives
La classification automatique de données quantitatives 1 Introduction Parmi les méthodes de statistique exploratoire multidimensionnelle, dont l objectif est d extraire d une masse de données des informations
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES
INTRODUCTION À L ANALYSE FACTORIELLE DES CORRESPONDANCES Dominique LAFFLY Maître de Conférences, Université de Pau Laboratoire Société Environnement Territoire UMR 5603 du CNRS et Université de Pau Domaine
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
Arbres binaires de décision
1 Arbres binaires de décision Résumé Arbres binaires de décision Méthodes de construction d arbres binaires de décision, modélisant une discrimination (classification trees) ou une régression (regression
Cours de méthodes de scoring
UNIVERSITE DE CARTHAGE ECOLE SUPERIEURE DE STATISTIQUE ET D ANALYSE DE L INFORMATION Cours de méthodes de scoring Préparé par Hassen MATHLOUTHI Année universitaire 2013-2014 Cours de méthodes de scoring-
Introduction au Data-Mining
Introduction au Data-Mining Alain Rakotomamonjy - Gilles Gasso. INSA Rouen -Département ASI Laboratoire PSI Introduction au Data-Mining p. 1/25 Data-Mining : Kèkecé? Traduction : Fouille de données. Terme
Une comparaison de méthodes de discrimination des masses de véhicules automobiles
p.1/34 Une comparaison de méthodes de discrimination des masses de véhicules automobiles A. Rakotomamonjy, R. Le Riche et D. Gualandris INSA de Rouen / CNRS 1884 et SMS / PSA Enquêtes en clientèle dans
Déroulement d un projet en DATA MINING, préparation et analyse des données. Walid AYADI
1 Déroulement d un projet en DATA MINING, préparation et analyse des données Walid AYADI 2 Les étapes d un projet Choix du sujet - Définition des objectifs Inventaire des données existantes Collecte, nettoyage
Extraction d informations stratégiques par Analyse en Composantes Principales
Extraction d informations stratégiques par Analyse en Composantes Principales Bernard DOUSSET IRIT/ SIG, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex 04 [email protected] 1 Introduction
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING»
LA NOTATION STATISTIQUE DES EMPRUNTEURS OU «SCORING» Gilbert Saporta Professeur de Statistique Appliquée Conservatoire National des Arts et Métiers Dans leur quasi totalité, les banques et organismes financiers
Analyses multivariées avec R Commander (via le package FactoMineR) Qu est ce que R? Introduction à R Qu est ce que R?
Analyses multivariées avec R Commander Analyses multivariées avec R Commander (via le package FactoMineR) Plate-forme de Support en Méthodologie et Calcul Statistique (SMCS) - UCL 1 Introduction à R 2
Introduction. Préambule. Le contexte
Préambule... INTRODUCTION... BREF HISTORIQUE DE L ACP... 4 DOMAINE D'APPLICATION... 5 INTERPRETATIONS GEOMETRIQUES... 6 a - Pour les n individus... 6 b - Pour les p variables... 7 c - Notion d éléments
Introduction au Data-Mining
Introduction au Data-Mining Gilles Gasso, Stéphane Canu INSA Rouen -Département ASI Laboratoire LITIS 8 septembre 205. Ce cours est librement inspiré du cours DM de Alain Rakotomamonjy Gilles Gasso, Stéphane
L'analyse de données. Polycopié de cours ENSIETA - Réf. : 1463. Arnaud MARTIN
L'analyse de données Polycopié de cours ENSIETA - Réf : 1463 Arnaud MARTIN Septembre 2004 Table des matières 1 Introduction 1 11 Domaines d'application 2 12 Les données 2 13 Les objectifs 3 14 Les méthodes
Chapitre 7. Statistique des échantillons gaussiens. 7.1 Projection de vecteurs gaussiens
Chapitre 7 Statistique des échantillons gaussiens Le théorème central limite met en évidence le rôle majeur tenu par la loi gaussienne en modélisation stochastique. De ce fait, les modèles statistiques
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring
Projet SINF2275 «Data mining and decision making» Projet classification et credit scoring Année académique 2006-2007 Professeurs : Marco Saerens Adresse : Université catholique de Louvain Information Systems
TABLE DES MATIERES. C Exercices complémentaires 42
TABLE DES MATIERES Chapitre I : Echantillonnage A - Rappels de cours 1. Lois de probabilités de base rencontrées en statistique 1 1.1 Définitions et caractérisations 1 1.2 Les propriétés de convergence
Analyse de la vidéo. Chapitre 4.1 - La modélisation pour le suivi d objet. 10 mars 2015. Chapitre 4.1 - La modélisation d objet 1 / 57
Analyse de la vidéo Chapitre 4.1 - La modélisation pour le suivi d objet 10 mars 2015 Chapitre 4.1 - La modélisation d objet 1 / 57 La représentation d objets Plan de la présentation 1 La représentation
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données
Structure du cours : Il existe de nombreuses méthodes intéressantes qui couvrent l Analyse des Données et le Data Mining Nous suivons le plan suivant : Fonctionnement de Spad Catalogue des méthodes (statistiques
Leçon N 4 : Statistiques à deux variables
Leçon N 4 : Statistiques à deux variables En premier lieu, il te faut relire les cours de première sur les statistiques à une variable, il y a tout un langage à se remémorer : étude d un échantillon d
a) La technique de l analyse discriminante linéaire : une brève présentation. 3 étapes de la méthode doivent être distinguées :
a) La technique de l analyse discriminante linéaire : une brève présentation. Nous nous limiterons ici à l'analyse discriminante linéaire et à deux groupes : - linéaire, la variante utilisée par ALTMAN
Relation entre deux variables : estimation de la corrélation linéaire
CHAPITRE 3 Relation entre deux variables : estimation de la corrélation linéaire Parmi les analyses statistiques descriptives, l une d entre elles est particulièrement utilisée pour mettre en évidence
ACP Voitures 1- Méthode
acp=princomp(voit,cor=t) ACP Voitures 1- Méthode Call: princomp(x = voit, cor = T) Standard deviations: Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 2.1577815 0.9566721 0.4903373 0.3204833 0.2542759 0.1447788
Chapitre 3. Les distributions à deux variables
Chapitre 3. Les distributions à deux variables Jean-François Coeurjolly http://www-ljk.imag.fr/membres/jean-francois.coeurjolly/ Laboratoire Jean Kuntzmann (LJK), Grenoble University 1 Distributions conditionnelles
TABLE DES MATIÈRES. PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats. Pierre Dagnelie
PRINCIPES D EXPÉRIMENTATION Planification des expériences et analyse de leurs résultats Pierre Dagnelie TABLE DES MATIÈRES 2012 Presses agronomiques de Gembloux [email protected] www.pressesagro.be
Individus et informations supplémentaires
ADE-4 Individus et informations supplémentaires Résumé La fiche décrit l usage des individus supplémentaires dans des circonstances variées. En particulier, cette pratique est étendue aux analyses inter
Méthodes de Simulation
Méthodes de Simulation JEAN-YVES TOURNERET Institut de recherche en informatique de Toulouse (IRIT) ENSEEIHT, Toulouse, France Peyresq06 p. 1/41 Remerciements Christian Robert : pour ses excellents transparents
COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES
COURS DE DATA MINING 4 : MODELISATION NON-SUPERVISEE CLASSIFICATIONS AUTOMATIQUES EPF 4/ 5 ème année - Option Ingénierie d Affaires et de Projets - Finance Bertrand LIAUDET 4 : Modélisation non-supervisée
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
Classification non supervisée
AgroParisTech Classification non supervisée E. Lebarbier, T. Mary-Huard Table des matières 1 Introduction 4 2 Méthodes de partitionnement 5 2.1 Mesures de similarité et de dissimilarité, distances.................
Le modèle de régression linéaire
Chapitre 2 Le modèle de régression linéaire 2.1 Introduction L économétrie traite de la construction de modèles. Le premier point de l analyse consiste à se poser la question : «Quel est le modèle?». Le
La prévision de la faillite fondée sur l analyse financière de l entreprise : un état des lieux par Catherine REFAIT
Cet article est disponible en ligne à l adresse : http://www.cairn.info/article.php?id_revue=ecop&id_numpublie=ecop_162&id_article=ecop_162_0129 La prévision de la faillite fondée sur l analyse financière
ISFA 2 année 2002-2003. Les questions sont en grande partie indépendantes. Merci d utiliser l espace imparti pour vos réponses.
On considère la matrice de données : ISFA 2 année 22-23 Les questions sont en grande partie indépendantes Merci d utiliser l espace imparti pour vos réponses > ele JCVGE FM1 GM JCRB FM2 JMLP Paris 61 29
Exercice : la frontière des portefeuilles optimaux sans actif certain
Exercice : la frontière des portefeuilles optimaux sans actif certain Philippe Bernard Ingénierie Economique & Financière Université Paris-Dauphine Février 0 On considère un univers de titres constitué
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications
Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante
De la mesure à l analyse des risques
De la mesure à l analyse des risques Séminaire FFA Jean-Paul LAURENT Professeur à l'isfa [email protected] http://laurent.jeanpaul.free.fr/ 0 De la la mesure à l analyse des risques! Intégrer
Programmation linéaire
1 Programmation linéaire 1. Le problème, un exemple. 2. Le cas b = 0 3. Théorème de dualité 4. L algorithme du simplexe 5. Problèmes équivalents 6. Complexité de l Algorithme 2 Position du problème Soit
1. Vocabulaire : Introduction au tableau élémentaire
L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie
Table des matières. I Mise à niveau 11. Préface
Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3
Statistique Descriptive Multidimensionnelle. (pour les nuls)
Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Multidimensionnelle (pour les nuls) (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219
L'analyse des données à l usage des non mathématiciens
Montpellier L'analyse des données à l usage des non mathématiciens 2 ème Partie: L'analyse en composantes principales AGRO.M - INRA - Formation Permanente Janvier 2006 André Bouchier Analyses multivariés.
Introduction au datamining
Introduction au datamining Patrick Naïm janvier 2005 Définition Définition Historique Mot utilisé au départ par les statisticiens Le mot indiquait une utilisation intensive des données conduisant à des
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.
Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des
Filtrage stochastique non linéaire par la théorie de représentation des martingales
Filtrage stochastique non linéaire par la théorie de représentation des martingales Adriana Climescu-Haulica Laboratoire de Modélisation et Calcul Institut d Informatique et Mathématiques Appliquées de
données en connaissance et en actions?
1 Partie 2 : Présentation de la plateforme SPSS Modeler : Comment transformer vos données en connaissance et en actions? SPSS Modeler : l atelier de data mining Large gamme de techniques d analyse (algorithmes)
AICp. Vincent Vandewalle. To cite this version: HAL Id: inria-00386678 https://hal.inria.fr/inria-00386678
Sélection prédictive d un modèle génératif par le critère AICp Vincent Vandewalle To cite this version: Vincent Vandewalle. Sélection prédictive d un modèle génératif par le critère AICp. 41èmes Journées
t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :
Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant
Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R².
Statistiques - Cours Page 1 L I C E N C E S c i e n t i f i q u e Cours Henri IMMEDIATO S t a t i s t i q u e s 1 Gén éralités Statistique descriptive univari ée 1 Repr é s e n t a t i o n g r a p h i
FORMULAIRE DE STATISTIQUES
FORMULAIRE DE STATISTIQUES I. STATISTIQUES DESCRIPTIVES Moyenne arithmétique Remarque: population: m xμ; échantillon: Mx 1 Somme des carrés des écarts "# FR MOYENNE(série) MOYENNE(série) NL GEMIDDELDE(série)
Chapitre 2/ La fonction de consommation et la fonction d épargne
hapitre 2/ La fonction de consommation et la fonction d épargne I : La fonction de consommation keynésienne II : Validations et limites de la fonction de consommation keynésienne III : Le choix de consommation
Enjeux mathématiques et Statistiques du Big Data
Enjeux mathématiques et Statistiques du Big Data Mathilde Mougeot LPMA/Université Paris Diderot, [email protected] Mathématique en Mouvements, Paris, IHP, 6 Juin 2015 M. Mougeot (Paris
IBM SPSS Regression 21
IBM SPSS Regression 21 Remarque : Avant d utiliser ces informations et le produit qu elles concernent, lisez les informations générales sous Remarques sur p. 46. Cette version s applique à IBM SPSS Statistics
Théorie de l estimation et de la décision statistique
Théorie de l estimation et de la décision statistique Paul Honeine en collaboration avec Régis Lengellé Université de technologie de Troyes 2013-2014 Quelques références Decision and estimation theory
Cours 9 : Plans à plusieurs facteurs
Cours 9 : Plans à plusieurs facteurs Table des matières Section 1. Diviser pour regner, rassembler pour saisir... 3 Section 2. Définitions et notations... 3 2.1. Définitions... 3 2.2. Notations... 4 Section
Data mining 1. Exploration Statistique
PUBLICATIONS DU LABORATOIRE DE STATISTIQUE ET PROBABILITÉS Data mining 1 Exploration Statistique ALAIN BACCINI & PHILIPPE BESSE Version septembre 2004 mises à jour : wwwlspups-tlsefr/besse Laboratoire
Économetrie non paramétrique I. Estimation d une densité
Économetrie non paramétrique I. Estimation d une densité Stéphane Adjemian Université d Évry Janvier 2004 1 1 Introduction 1.1 Pourquoi estimer une densité? Étudier la distribution des richesses... Proposer
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Logiciel XLSTAT version 7.0. 40 rue Damrémont 75018 PARIS
Logiciel XLSTAT version 7.0 Contact : Addinsoft 40 rue Damrémont 75018 PARIS 2005-2006 Plan Présentation générale du logiciel Statistiques descriptives Histogramme Discrétisation Tableau de contingence
Soutenance de stage Laboratoire des Signaux et Systèmes
Soutenance de stage Laboratoire des Signaux et Systèmes Bornes inférieures bayésiennes de l'erreur quadratique moyenne. Application à la localisation de points de rupture. M2R ATSI Université Paris-Sud
De la mesure à l analyse des risques
De la mesure à l analyse des risques Séminaire ISFA - B&W Deloitte Jean-Paul LAURENT Professeur à l'isfa, Université Claude Bernard Lyon 1 [email protected] http://laurent.jeanpaul.free.fr/ 0 De
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Quelques éléments de statistique multidimensionnelle
ANNEXE 1 Quelques éléments de statistique multidimensionnelle Les méthodes d analyse statistique exploratoire utilisées au cours des chapitres précédents visent à mettre en forme de vastes ensembles de
Agrégation des portefeuilles de contrats d assurance vie
Agrégation des portefeuilles de contrats d assurance vie Est-il optimal de regrouper les contrats en fonction de l âge, du genre, et de l ancienneté des assurés? Pierre-O. Goffard Université d été de l
La programmation linéaire : une introduction. Qu est-ce qu un programme linéaire? Terminologie. Écriture mathématique
La programmation linéaire : une introduction Qu est-ce qu un programme linéaire? Qu est-ce qu un programme linéaire? Exemples : allocation de ressources problème de recouvrement Hypothèses de la programmation
Optimisation, traitement d image et éclipse de Soleil
Kléber, PCSI1&3 014-015 I. Introduction 1/8 Optimisation, traitement d image et éclipse de Soleil Partie I Introduction Le 0 mars 015 a eu lieu en France une éclipse partielle de Soleil qu il était particulièrement
Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE. 06/12/2009 Stéphane Tufféry - Data Mining - http://data.mining.free.fr
Stéphane Tufféry DATA MINING & STATISTIQUE DÉCISIONNELLE 1 Plan du cours Qu est-ce que le data mining? A quoi sert le data mining? Les 2 grandes familles de techniques Le déroulement d un projet de data
Modélisation des carrières salariales. dans Destinie
INSTITUT NATIONAL DE LA STATISTIQUE ET DES ÉTUDES ÉCONOMIQUES Série des documents de travail de la Direction des Etudes et Synthèses Économiques G 990 Modélisation des carrières salariales dans Destinie
Chapitre 4: Dérivée d'une fonction et règles de calcul
DERIVEES ET REGLES DE CALCULS 69 Chapitre 4: Dérivée d'une fonction et règles de calcul Prérequis: Généralités sur les fonctions, Introduction dérivée Requis pour: Croissance, Optimisation, Études de fct.
TABLE DES MATIÈRES. Bruxelles, De Boeck, 2011, 736 p.
STATISTIQUE THÉORIQUE ET APPLIQUÉE Tome 2 Inférence statistique à une et à deux dimensions Pierre Dagnelie TABLE DES MATIÈRES Bruxelles, De Boeck, 2011, 736 p. ISBN 978-2-8041-6336-5 De Boeck Services,
MAP 553 Apprentissage statistique
MAP 553 Apprentissage statistique Université Paris Sud et Ecole Polytechnique http://www.cmap.polytechnique.fr/~giraud/map553/map553.html PC1 1/39 Apprentissage? 2/39 Apprentissage? L apprentissage au
Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit
Techniques du Data Mining pour la prédiction de faillite des entreprises et la gestion du risque de crédit Adil Belhouari HEC - Montréal - Journées de l Optimisation 2005-09 Mai 2005 PLAN DE LA PRÉSENTATION
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux
Détection en environnement non-gaussien Cas du fouillis de mer et extension aux milieux hétérogènes Laurent Déjean Thales Airborne Systems/ENST-Bretagne Le 20 novembre 2006 Laurent Déjean Détection en
La segmentation à l aide de EG-SAS. A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM
La segmentation à l aide de EG-SAS A.Bouhia Analyste principal à la Banque Nationale du Canada. Chargé de cours à l UQAM Définition de la segmentation - Au lieu de considérer une population dans son ensemble,
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE
PREPROCESSING PAR LISSAGE LOESS POUR ACP LISSEE Jean-Paul Valois, Claude Mouret & Nicolas Pariset Total, 64018 Pau Cédex MOTS CLEFS : Analyse spatiale, ACP, Lissage, Loess PROBLEMATIQUE En analyse multivariée,
Introduction à la Statistique Inférentielle
UNIVERSITE MOHAMMED V-AGDAL SCIENCES FACULTE DES DEPARTEMENT DE MATHEMATIQUES SMI semestre 4 : Probabilités - Statistique Introduction à la Statistique Inférentielle Prinemps 2013 0 INTRODUCTION La statistique
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Fonctions de deux variables. Mai 2011
Fonctions de deux variables Dédou Mai 2011 D une à deux variables Les fonctions modèlisent de l information dépendant d un paramètre. On a aussi besoin de modéliser de l information dépendant de plusieurs
La méthode des scores, particulièrement de la Banque de France
La méthode des scores, particulièrement de la Banque de France Devant la multiplication des défaillances d entreprises au cours des années 80 et début des années 90, la Banque de France a produit des travaux
(Customer Relationship Management, «Gestion de la Relation Client»)
(Customer Relationship Management, «Gestion de la Relation Client») Les Banques et sociétés d assurance sont aujourd'hui confrontées à une concurrence de plus en plus vive et leur stratégie " clientèle
Validation probabiliste d un Système de Prévision d Ensemble
Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste
Modèles pour données répétées
Résumé Les données répétées, ou données longitudinales, constituent un domaine à la fois important et assez particulier de la statistique. On entend par données répétées des données telles que, pour chaque
Modèles et Méthodes de Réservation
Modèles et Méthodes de Réservation Petit Cours donné à l Université de Strasbourg en Mai 2003 par Klaus D Schmidt Lehrstuhl für Versicherungsmathematik Technische Universität Dresden D 01062 Dresden E
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de
Economie de l incertain et de l information Partie 1 : Décision en incertain probabilisé Chapitre 1 : Introduction à l incertitude et théorie de l espérance d utilité Olivier Bos [email protected]
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés
Analyses de Variance à un ou plusieurs facteurs Régressions Analyse de Covariance Modèles Linéaires Généralisés Professeur Patrice Francour [email protected] Une grande partie des illustrations viennent
NON-LINEARITE ET RESEAUX NEURONAUX
NON-LINEARITE ET RESEAUX NEURONAUX Vêlayoudom MARIMOUTOU Laboratoire d Analyse et de Recherche Economiques Université de Bordeaux IV Avenue. Leon Duguit, 33608 PESSAC, France tel. 05 56 84 85 77 e-mail
Biostatistiques Biologie- Vétérinaire FUNDP Eric Depiereux, Benoît DeHertogh, Grégoire Vincke
www.fundp.ac.be/biostats Module 140 140 ANOVA A UN CRITERE DE CLASSIFICATION FIXE...2 140.1 UTILITE...2 140.2 COMPARAISON DE VARIANCES...2 140.2.1 Calcul de la variance...2 140.2.2 Distributions de référence...3
Analyse de corrélation Étude des dépendances - Variables quantitatives
Ricco Rakotomalala Analyse de corrélation Étude des dépendances - Variables quantitatives Version 1.1 Université Lumière Lyon 2 Page: 1 job: Analyse_de_Correlation macro: svmono.cls date/time: 8-Mar-2015/7:21
CHAPITRE I. Modélisation de processus et estimation des paramètres d un modèle
CHAPITRE I Modélisation de processus et estimation des paramètres d un modèle I. INTRODUCTION. Dans la première partie de ce chapitre, nous rappelons les notions de processus et de modèle, ainsi que divers
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Vision industrielle et télédétection - Détection d ellipses. Guillaume Martinez 17 décembre 2007
Vision industrielle et télédétection - Détection d ellipses Guillaume Martinez 17 décembre 2007 1 Table des matières 1 Le projet 3 1.1 Objectif................................ 3 1.2 Les choix techniques.........................
Programmation linéaire
Programmation linéaire DIDIER MAQUIN Ecole Nationale Supérieure d Electricité et de Mécanique Institut National Polytechnique de Lorraine Mathématiques discrètes cours de 2ème année Programmation linéaire
